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We give a critical discussion of a recent Letter of Aharonov, Albert, and Vaidman. Although
their work contains several flaws, their main point is valid: namely, that there is a sense in which a
certain “weak measurement” procedure yields values outside the eigenvalue spectrum. Our analysis
requires no approximations and helps to clarify the physics behind the effect. We describe an opti-
cal analog of the experiment and discuss the conditions necessary to realize the effect experimental-

ly.

I. INTRODUCTION

In a recent, extraordinary paper, Aharonov, Albert,
and Vaidman' (AAV) claim that a certain procedure, in-
volving post selection as well as preparation of states, can
yield a ‘“‘measurement” of an observable with the “mea-
sured value” lying outside the range of the observable’s
eigenvalues. As their title puts it: ““. . . the result of a
measurement of a component of the spin of a spin-1 par-
ticle can turn out to be 100.”

One’s initial reaction is that this is impossible. This
prejudice is reinforced when one finds that AAV’s paper
contains several errors. Nevertheless, after a careful
study, we have concluded that AAV’s main point does
have validity, and our purpose here is to correct the er-
rors and to clarify the nature of the effect.

The phenomenon is not as revolutionary as it
sounds—there is nothing here that conflicts with conven-
tional interpretations of quantum mechanics. One could
well debate whether the use of the term “measurement”
is appropriate. We wish to remain neutral on this seman-
tic and philosophical issue, and we invite the reader to
come to his or her own judgment. To avoid circumlocu-
tion, however, we shall use AAV’s terminology “weak
measurement” (in quotation marks) throughout. Our aim
is to avoid the metaphysical aspects of measurement
theory, and to concentrate on explicating the physics of
AAV’s effect. We believe the effect is of theoretical and
pedagogical interest, and also might possibly have experi-
mental applications for the amplification, and hence
detection, of very small signals.!

The plan of the paper is as follows. In Sec. II we re-
view AAV’s general result, while in Sec. IIl we analyze
their specific example involving spin-; particles. Our
main concern is to understand how AAV’s effect—a
“measured value” lying well outside the range of the
eigenvalues—can arise from a suitable superposition of
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the eigenstates. We also show that the effect can be even
more dramatic in regions where AAV’s approximations
break down. An optical analog of AAV’s experiment is
described in Sec. IV. A summary, and a discussion of the
conditions required to realize the effect experimentally, is
given in Sec. V.

II. “WEAK” MEASUREMENTS
AND THE AAV EFFECT

The starting point of AAV’s discussion is the standard
von Neumann model of the measurement procedure.’
The quantum system, whose observable 4 is to be mea-
sured, is coupled to a measuring device by a coupling
Hamiltonian

H=—g(t)g4 , (1

where § is a canonical variable of the measuring device
(with conjugate momentum p) and g(¢) is a function with
compact support near the time of the measurement (nor-
malized such that its time integral is unity). An ideal
measuring device has well-defined initial and final values
of p, and the difference p,—p;, is the device’s “pointer
reading,” which registers the value of 4.

More realistically, the measuring device would have
some initial spread Ap. Let us suppose that the device
has an initial state |®;,) whose p-representation wave
function @,(p) is a Gaussian centered on p =0 with
width Ap. The g-representation wave function ¢;,(q),
which is the Fourier transform of ¢,,(p), would also be of
Gaussian form. Explicitly,’

f dq ¢;,(q)lg) (g representation),
i) = 3 ‘ @
fdp #..(p)lp) (p representation),

where
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din(@)=(q|®P;,) =exp —fz—z ,
$in(p)=(p|®;,) =exp(—A%p?) , (3)
Ag=A, Ap=1/(2A),

with Zi=1. We shall also assume that the quantum sys-

tem has been prepared in some definite state | ¥, ). Quite
generally, this state may be expanded in terms of the
eigenstates of A:

|\Ijin>=2an|A=an> . 4)

Under the action of the coupling Hamiltonian—which,
for the short duration of the measurement, can be as-
sumed to dominate all other terms in the full
Hamiltonian—the whole system (quantum system plus
measuring device) will evolve to

exp [—ifﬁdt]!‘l/inH(bin)

—Za queq"exp |A=a,)g). (5

Inserting 1= f dplp){p| this can be rewritten in the p
representation as equal to

Sa, [dpexp[—A¥p—a,)lld=a,)|p) . (6)

Thus, if Ap=1/(2A) is small compared to the spacing
between the a,’s, the measuring device is left in a state
consisting of widely separated ‘“‘spikes,” each centered on
one of the eigenvalues a,. Hence, in the limit Ap—O0,
one has all the properties of an ideal measurement: (i) the
measurement always produces one of the eigenvalues a,,;
(ii) the probability of the outcome a, is la,, 1% (iii) is the
measurement yields a, then the quantum system is left in
the eigenstate | 4 =a,, ).

However, let us consider the opposite limit, in which
Ap is much larger than the spread of the a,’s. AAYV refer

to this case as a ‘““‘weak measurement.” The final state of

the “measuring” device is then a superposition of strong-
ly overlapping, broad Gaussians. The final value of p,
which indicates the “measured” value of 4, has a proba-
bility distribution given by the absolute square of the p-
representation wave function of the whole system, i.e.,
the overlap of (6) with {p|:

P(p)=T la,|%xp[ —2A%p —a,)?] . @)

n

In the “weak” case (large Ap, small A), this will approxi-
mate a single, broad Gaussian peaked at the mean value
of 4, whichis ( 4)= po la,|’a,. Of course, any single
“weak measurement” gives almost no information, since
Ap >>( A ). However, by repeating the experiment many
times one can map out the whole distribution, and SO
determine the centroid { 4 ) to any desired accuracy.*
AAYV’s point is that more interesting effects arise if one
makes a post selection of the state of the quantum system:
that is, immediately after the ‘“weak measurement” of A,
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one makes a (strong) measurement of some other observ-
able B and one selects a single outcome B =b. This puts
the quantum system into a definite final state

¥,)=[B=b)=3 a,l4=a,) . (®)

[The procedure is exactly analogous to the preparation
(or preselection) of the initial state |W;,)]. After the
post-selection procedure, the “measuring device” will be
left in the state

|<I>,>=<wf

This expression can be straightforwardly evaluated using
the expansions of |¥;,) and |¥,). In the g representa-
tion,

exp

—ifﬁdt] l\lli,,)]d)in) . ©)

©,)=3 a,a; [dge ™ exp lg)  (10)
and hence
|<I>f)=2a,,a;,"‘fdp exp[ —A%p—a,)?]lp) (11)

in the p representation.
AAV evaluate |®,) in a different manner, invoking
some sweeping approximations. They define the quantity

A, =V, 2|, /(Y |9, (12)
which they call the “weak value of A4, and argue as fol-
lows:

@) =¥ le? W) |®;,) (13)
=W, W) +ig{ W, | AW, + -~ )@, (14)
=W W, )(1+igA,+ - )|P;,) (15)
z(\l’f|\l/in)qu e{quexp lg) . (16)

In the p representation this becomes
@, )~ (W, W) [ dp expl —A%p— 4,)1Ip) . (17)

Obviously, this wave function is a single, broad Gauss-
ian centered on A4,. What makes this disconcerting is
the fact that 4, may lie outside—even far outside—the
range of the eigenvalues a, (e.g., consider two nearly or-
thogonal states |W,,) and I\I/ f) with a sizable matrix ele-
ment (W | 4|¥,;,), so that 4, is very large).

Let us first consider the restrlctlons that are necessary
to justify the manipulations in AAV’s calculation above.
First, the neglect of the higher terms in (14), with respect
to the two terms retained, requires that

lg™(W,| 4 "W < [{¥ w0, (18)
lg"(W | 4 "W, | <<|qg{ ¥, A|W;,) ], (19)

for all n =2 2. Next, the resummation made in going from
(15) to (16) assumes that |g4,|<<1. In that case, the
condition (19) becomes a much stronger restriction than
(18). Finally, since the spread of g values is governed by
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A, we can effectively replace g by A in the above. In sum-
mary, the validity of AAV’s calculation requires

A<<1/4, (20)

and
<\I/f|2l‘ym> 1/(n—1)
(W, 4",

[Note that the condition quoted by AAY in their Eq. (4)
is incorrect in several respects.]

The calculation in Egs. (13)-(16) above does therefore
have a certain region of validity and we must now con-
front the apparent paradox arising from the two expres-
sions for [®,): Eqgs. (11) and (17). How can |®/) be a
single Gaussian peaked at 4, [Eq. (17)], while simultane-
ously being a superposition of Gaussians, each peaked at
a value a, [Eq. (11)], when A4, may well be much greater
than any of the a,’s? How can a large shift be produced
from a superposition of small shifts?

The resolution of the paradox lies in the fact that the
superposition of Gaussians in Eq. (11) involves complex
coefficients. Thus, in contrast with classical probability
theory, or with the situation in Eq. (7), where the weights
are all positive definite, one may have complicated can-
cellations between the individual Gaussians. Such can-
cellations are capable of producing a function whose peak
is shifted far to one side, though not by more than of or-
der the width Ap =1/(2A)—a fact that is reflected in the
restriction A, <<1/A above. The phenomenon is not
unique to Gaussians, and would occur for any qualita-
tively similar distributions. Some explicit, numerical ex-
amples will be given at the end of Sec. III and in Figs.
2—4 below.

A << 21

min
(n=2,3,...)

III. EXAMPLE INVOLVING SPIN-] PARTICLES

AAY illustrate their general discussion with the fol-
lowing experiment. A beam of spin-J particles moves in
the y direction with well-defined velocity. The beam is
prepared such that the particles’ spins point in the xz
plane at an angle a to the x axis. It is assumed that the
spatial wave function of the particles has a Gaussian
shape of width A in the z direction. Consequently, the
beam is diverging with a momentum spread
Ap,=1/(24).

A measurement of the z component of the spin is per-
formed in the usual way, by passing the beam through a
Stern-Gerlach magnet. This produces a coupling be-
tween the spin operator &, and the z coordinate through
the coupling Hamiltonian

H=—)g(1)26, , (22)

where A is proportional to the particle’s magnetic mo-
ment, to 8B, /8z, etc., so that the localized function g (#)
(which arises from the passage of the beam particles
through the localized region of inhomogeneous magnetic
field) is normalized to unity. Using the earlier terminolo-

gy, the “quantum system’s” state |¥) corresponds to the
particles’ spin state, while the state of the “measuring de-
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FIG. 1. Stern-Gerlach magnet layout for the AAV experi-
ment.

vice,” |®), corresponds to their spatial wave function:
The operator A4 is here A& ,; the coordinate g is z, and
hence p is p,.

We shall consider a “weak measurement” of Ao, in
which the beam splitting 8p, induced by the Stern-
Gerlach magnet is small compared to Ap,=1/(2A), the
overall p, spread of the beam. Thus, the o0,=+1 and
— 1 components of the beam continue to overlap strongly
and are not cleanly separated as they would be in a
(strong) measurement. A post selection of the spin state
is made by passing the beam through a second magnet
with a strong Stern-Gerlach field aligned in the x direc-
tion. This splits the beam into two well-separated beams
and the o, =1 beam is selected and imaged on a dis-
tant screen. (See Fig. 1.)

Thus, the initial spin state is the +1 eigenstate of
(cosa)o, +(sina)o,,

a . a
cos— +sin—

Y= 1 2 2
|, TV | e | (23)
2 2
and the final state is the + 1 eigenstate of &, :
v y=—= 1. (24)
AV

[Note that (u,v) is shorthand for u|t)+wv|!), where
[1),11) are the eigenstates of 5,.]
Hence,

a

(¥/1¥,,) =cos 7, <w,faztwi,,>=sin—‘;~ , (25)

so that the “weak” value of the spin component o,, in
AAV’s sense, is

A,=(Ao, )w=man—‘2’i . (26)

The initial spatial wave function is

din(g)={g|®;,) =exp

22
—4—A7 flx,p) . 27

The precise x,y dependence is unimportant and we shall
ignore it henceforward.

Substituting in Eq. (17), we obtain AAV’s prediction
for the final (p-representation) wave function:
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érp)=(pld,)
2

a
cos— —A2?

2

~ exp (28)

a
p,—A tan;

The z distribution of counts observed on the distant
screen will, of course, directly reflect the distribution of
p.’s in the final beam, which is given by the absolute
square of Eq. (28). Thus, AAV’s result means that the
observed distribution will be Gaussian, centered on the
value tana/2 (on a scale where o,=+1 would corre-
spond to the value +1). The surprising feature is that,
when o approaches m, the “measured value,” tana /2, can
be much greater than unity.
From (16), AAV’s result is valid provided that
A <<A 7 'min

tan—g—, cotZ (29)

2

This restriction implies that, for a given A, one cannot
approach too close to a=w. Nevertheless, with a

sufficiently small A (i.e., a sufficiently rapidly diverging

beam), one could let a be close enough to 7 to “measure”
a value 100, say, for the z-spin component of a spin-1
particle.

To understand this better let us specialize to the case
where a=m—2€ with € <<1. AAV’s result then reduces
to

é,(p)~eexp[ —AXp,—A/€)*], 30)
and is valid if

A <<e<<1 . (31)

The corresponding exact result is easily obtained from
Eq. (11):

é,(p)=0(p,;e,A,1), (32)

where ¢ is a function of p, with parameters é, A, and A,
defined by

@(pse,A,L)=L1{(1+€)exp[ —A%p —1)*]
—(1—e)exp[ —AX2p+A)2]} . (33)
Note that A could be eliminated by the scaling relation
@p;e,A,A)=@(p /A;€,AA, 1) . (34)

The exact form (33) makes it evident that the wave func-
tion is a superposition of two Gaussians, centered on
p==xA, corresponding to the o,==x1 eigenstates. The
trick lies in the near cancellation of the two terms, which
leaves a small difference function ¢(p), which turns out to
be approximately Gaussian and peaked at p=A/e, in
agreement with AAV’s form, (30). This fact is illustrated
in Fig. 2, which shows ¢(p) for €=0.2 and AA=0.01.
The effect becomes more dramatic as € is made smaller
(for fixed A) (Ref. 5). The rightward shift of the peak in-
creases proportional to 1/€: At least, it does so until
AAV’s approximations break down, which happens when
€ becomes of order AA. The shift of the peak cannot
exceed O(1/A) and so the effect saturates. [See Fig. 3(a)
for e=A=0.01.] Note that a “dip” becomes visible on
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FIG. 2. (a) Graph of the function ¢(p;€,A,A) [see Eq. (33)] as
a function of P =p /A with AA=0.01 and €=0.2. Note that the
function resembles a single Gaussian whose peak, shown in a
closeup in (b), is shifted to P=1/€e=5.

the left-hand side and this becomes more pronounced if €
is decreased further. In terms of the probability distribu-
tion |@(p)|? the “dip” appears as a small, secondary peak.
[See Fig. 3(b).]

Ultimately, if € is reduced to zero, one obtains the an-
tisymmetric wave function shown in Fig. 4(a), which pro-
duces the ‘““double-humped” probability distribution of
Fig. 4(b). AAV’s approximations break down completely
in this region, of course. However, the effect is still a
rather striking one: the two peaks of the distribution are
located at p ~+0.7 /A, and not at £A (so that p /A==%70
rather than 1 in the example of the figures). Neverthe-
less, this distribution arises from a wave function which is

~ a superposition of o, =11 components only.

a)

200 P

Ix 1074

1

1
-100 100 P

FIG. 3. (a) As Fig. 2, but for e=AA=0.01. Note that al-
though the component Gaussians peak at +1 and — 1, the com-
posite function is shifted by about half the width 1/A. (b) The
resulting probability distribution |¢(P)|2.
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FIG. 4. (a) As in Fig. 2, but for e=0. (b) The resulting prob-
ability distribution |@(P)|%

To conclude this section we note a straightforward
generalization of the experiment, in which the initial and
final spins are selected to be at angles @ and B to the x
axis, respectively. (Previously, B was taken to be zero.)
The ‘“weak” value of the operator A&, would then be
A, =M\/€, where

_cos[3(a—pB)]

626(1/2)(a’3)=m . (35)
AAV’s result would be

é(p)=cos[L(a—PB)lexp[ —A¥p,—A/€)*], (36)
valid if

AA <<min[e, 1/€] . (37)

The exact result can be expressed as
$r(p)=sin[H(a+B)]p(p.;€,A,1) , (38)

in terms of the function introduced in Eq. (33). The
above formulas are valid for any value of €, but the in-
teresting effects occur when € is small. The ideal region is
therefore around a =, 8=~0 (or vice versa), correspond-
ing to the case considered above.

IV. AN OPTICAL ANALOG

An optical version of the previous experiment can be
constructed. Polarized light replaces the spin-1 particles,
and a laser beam, suitably expanded with lenses, can pro-
vide the broad, coherent beam needed. The setup is
sketched in Fig. 5. A polarizer and analyzer select the in-
itial and final polarizations to be at angles a and 3 to the
x axis, respectively. Between them is placed the “weak
measuring device” —a slab of weakly birefringent crystal,
which introduces a small lateral displacement between
the “ordinary” and “extraordinary” rays®—which one
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FIG. 5. An optical analog of the AAV experiment. A broad,
coherent beam passes through a polarizer (P) and analyzer ( 4).
Between them is a birefringent crystal (C) which produces a
small lateral displacement between x (o ray) and z (e ray) polar-
izations (see inset).

arranges to correspond to the x and z polarizations, re-
spectively. This lateral displacement, easily calculable
for a given crystal, needs to be small compared to the
width of the beam. Note that, because the displacement
produced by the doubly refracting material is lateral,
rather than an angular deflection, as in the case of a
Stern-Gerlach magnet, we shall need to concentrate on
the z, rather than the p,, distribution. This means that A
and 1/(2A)=3 will exchange roles, relative to our previ-
ous discussion.

The initial beam is assumed to have a Gaussian profile,
with a large spatial width, 1/(258). After passing through
the polarizer, its wave function is

cosa

(q|®;,)|¥;,) =exp(—8%22) , (39)

sina

where |W) here corresponds to a two-vector, not a spi-
nor. In passing through the birefringent material the o
ray (x polarization) and e ray (z polarization) are dis-
placed by different amounts @, and a,, so the emerging
beam will be

cosa exp[ —8%(z —a, )?]

sina exp[ —8%(z —a,)?] (4_0)

Finally, the analyzer projects out the 8 component of po-
larization, producing the spatial wave function

(q|®;)=cosBcosa exp[ —8*(z —a,)*]
+sinfBsina exp[ — 6%z —a,)?] . (41)
This can be rewritten as
¢f(q)5(qICDf)ﬁcos(a+3)¢(z—a;6,6,k) (42)

in terms of the @ function introduced in Eq. (33). The pa-
rameters are given by

a=1(a,+a,), A=Ha,—a,), (43)

and
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_ _ cos(a—p3)

e=ena,B)= costatB) (44)
Notice that here € involves the whole angles, not the
half-angles characteristic of the spinor case [cf. (35)]. Be-
cause of this, the interesting region in which € is small
now corresponds to a=37/4, B>~ /4 (or vice versa), i.e.,
nearly orthogonal polaroids, each at 45° to the x and z
axes. By arranging that e=~AJ, for instance, one can ex-
pect to see an intensity distribution resembling Fig. 3(b),
in which the beam z value is shifted by ~1/(28).

In principle, one can produce a shift of order 1/(28) no
matter how small A is. Thus, one could detect a very
small birefringence of the crystal with a photodetector
whose position resolution is nowhere near fine enough to
detect the lateral separation between the o and e rays.
There is a price, of course: One would need to be able to
control the angles a and 3, and hence €, to great pre-
cision. Also, one faces a loss of intensity by a factor of
A28, because of the nearly orthogonal polarizers. (Fur-
ther limitations arise because actual polarizers are not
perfectly efficient.) Nevertheless, an experiment of this
kind should be perfectly feasible. We hope that it will
serve to illustrate the general point that the AAV effect
offers a possible means of amplifying and detecting very
small signals.

V. SUMMARY

In this paper we have reexamined the problem of
“weak measurement” of a quantum dynamical variable
A, in particular the component of a spin, allowing for
post selection of the events. We find that the dramatic
effect pointed out by Aharonov, Albert, and Vaidman
does indeed obtain: the broad distribution of “measured”
values can be peaked far outside the range of eigenvalues
of A. This effect obtains under certain exceptional condi-
tions. (1) Post selection: the measured events are selected
on the basis of a (strong) measurement of some noncom-
muting observable after the original ‘“weak measure-
ment” is completed. Thus, the result of the “measure-
ment” depends both on the preparation and on the post
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selection. (2) Diffuse measurements: the spread Ap of the
pointer readings intrinsic to the ‘“weak measuring device”
is large compared with the separation of the expected
mean values for the various eigenvalues of 4. (3)
Coherent spread. the spread Ap of the pointer readings
must be quantum-mechanically coherent, not merely a
probabilistic spread. That is, the state of the ‘“weak
measuring device” must be representable by a wave func-
tion, rather than by an impure density matrix. This is
unfortunately not true of most measuring devices. How-
ever, it is not an impossible condition to satisfy. In the
case of the experiments described in Secs. III and IV the
requirement is that the beam should be coherent across
its width.

The surprising effect pointed out by AAV has been
shown to be a consequence of constructive and destruc-
tive interference between two complex amplitudes. Al-
though surprising, the effect is in no way paradoxical,
and involves nothing outside ordinary quantum mechan-
ics. Our analysis, since it dispenses with AAV’s approxi-
mations, also provides a more complete description of the
effect. We have also described an optical analog of
AAV’s experiment, and emphasized the point that the
AAY effect could have applications to the detection of
very tiny signals.

Note added. Since this paper was submitted, comments
on the AAYV Letter by A. J. Leggett, and by A. Peres’s,
together with a response from Aharonov and Vaidman,
have appeared in Phys. Rev. Lett. 62, 2325 (1989). Leg-
gett disputes the use of the term ‘“‘measurement”—a
thorny issue that we have deliberately avoided. Peres’s
objection is, we believe, amply answered by our discus-
sion. A new manuscript by Aharonov and Vaidman
clarifies the mathematical example originally presented in
Ref. 1. We refer the interested reader to this paper, and
withdraw our earlier criticism of this example.
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