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States with a half-integer fermion number occur when a fermionic field coupled to a soliton possesses a
zero mode. This paper spells out the circumstances under which one can retain an integer fermion number
as also a charge-conjugation-invariant ground state. It is necessary to make the representation reducible but
it is kept irreducible by introducing an additional operator.

The quantum theory of the free Fermi-Dirac field was
developed by Jordan and Wigner! in 1928 and may be out-
lined as follows: Expand the field in terms of (idealized)
stationary states as the (generalized) sum

W (x0)= gota,u,(x)e“""»‘+b;v,(x)e‘f~‘1 ,
E, >0 .
Then the anticommutation relations
W, o' ()} =8(x-y) ,
Wxn w0l =W 0, 6" (0} =0,
take the simple form
(ana) ) =bpb1) =5, .,

(a,,,anf} = {b"’bn’} = la,,,bn:} = {a,,.b:f} =0 .

The fermion-number operator N may be defined by the
commutation with ¢ and dﬁ, and its fiducial value for any
state | ) as

INo]l=—y, [Ny']=y,
NYy=vl), Ivl<e .

It then follows that the spectrum of N is
N=v,vtl,v2, ...,

by virtue of the commutation relations.
For the standard representation, | ) is the vacuum state
[0), and v=0. We have

N|0)=0, N=0, +1, +2, ...,
and an operator realization is
M=+ f wo—ph ax .

The anticommutation relations admit of the automor-
phism of charge conjugation:
U(xt)— Cy*(xt) ,
W o) = wT(xe)C

as b, a'l=p .

Under this automorphism we want
N— —N .

The standard representation above admits of this automor-
phism as an inner automorphism.?

It was discovered that nonstandard (amyriotic) represen-
tations of the Fermi field exist? in all of which the operator
N, is unbounded. Thus N, is useless, and we may define
N, as that which ‘‘differs from N, by an infinite constant.”
By choosing N, to be zero for a chosen state of the system
the spectrum of N, coincides with that of N, in the standard
state. It is to be noted that none of these irreducible non-
standard representations admits the charge-conjugation au-
tomorphism. If we want to have a nonstandard (amyriotic)
representation which includes the charge conjugation as an
inner automorphism, we need a reducible representation.

In addition to such nonstandard representations a new
phenomenon comes about when the field is not free but in
suitable external fields. For example, when a Dirac field is
in a strong Coulomb potential which has binding energies
large enough for the negative and positive energies to cross,
the energy levels are no longer exclusively real, and the
standard representations are not valid.

More recently, Jackiw and Rebbi* have shown that in the
approximation in which a Dirac field is in a soliton back-
ground, zero-energy modes are present, so that

ylx,t)= Z[a,,u,,(x)e—iE"‘+ by, (x)eHE"r] +cw(x) .

With w(x) being a zero-energy solution, the irreducible
representation admitting of charge conjugation has states
with a half-integer fermion number. This arising of a half-
integer fermion number in a theory in which all fields have
integer fermion numbers is, as they rightly point out, truly
remarkable. They also show that this puzzling result ob-
tains whenever a Dirac equation possesses a nondegenerate
fermion-number self-conjugate zero-energy bound state.

In this paper we wish to study the question as to how in a
theory where fermion numbers are finite we have such a
nonstandard representation, and under what circumstances
could we obtain the quantization of a Fermi field with zero-
energy modes in which a vacuum with a zero fermion
number obtains. For simplicity of presentation, we discuss
the one-dimensional example studied by Jackiw and Rebbi*
and then generalize.

In a theory of a scalar field ¢ and a spinor field ¢ with a
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Lagrangian density of the form

L=F53,000 — +(\Y/g) (1 - g%?)2+ iyy* 3,0 — Gghdy

a classical solution when ¢ is absent is
¢.(x)=(1/g)tanhAx .

If we consider the Dirac equation in this classical back-
ground field,

l"y“a“lfl - ng’c\" =0 B

it has one normalizable zero-energy solution w(x). Given
this we could consider a mode expansion

wixt)= Zlanu,,(x)e_w"‘+ b,,v,,(x)e_'E"'] +col(x) ,

as mentioned above. The standard charge-conjugation-odd
fermion charge density is

p1(x) =50 G (x) = () (x)]
which gives the fermion number
N1==fp1(x) dx

= %E(a,:a,,—-a,,a;)—é—z(b:b,,— baby) + 3 (cte—cc)
n n
=2(a:a,.—b,:'b,,)+c*c—s} .
n

It follows that with this choice the zero-energy states of the
fermion in the solitonic field have a fermion number + a}—
or — 1‘— accordingly as ¢’ or ¢ annihilates the state. This is
the discovery of Jackiw and Rebbi; they further point out
that this situation is quite general and is applicable to more
general models and to three spatial dimensions: As long as
there is a zero-energy mode half-integral fermion numbers
obtain. This model is charge-conjugation invariant.

The fermion numbers of all states including the nonzero-
energy modes are half-integral. For example, if there is a
second fermion added to the N;= %— state, its fermion

number would be %, while if we took the N;= ——ﬂ} state

and added a fermion of nonzero energy to it, we would get
N,==1[ for that new state. Thus one unique zero-energy
mode makes all states have a half-integer fermion number
and become doubly degenerate.

In this irreducible representation the no-fermion old soli-
ton state is not included: If it were included, we would en-
counter a contradiction. If N3 is a number operator which
has the property of being odd under charge conjugation and
if the soliton background state |0) is unique, then it must
follow that

N3‘0> =0 .
Being a number operator, N; must satisfy
(N3, 4]l=—y, [N;u'l=y",

and hence in any state derived from |0) by any number of
actions of ¢ and 'I'T this number operator has integral eigen-
values. It follows that in any representation of the Fermi
field for which the primary soliton background state is cyclic
the fermion number must be an integer.

We saw that in any irreducible charge-conjugation-
invariant representation the fermion numbers were half-
integral. As long as we want charge-conjugation invariance,
we must realize the Fermi fields in a reducible manner.

This recognition is strengthened by the following observa-
tion: Since both N; and N, satisfy both the commutation
relations and oddness under charge conjugation, the differ-
ence between them must be a neutral element also odd
under charge conjugation. If

V=(N3"'N1) y
then
v,¢1=0, [v,y'1=0,

and since v — —v under charge conjugation, v is not a nu-
merical constant but must take a half-integral value when
acting on the soliton background vacuum. On charge conju-
gation the vacuum goes into itself, and hence N; must
remain zero. But N,, which was — ¥, now goes to + 7;

consequently v must now change from + % to — .

Since these are the only values that v need take, we
recognize that it is very similar to the charge-conjugation-
invariant Fermi oscillator occupation number

F(c'e—cch)

Without any loss of generality, we can construct operators d
and d' which connect the state v = — ¥ with v= +i— and
vice versa, and

v=y(dd'—d'd), ldd'})=1, d=d"?=0 .
By means of a Klein construction® we can make
(dal={dbl=1{dc)= (da')=1db") ={dd")=0 .

Thus the representation space of ¢ and 'V, which admits of
charge conjugation, is a reducible representation; it may be
realized as an irreducible representation of the extended
system lll.'l’f, dd', and the number operator N; as the
number operator for this extended system:

Ns=3(aja,— bib)+(c'c—d'ad) .

It would be instructive to examine the full set of states of
this extended system with only integral fermion numbers
realizing both charge conjugation and a cyclic vacuum.
Since the realization of ¢ is not irreducible, a larger degen-
eracy is expected than in the Jackiw-Rebbi realization
without a cyclic vacuum. The vacuum has zero energy and
is unique; but there are three other zero-energy states, one
with N3=1, v=1%, one with N3=—1, v=— 3, and one
with N3;=0. (Note that the vacuum state and the new
N;=0, state are, respectively, even and odd under charge
conjugation, somewhat in the spirit of K9 and K{ neutral
kaon states.®) All finite-energy states, built on these four
zero-energy states, are fourfold degenerate.

It is also necessary to point out that starting out with the
soliton background state |0), we cannot build a charge-
conjugation-invariant set of states with ¢ and w* acting any
number of times on |0). This follows from the observation
that (c'e—cch) being odd under charge conjugation must
vanish on the vacuum state, but it cannot, since its eigen-
values are *1. Thus we must include the additional opera-
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tors which make the realization of ¥ and :,tr)' reducible.

The spectrum of states is to be contrasted with the
Jackiw-Rebbi theory* in which every (finite- or zero-) ener-
gy state is twofold degenerate.

The considerations apply to any theory in which a zero-
energy fermion state obtains in a background classical state
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as Jackiw and Rebbi point out: Our vacuum-cyclic represen-
tations also obtain in each of these cases. The demonstra-
tion is elementary and therefore not reproduced here.
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