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In the indefinite-metric quantum field theory formulated by one of the authors and in re-
lated work the scattering amplitude does not satisfy the usual Mandelstam analyticity. It
becomes piecewise analytic at the threshold for the production of at least one of the nega-
tive-metric particles of the theory, i.e., the amplitude above the threshold is not the ana-
lytic continuation of the amplitude. Some consequences of such a piecewise-analytic scat-
tering amplitude are investigated. The physical two-body scattering amplitude G(s,¢) is
taken to be of the form G(s,%) =F(s,t) + Iy (s,t) 0(s—sg) + hy(s,8) (¢ -t o) + hg(s,t) Ou—u,z), where
F(s,t) and the %; (s,t) are analytic functions of s and ¢ with the negative-metric thresholds
occurring at s= sy, ¢ =¢;, and u =u, in the s, ¢/, and » channels, respectively. The modi-
fied forms of the Pomeranchuk theorem, dispersion relations, and finite-energy sum rules
due to this general form of piecewise analyticity are derived and the interpretation of ex-
perimental results in terms of them are discussed. In particular, the modified forward
dispersion relations for 7% and 7 7p scattering differ from the normal forms by a function
&(v) which depends on the piecewise-analytic contributions %; (s,¢) above, where v is the
laboratory momentum of the pion. The forward dispersion relations for the symmetric and
antisymmetric combinations of the real part of the 7% and 77p scattering amplitudes D*(v)
and D™ (v), respectively, are tested. The best fits to the latest total cross-section data for
m*p scattering from 8 to 65 GeV/c which do not satisfy the Pomeranchuk theorem are used.
No test for D™(v) which must be twice subtracted is possible since it depends strongly on the
TN coupling constant f? which is itself determined by dispersion relations. The result for
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D*(v) allows for a violation, but the evidence is not compelling.

I. INTRODUCTION

The question of introducing negative-metric par-
ticles into quantum field theory in order to make
it a convergent theory® has recently received re-
newed interest.?~* In particular, the question of
how unitarity is to be maintained has been dis-
cussed extensively. One of the authors® has pro-
posed treating the states containing negative-met-
ric particles as “shadow states” which have only
principal-value propagators and thus do not con-
tribute to the unitarity sum. Lee* has proposed an
alternate prescription which he hoped would serve
the same purpose. The immediate consequence of
the use of such states not contributing to the uni-
tarity sum is that one requires the relaxation of
the normal analyticity requirements that have al-
ways been assumed® for the two-particle elastic
scattering amplitude, G(s,?), in terms of the en-
ergy squared s and momentum transfer squared
—t in the c.m. system. Instead G(s, t) becomes
piecewise analytic. That is, it is the boundary
value of an analytic function of s and ¢ for real
physical values of s and ¢ in a finite domain below
the threshold for the production of at least one
negative-metric particle and the boundary value
of a different analytic function G (s, #) above that
threshold. The important characteristic is that
G Als, #) is not an analytic continuation of G(s, t).

=)

The circumstances in which shadow states and
piecewise analyticity come about are as follows:
Local polynomial interactions of fields which are
linear operators in a space of positive definite
metric are mathematically meaningless because
of intrinsic divergences. Any attempt to impose
fixed geometric cutoffs in a manifestly covariant
manner makes the theory also inconsistent. The
natural way out of this dilemma is to make use of
spaces with an indefinite metric. To restore the
quantum-mechanical probability interpretation in
such a theory one must allow this vector space to
have a positive-metric subspace which has the
status of a physical-state space. The other
“states” contribute to the dynamics but are denied
the: status of physical states; they are the so-
called shadow states. The architecture of the
theory should be such as to guarantee conserva-
tion of probability among the physical states by
themselves. The notions of virtual particles and
exchanges continue to be valid in this theory, but
the “ghost” quanta of fields with negative-metric
single-particle states cannot occur in any physical
state. Consequently the potential appearance of a
virtual ghost on the mass shell is forestalled by
the structure of the theory. This automatically
leads to the transition amplitudes in different
physical regions being boundary values of differ-
ent analytic functions. Explicit mathematical

798



6 SOME CONSEQUENCES OF A PIECEWISE-ANALYTIC... 799

demonstration of this is given in several recent
papers.®

We are interested, insofar as this paper is
concerned, in searching for possible experimen-
tal evidence for or against such a behavior. If
our ideas of local polynomial interactions between
quantized fields are correct, then it seems to be
the inescapable conclusion that such piecewise
analyticity must be obtained. Hence the present
undertaking.

Here we consider the general elastic scattering
process described by four momenta p, +p, - ps +pa,
where p®=p2=m,? and p,® =p,2 =m,? with s
=(p+ 1) = (b3 +pa), 1=(py— ps)?, u=(p,— p,)*, and
s+t+u=2m,%+2m,%. We shall investigate some
consequences of assuming that the elastic scatter-
ing amplitude G(s, t) is piecewise analytic. In
particular, for simplicity we consider the case of
a single negative-metric threshold (NMT) for each
of the s, ¢, and « channels. That is, there is at
most only one break in G(s, #) in each channel.
This is contrary to the actual state of affairs in a
quantum field theory with negative metric, but
would illustrate the departure from analyticity in
its essential aspects. We decompose G(s, t) as
follows:

G(s, t)=F(s,t)+A(s, t), (1.1)

where F(s, ¢) has the usual analyticity attributed
to the scattering amplitude, i.e., it is analytic in
the cut s plane. A(s, t) is the piecewise-analytic
part which is zero below the NMT but nonzero
above it in the physical scattering region. Explic-
itly, we take it to have the form

Als, 1) =hy(s, )0(s = s) + hy(s, D)6t —t,)
+hgls, )0 = up), (1.2)
where-s,, t,, and u, correspond to NMT’s in the s,
t, and u channels, respectively. The domains of

G(s, t) are conveniently represented in the Kibble-
Mandelstam s, #, and « plot of Fig. 1. We see

FIG. 1. Kibble-Mandelstam s, ¢, and # plot showing
the NMT triangle defined by NMT’s in the s, ¢, and «
channel.

that G(s, {) = F(s, t) inside the NMT triangle defined
by sos to, and u,. Inthe domain outside of the tri-
angle, F(s,t) corrected by the 7,(s, t) gives the
physical scattering amplitude G(s, ¢).

In soluble field-theoretic models® involving
“shadow state” contributions the form of (s, ¢)
can be computed. In general it is an analytic func-
tion of s and ¢ with a structure depending on the
physical and “shadow state” scattering contribu-
tions.

The function F(s, ) is the analytic continuation
of G(s, ¢) above the NMT. We assume in the fol-
lowing that F(s, t) is the analytic function that has
the analyticity and crossing properties of the
Mandelstam representation, a representation in
terms of Regge poles and satisfies the dispersion
relations usually attributed to G(s, ¢#).

In the following sections we utilize the analytic-
ity of F(s, t) instead of G(s, t) and thereby obtain
corrections to forward dispersion relations in
terms of i(s, t) in Sec. II. There we discuss the
modification of the Pomeranchuk theorem implicit
in our model in terms of i(s, £=0). Then we intro-
duce a modified forward dispersion relation and
investigate the experimental deviation from the
normal dispersion relations which assume an
analytic G(s, t) for the case of 7*p scattering. In
Sec. IIT we apply our model to the finite-energy
sum rules (FESR) and interpret their apparent
violation in terms of the onset of a NMT. Finally,
we summarize our results and present our conclu-
sions in Sec. IV.

II. MODIFICATION OF FORWARD DISPERSION
RELATIONS BY PIECEWISE ANALYTICITY

If we give up analyticity of the scattering ampli-
tude then one of the first difficulties we must face
is the loss of the standard forward dispersion re-
lation.” Furthermore, since we have in mind a
quantum field theory with indefinite metric it is
not clear that the standard proofs of analyticity,
polynomial boundedness, and consequent disper-
sion relations apply.® Hence we investigate the
modification of the forward dispersion relation
due to the piecewise analyticity introduced in our
model by A(s, #) of (1.2) above. The resulting
form which depends on the physical amplitude
G(s, t) and the correction i(s, ) introduced above
is then used to obtain a modified form of the
Pomeranchuk theorem. Finally, in this section,
we investigate the contribution of the correction
(s, t) from the modified forward dispersion rela-
tions using the experimental values of G(s, ¢) with
t=0.
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A. The Modified Forward Dispersion Relation

We first consider the case of chargeless and
spinless pion-nucleon scattering for the sake of
simplicity. With the notation introduced above,
we take m,? = u? for the pion mass and m,%=M? for
the nucleon. The conventional variable for the
fixed- ¢ dispersion relation is v=p,*p,/M. The
analytic function, F(y, ), coincides with the phys-
ical amplitude, G(v, #), below the NMT, v=y,,
and is the analytic continuation of G(v, ¢) above v
=y,. The NMT is expected to be some distance
above the elastic threshold and likely it lies be-
yond the well-studied resonance region, i.e., be-
yond s=4.0 GeV?2.

The unsubtracted dispersion relation for F(v, 0)
= F(v) corresponding to this case has the form

lf dv JImF(v’)

v'-v

ReF(v)=7—5—

)( dv , ImF(v’) ,

v'=-v

(2.1a)

where vy=-u?/2M, yM/i? is the residue of the
nucleon pole at v=+vg, v and v, refer to the
elastic thresholds in the s and u channels, respec-
tively (v¢=-v,=u), and the slash on the integral
sign signifies that the principal-value integral is
to be taken. The physical amplitude G(v) is ex-
pressed in terms of F(v) using (1.2). We make the
simplifying choice that 7,(s, ) and %,(s, t) are such
as to yield the following expression in accordance
with crossing symmetry:

G(W) =F) + k(W) 60(v— vg) + 6(=v+v,0)] , (2.22)

where v, and v,, correspond to NMT’s in the s and
u channels, respectively. We will take v,,=—v,
=y, in the following. (We have assumed that the
t-channel NMT is beyond the physical #-channel
threshold.) Using this relation in (2.1a) we arrive
at the following modified forward dispersion rela-
tion for G(v):

ReG(v) =Reh(v)[ 6(v = v,) + 8(=v=1,)]
()
_;<£0 + f_:o%)h:—,h_(y—v)dv’.

Equation (2.1b) clearly differs from the normal
form of the dispersion relation everywhere. In
the general case that Rex(v) is non-negligible then
it comes into play in the physical region for v>y,,
i.e., above the NMT. The effect of z(v) would
modify the results of the Pomeranchuk theorem
and possibly be detectable in tests of forward dis-

(2.1b)

persion relations and finite-energy sum rules at
sufficiently high energies.

B. Modification of the Pomeranchuk Theorem

The original demonstration of the equality of the
total interaction cross sections for particles and
antiparticles at high energies by Pomeranchuk®

‘was based on the forward dispersion relations —

twice subtracted — and the exponential falloff of the
strong interactions between hadrons for large dis-
tances. The latter forbids the logarithmic in-
crease of the ratio of the real to the imaginary
part of the amplitude with energy in the forward
direction.

We consider 7*-proton forward scattering for
concreteness. We denote the physical amplitudes
by G,=G(r*p—~ntp) and G_=G(n"p~7p) with F,(v)
referring to the appropriate analytic part and 7,(v)
the appropriate correction. Using the notation of

‘Sec. ITA we obtain the unsubtracted dispersion re-

lation for F,(v),

ReF, () =LK _1_
myg vgtv

v f e (3 2),
(2.2b)

where =, (v)=0,(v) = 47Imh,(v)/q and o, refers to
the total cross section for the scattering of 7* off
of protons. The analytic contribution F,(v) corre-
sponds to the analytic continuation of the local be-
havior — the behavior below the first NMT - of the
scattering amplitude. Thus characteristics of the
local G, (v) extrapolated to asymptotic v would
hold for F,(v). On this basis, at asymptotic ener-
gies, v—, we take Z,(v)=47ImF,(v)/q to be con-
stant with F,(v) having the property of exponential
falloff of the strong interaction at large distances,
i.e., ReF,(v)/ImF,(v) cannot have a Iny increase.

Under the assumption of constant asymptotic
%, two more subtractions must be included in
(2.2b) to make it convergent. The twice-subtracted
form becomes

ReF,(v)=31+v/u)D,(u)+3(1 Fv/u)D_(u)
+f2/J'2 qZ
myg (vg’— p?)(vpv)

S g (30, )
472 ), ¢ \v'Fv vy

(2.3)

where D,=ReG,.
Using the assumed asymptotic behavior of F,(v)
and (2.3), Pomeranchuk’s original proof® is appli-
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cable, but now produces the result that

2 _(0)=3%, () (2.4a)

or

0,(0) = 0_(x) =7_(w) = 7, (), (2.4b)

where

7t (@)= HmT Imh* ().
>0

Thus, the difference between the physical-particle
and -antiparticle cross sections is determined by
the difference between the particle and antiparticle
NMT corrections. If n_(oo)=n+(°o), then the nor-
mal Pomeranchuk theorem holds. However, their
inequality provides an alternative mechanism for
the possible violation'® of the Pomeranchuk theo-
rem that may be indicated by the recent Serpukhov
experiments'' without a logarithmically increasing
ReG(v)/ImG(v) as y—

C. High-Energy Tests of
Forward Dispersion Relations

The dispersion relations for the symmetric and
antisymmetric combinations of the 7*-proton lab-
oratory amplitudes, i.e., G*=3[G_(v) G, (v)],
which are usually employed assume a modified
form based on our results of the previous sections.
Using Eq. (2.2b) we find that the corresponding dis-
persion relation for F*(y) can be written with one
subtraction while that for F~(v) does not require
any subtractions because of the modified Pomer-
anchuk theorem. We find thaf the once-subtracted
dispersion relation for F*(v) can be easily sepa-
rated into the usual once-subtracted form for
G*(v) plus a deviation £*(v) arising from the piece-
wise analyticity of G*(v). It has the form

2f%q%vp
(VBZ_ 2)(V2— v 2)

+*]( d,v 0(u)+o (v) FE' ),

D*(v)=D*(u) +

(2.5a)
where D*(v) =ReG*(v) and
EW=H*W)[0(v =) + (v = v,)]
q® = v () +n.(v)
- 4772 fu;, dv q VIZ V2 ’ (2-5b)

with 7, (v) =(47/9)Im#k, (v) and H *(v) =Reh*(v). In
order to express the dispersion relation for F~(v)
in terms of the usual form for G~ (v) plus a devia-
tion £7(v) due to the piecewise analyticity, where
the integrals of both contributions are convergent,
we must use the twice-subtracted dispersion rela-
tion for F~(v). Using Eq. (2.3) we find

_v lelz v

D~(v)= D (u)+ T

q av' o_(v)=o0.(v)

* 42 f P e g S ON

(2.6a)
where

£ W =H W[ (v =v,) + 6(=v=1p)]

_ v (~av n-w)-1.()

- f e S (2.6b)

At this stage, we have not confined ourselves to
a definite model for %*(v) except that it is an ana-
lytic function. The deviations £*(v) can be inves-
tigated without reference to the specific form for
1*(v) from current experimental measurements of
0. (v) and D*(v) which include the Serpukhov data %2
An analysis of this data was made by Lindenbaum?!
to test the normal forward dispersion relations for
D*(v) and D~(v). The former was once subtracted
and the latter was unsubtracted taking ¢* (o) =g ().
The largest disagreement occurred in the test of
the D~(v) relation with better agreement for D*(v).
However, the errors in D*(v) for large v as well
as the errors in the Serpukhov value of o, (v) make
it difficult for this analysis to be considered as
either a verification of the standard dispersion re-
lations or as giving evidence for any conclusions
about the existence of any nonanalytic contribution
to the pion-nucleon amplitude at higher energies.

We have repeated the tests of forward dispersion
relations using Egs. (2.5a) and (2.6a) of our model
allowing for the violation of the Pomeranchuk the-
orem. The equation for D* is weakly dependent on
the subtraction constant, D*(u), and the 7- N cou-
pling constant 2. However, in the equation for
D~(v) the low-energy region, specifically, the sub-
traction constant and the nucleon pole contribution
have dominant contributions. The subtraction con-
stants D~(u) and D*(u) have been determined to
very good accuracy from low-energy data by
Hamilton.'* However, the only determination of /2
is by the use of fixed-¢ or -u dispersion relations.®
The most recent of these'® yields

f2=0.0815+0.0016 .

Since only constants which are independent of dis-
persion relations can be used in any test of them,
f? cannot be specified in our Eqs. (2.5a) and (2.6a).
Consequently, the best that one can hope to do in
practice is to determine the violation of the normal
dispersion relations £*(y) as a function of f2, i.e.,
£ (v, 7).

For this purpose we define the right-hand side
of (2.5a) excluding £*(v, f2) as R*(v, f?), i.e.,
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TABLE I. The maximum-likelihood fit of o, and o_
data of Refs. 11 and 12 to the form g=A4+B (q/q,)°.

A (mb) B (mb) C
g, 23.99+0.17 39.6+12.7 -1.33 +0.18
[ 23.63+0.03 27.7+11.7 —-0.946+0.006
Zfzqz VB

R*(v,f2)=D*(u)+ O

q® [, v o (w)+o,(¥)
’*'47‘,2‘};1 dV ql V/2__V2 .
(2.7a)
Similarly, we define the right-hand side of (2.6a)
except for £~(v) by R™(v, f?),

2f%q3 v
V=2 vEou

R~ (v, ?) =%D'(u)+

q%v (~av’ o.(w)-o0,(v)
+47r2 f; q’ p2_ 2 . (2-7b)
In addition to the question of D*(u) already dis-
cussed, we use experimental data for the total
cross sections o*(v) to evaluate R*(y, f?). For the
region 0 <g <5.0 GeV/c we used the interpolated
experimental values for ¢*(v) of Hohler et al.'”
The values used in the second region 5.0 <¢ <8.0
GeV/c were interpolated from the data in the Uni-
versity of Michigan compilation.’® The integral
for the region from ¢=0 to ¢=8.0 GeV/c was eval-
uated by point—toépoint integration procedure which
fitted six points at a time to a fourth-order poly-
nomial. The integration above ¢=8.0 GeV/c was
evaluated using a maximum-likelihood fit to the
available o, and o_ data of the form

cy=A, +Bi((1/QO)C* s

where g,=1.0 GeV/c, C is dimensionless, and A
and B are in units of mb. The results of our fits
are given in Table I. The present data indicate
that o _(~) - 0, ()~ 0.5 mb and provide the justifi-
cation for not using a subtracted dispersion rela~
tion for D~(v).

The results of our evaluation of Eq. (2.7a) are
given in Fig. 2 where we compare the data'?:*° for
a,(v, /*) =ReG. (v, f*)/ImG . (v) to R, (v, 1?)/ImG (v).
The latter results are given as solid curves for
f2=0.078 and 0.084, where each curve is enclosed
by a shaded region corresponding to the errors in
D*(p).2° The data points for D*(v) are determined
using the data for a, under the assumption that
a, changes negligibly for a laboratory momentum
variation of less than 1%. These together with the
values for o*(v) from Table I enable us to deter-
mine the corresponding values of D*(v). These

|

(a)

o . ! e ' 1 i}

9 ol 13 15 7 19 2| 23 25 27

q LABORATORY PION MOMENTUM (GeV/c)

FIG. 2. (a) Plot of a_=ReG_(g)/ImG_(v) for labora-
tory pion momentum g in GeV/c. (b) Plot of a, = ReG,(q)/
ImG,(g) vs ¢ in GeV/c. The data points of each plot
are from the last paper in Ref. 12. The solid curves
correspond to R_(v, f%)/ImG_(v) and R, (v, f%/ImG, (v),
respectively, for f2=0.078 and f%= 0.084 as indicated.
The shaded area corresponds to the uncertainty in the
solid curves due to errors in D™ (u).

points appear in Figs. 3 and 4 (Ref. 21) with the
curves for R* (v, f?) and R~ (v, f?), respectively,
for f2=0.078 and f%=0.084 in the c.m. system in
units of ¢c=% = u=1. The shaded band in Fig. 4
corresponds to the error introduced by D~(u), as
before. Since D*(v) is rather insensitive to f2 the
solid curve in Fig. 3 is essentially unchanged for
a wide range of values which includes the range
from f*=0.078 to 0.084. The dashed curves in
Fig. 3 correspond to the upper and lower limits of
R*(v) imposed by the errors for A, B, and C
given in Table I.

Two immediate conclusions emerge from our re-
sults presented above.

(i) If 0,() #0_(«) as indicated by the above fits
to the available data above 8 GeV/ ¢, then the con-
vergent subtracted dispersion relation for D~(v)
obtained in (2.6a) cannot be tested nor can £7(v) be
determined, due to its sensitive dependence on f?2
which in turn depends on the analyticity of the scat-
tering amplitude. (It is interesting to note that a
lower value of f2 than is usually assumed, i.e.,
f2=0.078, is necessary for ¢~ to be consistent with
zero.)
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FIG. 3. D% in the c.m. system with zZ=c=pu=1vs
laboratory pion momentum ¢ in GeV/c. Data points are
calculated from o* of the last paper in Ref. 12 and o*
from parameters of Table I. We interpolated the data
for @* assuming that the values are exchanged for
variation in ¢ of less than 1%. The solid curve corre-
sponds to R*(v) and the dashed curves correspond to
maximum and minimum values of integrals obtained by
taking maximum and minimum error limits of o_ + o,
from Table I.

(ii) The result for R*(v, f2) which is essentially
independent of % compared, in Fig. 3, to D*(v)
determined by experiment indicates that it is
somewhat more probable that £*(v,f?) is nonzero
than zero, but the large errors involved prohibit
any definite conclusion.

III. MODIFICATIONS OF FINITE-ENERGY
SUM RULES

The FESR’s®*? are another set of results which
depend crucially on global analyticity of the scat-
tering amplitude. Leading Regge asymptotic be-
havior of the amplitude together with the normal
dispersion relations lead to superconvergence re-
lations which are the basis of the FESR.

Suppose we have an analytic function of v as de-
fined earlier, f (v, #), which is antisymmetric in v,
has a right-hand cut, and satisfies an unsubtracted
fixed-¢ dispersion relation

*Imf(v', 8 t)

P

f(V, £ =£"}

where the integration is to include any Born terms.
Then, if f(v, ¢) is dominated by a Regge pole at
high energy so as to have the form
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FIG. 4. D~ in the c.m. system with Z=c=u=1vs
laboratory pion momenta ¢ in GeV/c. The same method
used in obtaining data points for D* is used here. The
solid curves correspond to R~ for f2=0.078 and f2
= 0,084 as noted. The shaded region surrounding the
solid curves corresponds to their uncertainty because
of the error in D~ (y).

(+1- eiwot(t))yct(t)

Tl =B G T+ 1) ?

with @ <-1, then it satisfies the superconvergence
relation '

f Imf(v’, )dv’' =0
o]

Finally, if we can represent Im f(v’, t) by a sum
of Regge poles above an energy v=N, then the
superconvergence relation can be written as

a;(¢)
f Imf (v, )y’ = Zﬁ25{+2)

In general, for the same properties for f(v, ) one
has the set of FESR’s of the form

1 N i _ Bi(t)Noq(t)
Wfo V' Im f (v, t)dV—; (a; +n+1)T(a;+1) °

(3.1)

The form of the FESR for an f(v, t) which satisfies
a subtracted dispersion relation can be determined
in a similar manner.*

In the event that a NMT exists, the general form
of the FESR, (3.1), is no longer valid since global
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analyticity is not true. In terms of our model,
however, the physical amplitude, G(s, t)=F(s,t)
+A(s, t), as discussed in the previous sections,
contains an analytic part F(s, £) which is the ana-
lytic extension of G(s, t) above the NMT. F(s, ) is
the object that satisfies the conditions necessary
for the superconvergence relations and the FESR.
In addition to satisfying a dispersion relation it
can be described in terms of Regge poles for large
s. If we use v instead of s and consider the F(v, ¢)
contribution to 77p scattering of Sec. II, it will
satisfy Eq. (3.1). We extend our earlier relation
between G(v, ) and F(v, t) to physical ¢, i.e.,

Gy, )= F(v, t)+ h(v, [ 8(v = vy) + O(=v = 1,)],

with the NMT’s at v=xv,. Assuming Regge be-
havior corresponding to F(v, t) only, the resulting
modified FESR is

1 N 1 N
ol f v" ImG(v, t)d'/:Wf V' Imi(v, t)dv
(1]

Y%
Bi(H)N°i(®)
+; (a;+n+1)(a;+1)

(3.2)

The term by which (3.2) differs from the usual
FESR depends only on ImA(y, ¢) and is zero for v,
= N. This is in contrast to the modified forward
dispersion relation discussed in Sec. II where we
found that the correction depended upon both
Ren(v) and Ima(v) in the general case.

The presence of the correction term in (3.2)
might produce violations of the usual FESR for v
>y, despite the fact that it is satisfied below v,.
According to the form of the correction term such
a violation might be interpreted as a fixed pole at
an o whose exact value depends on the v depen-
dence of ImA(v, £). The location of the NMT is also
important in determining the appropriate Regge
parameters from measurements of various angu-
lar distributions. Measurements above and below
the NMT at v=y, will yield different sets of pa-
rameters; in the former case we are computing
the parameters of G(v, ) while the latter case
corresponds to F(v, t) whose Regge parameters
are those in Eq. (3.2)

Clearly, NMT effects would not upset the FESR
if Im#(y, £) =0. That is, provided that the Regge
parameters used were those of F(v, ). However,
soluble model calculations suggest that Im#(v, ¢)
#0 is most probable. In this case one would dis-
cover that the normal FESR would not be satisfied
above v=vy,.

Numerous tests of FESR using either the fixed-¢
or fixed-u sum rules have been made. The early
tests by Dolen, Horn, and Schmid®*? were per-

(K=

formed on 77p charge-exchange scattering with

a cutoff at N=1.5 GeV for the B{~) amplitude and
N=2.5 GeV for the A’(”) amplitude to test the con-
sistency of the p trajectory. They discovered that
an additional p trajectory was needed to satisfy the
FESR, 0.4 lower than the p. It was suggested that
this could be a manifestation of a cut. They also
seemed to require a fixed pole in the =0 FESR
for the B amplitude at j=0 which they argue
would not contribute to the physical amplitude be-
cause it is at a wrong-signature—nonsense point.
This analysis was subsequently redone by Aviv
and Horn?® using better low-energy data. They
again needed a fixed pole to satisfy the =0 FESR
in addition to the p in the B“) amplitude but this
time at @ ==1. The fact that fixed poles are
needed to satisfy the fixed-f FESR’s might be in-
terpreted as NMT effects in our model.

A particular set of fixed-u FESR’s with u = M*®
= (1238 MeV)? were investigated by Kayser?* for
7N scattering using the resonance dominance ap-
proximation for the s-channel processes and ob-
taining the Regge parameters directly from the
mN spectrum. Here the effect of varying the cut-
off was investigated. It was discovered that for
cutoffs for s <(1.808 GeV)? the sum rules were
reasonably satisfied. However, for cutoffs above
this and specifically at s=(2.313 GeV)? the FESR’s
failed badly. If one accepts this analysis, at least
two explanations of this effect are possible. One
is the failure of the resonance approximation be-
cause of significant background contributions for
s>(1.808 GeV)?. The other is the violation of the
FESR for s> (1.808 GeV)? because of a breakdown
of analyticity such as we have described above.
For the latter explanation we would expect a NMT
somewhere above s=(1.8 GeV)? for the unphysical
point corresponding to u=M*?=(1238 MeV)?,

The FESR provide a promising avenue for the
detection of NMT effects provided that such thresh-
olds fall within the range of detailed low-energy
phase-shift analysis. The recently completed
phase-shift analyses which extend to 3 GeV for
7N scattering should be used in fixed-¢ FESR’s
with the view of seriously investigating the pres-
ence of the low NMT that may be indicated by
Kayser’s fixed-u FESR test.

IV. CONCLUSIONS

We have investigated some consequences of a
scattering amplitude which is piecewise analytic
due to the presence of at least a negative-metric
threshold in the s channel. The loss of global an-
alyticity which is implied was seen to lead to a
mechanism for violating the Pomeranchuk theorem
without a logarithmic increase with energy in the
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ratio of the real to the imaginary part of the scat-
tering amplitude.

Since any violation of the global dispersion rela-
tions for the scattering amplitude is a necessary
condition for the presence of nonanalytic contribu-
tion, we reanalyzed the dispersion relations for
7*p scattering in terms of our model allowing for
the violation of the Pomeranchuk theorem. We
discovered that the piecewise-analytic contribution
to D~(v) determined by analyzing the appropriately
subtracted dispersion relations is crucially depen-
dent upon f2, the 7N coupling constant which in
turn depends on dispersion relations for its evalu-
ation. Thus, we are unable to unambiguously de-
termine the possible piecewise-analytic contribu-
tion to D~(v). On the other hand, our analysis of
the D*(v) amplitude allows for the existence of a
nonanalytic contribution. However the errors in-
volved in the data points make it difficult to make
any definite conclusion.

But, by the same token, we must recognize that
the experimental basis for concluding that we have
a globally analytic transition amplitude is at best
somewhat flimsy. We must therefore consider the
question of global analyticity to be an open ques-
tion.

We have also discussed the possible implications
of a piecewise-analytic scattering amplitude for
FESR. Results of analysis of FESR by other auth-
ors can be interpreted as due to the presence of a
simple piecewise-analytic contribution as de-
scribed by our model. Such an interpretation is
not unique since errors involved in the analysis
might also be causing the apparent violation of
FESR’s.

The tests of dispersion relations and FESR’s
are sensitive to the global analytic behavior. In
addition to these there are also possible “local”
tests. For example when a NMT in s is encoun-
tered the partial-wave (or fixed-¢) amplitude would
exhibit a discontinuity in analyticity. In the vari-
ous model theories studied the onset of this change
in analytic behavior comes weighted with the rele-
vant phase space. We expect, therefore, that.the
s-wave amplitude would be continuous but its first
derivative discontinuous at the NMT. In other
words, we expect a cusp in the two-body s-wave
amplitude at a (two-particle) NMT. For higher
partial waves the discontinuities would be of higher
order.

The direct test of such a cusp behavior is usual-
ly difficult since with the kind of statistics and en-
ergy intervals used even in the best experiments
this could be easily missed. But if other analyses
point to a particular NMT at a specific value of s
then the search for cusps may corroborate such a
result.

The analysis we presented above can be readily
extended to the case of more than one NMT by
representing the physical amplitude G(s, {) in
terms of a sum of NMT contributions. For exam-
ple, for the forward amplitude G(v), Eq. (2.2a) can
be written as

G(v)=FW)+ Z}hi(y)[e(u— V) + 8(=v+ )],

where F(v) and 7,;(v) are analytic functions of v
and the subscript ¢ labels different NMT. Then,
e.g., the piecewise-analytic contribution £*(v) to
the D*(v) dispersion relations can be expressed
as

>

£ (v) =Z<Reh,?‘(v)[9(u— Vo) + 8(=v=v;0)]

__q"_;fw dV”K,"é _I_H_ll_’l_il—z_+III;hi+> .

vio q vy

The complication of successive NMT thus in turn
complicates the explicit form of the piecewise-
analytic contributions in question.

In conclusion, we see that a piecewise-analytic
structure of the scattering amplitude which is nec-
essary for a convergent field theory cannot yet be
distinguished experimentally from a structure
satisfying Mandelstam analyticity. More accurate
experiments at intermediate as well as higher en-
ergies for improved tests of dispersion relations,
FESR’s as well as the detection of cusps will re-
solve this question.
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