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A quantum theory of magnetic el ectron lenses based on a convenient formulation of the Dirac theory isoutlined. It is shown
that the passage from the conventional scalar theory to the spinor theory can be accomplished through asimple algebraicrulein
anal ogy with the passage from scalar to vector light optics.

The conventional description of the quantum mechanics of electron optical image formation is based on a
semiclassical treatment of the nonrelativistic Schrédinger equation [1,2], and is modeled after the traditional
Fresnel-Kirchhoffintegral approach in light optics. In recognition of the fact that there are lenses where one
is dealing with electrons at relativistic energies the description is rendered “relativistic” at the end by using
relativistically corrected expressions for the mass and de Broglie wavelength of the electron [3].

It is only recently [4] that an attempt has been made to treat the positive energy electrons participating in
the imaging process properly, on the basis of the Dirac equation. But even this treatment falls short of the goa
for it leads ultimately to the suggestion that the spin can be regarded as a spectator degree of freedom and hence
the space-time dependence can be handled through the Klein-Gordon propagator for the evolution of the
wavefunction along the system (or optic) axis, obtained through a generalization of the semiclassical approach
of Glaser's nonrelativistic theory.

In this context it is useful to recall the following aspect of the present status of high voltage electron mi-
croscopy [ 5]. Instruments used for the examination of thick specimens operate at accel erating voltages of the
order of a few megavolts. While these are largely scaled up versions of the standard 100 kV designs, they fail
to achieve a resolving power comparable to that of the best 100 kV microscopes. This is contrary to the ex-
pectation that the resolving power should increase with decreasing wavelength. Thus it becomes clear that even
though a semiclassical treatment using the scalar wavefunction is successful in electron microscopy with low
energy beams naive generalizations of such an approach fail to lead to optimal design at higher energies.

There exists an interesting analogy with light optics which may help to place the present paper in proper
perspective. Though light is a vector wave one often uses with a fair amount of success a scalar theory in the
practical design of optical systems. It may be argued, in partia recognition of the vector nature of light, that
the light wave under consideration is polarized in the same direction everywhere and the scaar wavefunction
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used represents the amplitude of the wave thus polarized [6]. A moment's reflection shows that such an ar-
gument is untenable, for Maxwell's equations couple the space-time dependence of the field vectors to their
polarization in a non-trivial way; the constraint part of the Maxwell equations, namely V- E=V-B=0, demands
that the field vectors have no spatial variation in their respective directions of polarization and rules out from
consideration even a simple spherical wave converging to (diverging from) a point. Thus, any attempt to an-
alyse or affect the spatial variation of these vectors without due respect to their (space-time dependent) po-
larization will be inconsistent with these equations, notwithstanding the fact that in some practical cases this
inconsistency may not affect the optimal design. A systematic procedure for handling spatial variation (mod-
ulation) and polarization in auniform way has been developed recently [ 7] . This procedure leads to a smple
algebraic rule by which every time the spatial dependence is changed the polarization is readjusted in such a
manner that consistency with the Maxwell equationsis guaranteed. In the case of the "linearly" polarized gaus-
sian beam, it predicts a component of the field vector along the beam axis and cross-polarization component
in addition to the principal polarization component [8]. Such a cross-polarization component has indeed been
observed experimentally [9].

The Dirac equation couples the amplitudes of the component of the four-spinor to their space-time vari-
ation. The conventional description of electron microscopy corresponds to a scaar theory wherein one com-
ponent of the spinor is taken as the scalar wavefunction on whose spatial dependence the lens system acts, thus
ignoring the spin degree of freedom and the subtle way in which the Dirac equation couples the spinor com-
ponents. The analogy with electromagnetic waves suggests that we look for a convenient formulation of the
Dirac theory leading to an adgebraic rule which treats the spin and spatial degrees of freedom of the electron
in auniform way consistent with the Dirac equation. In this Letter we outline such a simple and straightforward
approach to the quantum theory of electron optics in the case of magnetic lenses. As an illustration of the basic
theory developed we shall demonstrate the focusing action of an axially symmetric thin magnetic lens on a
narrow beam of practically monoenergetic electrons moving close to the system axis (paraxial) beam, using
the lowest order approximation. Thus, for the first time, a quantum mechanical derivation of the classica for-
mula of Busch [10] for the focal length of an axially symmetric thin magnetic lensis obtained, and the well-
known image rotation is accounted for, on the basis of the Dirac equation. Since the imaging part of an electron
microscope invariably uses the magnetic lens system, we restrict our attention to the magnetic case. Gener-
alization to lenses comprised of both magnetic and electric fields is straightforward.

A magnetic electron lens with rotational symmetry about its optical axis, say z-axis, is formed by a static
magnetic field B (x) for which the potential is usually chosen as

A(x)=(—-A(x)y, A(x)x,0) ,

. L dB(z) , 1 d'B(z2)
Ale)=4Bl2) =z =g %t 30 a

7 . (1)

with the function B(z) characterizing the field along the system axis such that
B(0,0, z)=B(z)k, (2)

where k is the unit vector along the z-axis. For a paraxial beam the effective field is confined to the paraxial
region and correspondingly one can take in that case

A(x)= (—1B(z2)y, 1B(2)x,0) . (3)

In this prescription for the lens field the field due to the space-charge of the propagating electron beam itself
has been ignored. In principle, there is no sharp boundary for the lens defined above. But, in practice, the lens
can be thought of as situated in a finite interval on the z-axis, say between z=z;, and z=z; i.e. thefield B is
concentrated within the region bounded by transverse planes at z=z, and z=z,, and the regions (z<z,) and
(z>z,) are practically field-freewith B(z) amost vanishing [11].



The central problem is to study the propagation of the electron beam along the optical axis of the system.
The four-component spinor wavefunction of the beam is governed by the Dirac equation

d¥(x, 1)
at

d=p+ed/c, /3=<fJ .J), a=<2 g) (4)

We are dealing with the scattering states of the system and are concerned only with amost paraxial quasi-
monoenergetic beams moving in the + z direction. Hence, the beam wavefunction is of the form

if =(me?p+co-n)¥(x, t),

po+A4p

P(x, )= ] dpexp[—iE(p)t/A]y(x;p);<Po,
PO~ Ap
E(p)=+(mzc“+c2p2)”2, (5)
with

w(x,,z<z;p)= szpl [as(p)u,(p)+a_(p)u_(p)] exp(ip-x/h) ,

p=., +(P*-p1)"?), (6)

where {u. (p)exp[i{p-x—Et)/hre the standard positive energy four-component plane wave solutions of
the free Dirac equation and p, is the mean momentum of the beam electrons. Further, since the beam electrons
always move in the forward z-direction the potential should not contain Fourier components comparable to
Do/ 7SO that no transitions between free-particle states with momentum differences of the order of p, are pos-
sible. Thus, the relative changes in A | over distances of the order of the de Broglie wavelength, #/p,, are small
compared to unity. These conditions are expected to be met in practical lens systems, particularly in high volt-
age electron microscopes [4].

In an electron microscope, ¥(x,, z< z,, t) defined through (5), (6) represents the input wavefunction for
the objective lens corresponding to the beam emerging from the aperture after being scattered by the specimen
examined; and

Po=[2emV(1+eV/2mc?) ] 2= (2emV*) 12

the momentum of an electron accelerated through the operating voltage V from rest. The spread in p-values
around p,, entering the integral in (5), is due to the inhomogeneities in the initial velocities of the electrons
before acceleration and fluctuationsin V, aswell asto the partially inelastic scattering of the beam by the spec-
imen examined.

Since the system is stationary with time-independent Dirac hamiltonian it is clear from (4) and (5) that
the time-Fourier coefficient w(x; p) of ¥(x,t) hasto satisfy the time-dependent equation

[E(p)—mc*B—ca, *ft | +co,ihd/dz]y(x., z;p> O. (7)
Integrating (7) for the z-evolution of was

w(z';p)= G(z", z'; p)w(z'; p), (8)
one gets the required z-evolution of ¥

" 1) = J-dpexp{—iE(p)t/ﬁ]G(Z", 2y p)y(z';p) . (9)

In the practically monoenergetic situation with mean momentum p, we have
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Pz, 1)~ G(z", 2'; po) P(2', 1) . (10)

In order to study the z-evolution of i we shall rewrite (7) in aform very similar to the Dirac equation (4),
with z taking the place of ¢ now; multiply throughout by «., rearranging the terms, and defining

_ E(p)+mc?

1 ¢ 0 .
i:JM ¥ = —F w) oy t— e T
y'=My, M 72 Utya:), 1 (0 —lfdf)’ )= —p—" (11)
it can be seen that
0w - 2 )
;ﬁ—g:mw’. Hy=(—-pp+ ), O=yor -7, . (12)
Now, it may be noted that
a5 g m g wm D6 o c 0
Hy=p +C€-=p —R-L__-E_B:‘SI! S=(0 U)! (13)
where B. is the z-component of the lens field given by
14°B 1 d*B : ;
B.(x)=B(z)- Z—dz(gz)x1+ a_dz(f) x1 —..xB(z) (forparaxia beam) . (14)

In geometrical electron optics the z-evolution of phase-space coordinates (x,,dx, /dz) is governed by the
hamiltonian - (p2—=2)'/2 and it is the power series expansion in terms of =2 /p? that helps to study the
system under successive approximations, the paraxia approximation followed by aberrations of various orders
[12]. Looking at (12) and (13) suggests we look for a power series expansion of (12) in terms of #, /pthat
could lead naturally to the geometrical optics description in the classica limit. To obtain the desired power
series expansion of (12) we proceed as follows. It is seen easily that for any solutiony’ of (12) representing
a paraxial beam propagating in the +z direction the upper pair of components is large compared to the lower
pair of components irrespective of the value of p. Thus, in (12) {9 is an "odd" operator that couples the large
and small components of ' and ft is "even" which does not not make such a coupling of the large and small
components. The situation is similar to the case of the Dirac equation (4) for which any nonrelativistic positive
energy solution has the upper pair of components large compared to the lower pair of components. Recalling
that to analyse the Dirac equation (4) as nonrelativistic part + relativistic corrections the systematic pro-
cedure is the Foldy-Wouthuysen technique [13] of eliminating the odd operators, it is realised that to analyse
(12) as paraxial part + nonparaxial corrections we should adopt a similar technique that leads to the elim-
ination of the odd operators from (12).

In view of the above observation, let us define

wo=Ty',  T=exp[—}tanh~'(B0/p)]=exp(—BC/2p+p0%/6p*~...) - =
Then, with
Ho= - (pP+ 82)'2= —{p>~ [ + (2¢/c)B.S.1}'"

= —p+(1/2p]7% + (2¢/c)B.S.1+ (1/8p>) [#% + (2¢/c)B.S.1* ..., (16)

eq. (12) becomes
in Y8 (T, T Yyo= P oy )

neglecting terms comparitively small in view of the z-dependence of wbeing largely due to exp (ipz/} and the
relative changes in 4, over distances of the order of #/p being small compared to unity.



It is to be noted that the z-evolution of the Dirac w governed by (7), or equivalently (11), (12), is not
unitary. On the other hand, w, has almost unitary z-evolution as seen from (16), (17), or in other words,
Jd*x, wiw, is amost conserved along the z-axis. i

We are interested in obtaining the expression for G(z"> z,, z' <z,) that relates the Dirac ¥’s in the input
(object) space (z< z;) and the output (image) space (z> z,). In the absence of the lensfield eq. (17) is exact
and correspondingly for any free space solution y, representing a beam moving in the forward z-direction the
lower pair of components become zero. Hence, for the input wavefunction in our problem we can assume the
condition

BWE}lin}(z{zE')=w0{in}(z<zﬂ) } (18)

as can be verified directly from (6), (11) and (15). Thus, to obtain G(z"<z, z’ <z,) one can integrate (17)
formally, dropping ft which commutes with #, and go back to the Dirac  representation. The results is as
follows. Let

A=+ (p*=p1) " *=p—(1/2p)p —(1/8p° p% —.... (19)
With
7 =T (free)M={exp[—} tanh~' (Sra.-p./p)1}M, (20)
define
Q. =7 "%, T=x, —dith:" {Bra, +A7"(h.+p) " [Bx(as B )b, + (2/h)A.S.(kxp.)]}

=x, —i(#/2p) By +..., (21)
and
$= TS T =7 (pS:~Bxe.S . ) =S.— (1/p) Bxa.S"p it ... , (22)

and note that 7 ~'p, T =p,+ Then we can write
w(‘l‘“”(2“>zf}=0(z" >z, z' {ZE)W{in](z' <Z!E) ]

@(Z" >z,2'<z) =GF(2H: Zr)(;(zn ZIE)GF(ZE; z')

=exp[ - (i/h)z" —z)Hfree) IP{ exp i Jdz if(z)‘jl exp[ - (i/A(z, —z' ) # (free) ] , (23)

where
H=F " HT=Hy(x.»0.,S:~%)
=—p+(1/2p){[B. + (e/c)A(Q., 2)]*+(2¢/c)B.(Q.,2) %)
+(1/8p*){[h. +(e/c)4d, (Q., 2)]*+ (2e/c)B.(Q.,2) %1+ .., (24)

the subscripts F and L denote respectively the "free propagation” and "lens action”, and the symbol P stands
for z-ordering.

The relation between ¢’s at any two arbitrary transverse planes along the optic axis, with one or both of them
immersed in the lens, can dso be obtained by integrating (17) formally and reverting to the Dirac represen-
tation. But the result cannot be expressed in a form as simple as in (23), (24). Further, let us note the fol-
lowing: Since (£, p. )— (@, 5, )is asimilarity transformation, ¢, andp, are canonically conjugate and
the new transverse position operator ¢, corresponds to a "mean” (or classical) observable like in the Foldy-
Wouthuysen theory [13]. The nonhermitian nature of @, reflects the nonunitary z-evolution of the Dirac y.
Similar remarks hold for §,— .



As an application of the above formalism we shall now understand the focusing of a practically monoener-
getic paraxial beam of electrons by an axially symmetric thin magnetic lens. To do this we shall consider the
paraxial approximation of (23), (24). In this case the effective lensfield is paraxia corresponding to the po-
tential given by (3) and so B~ B(z). Further, in view of the paraxial nature nature of the beam, we shall retain
in (24) only thefirst two terms, considering as negligible the terms of order (1/p3) and higher powers of the
expansion parameter (1/p).Consistently, in subsequent calculations we have to consider the terms of order
(1/p*) and higher powersof ( 1/p) assmall compared to terms of order upto (1/p? . Thus, under the paraxial
approximation we get

Hx H'= —p+(1/2p)pi+ (e*B?/8pc?)x? — (ihe®B?/8p*c?) fra *x,
+ (eB/2pc)L.+ (eB/pc)S.- (eB/2p*c)Bra.S,p. ,
H# (free) ~ #' (free)= —p+(1/2p)p2 . (25)

It can be verified that #' commutes only with J.= (L.+S.),not separately with L, and S., as it should be
in the Dirac theory for a system with rotational symmetry about the z-axis.

Using the paraxial approximation (25) for the effective hamiltonian #in (24), and approximating the lens
propagator G, by its first order expression, we can write following (10)

Yoy (27 )"[G (z", ann)l[GL(znzhpo)][G (2, 23 P0) 1 ¥iiny (27)

= [exp{(i/h) (2" —z,) (Po—H" /2D0)}]

X [exp{ (i/71) (2. — 2,) (Po =1 / 2Po) — (iPo/ %) (x1 [ 2f) — Bx(po) e, *x . /2f}

X exp{— (i0/A) (L. +5.)} exp{— (10/%) (S:— Bx(Po) .S "B . /Po)}]

X [exp{(i/A)(z—2") (Po—D" /2D6) } 1 Piin(2') (26)
for a practlcally monoenergetlc beam of mean momentum p,, where

- Joer s [ o :
= 4p0c dz B’~ cZV* dz B (27)
and
Zr e 1/2
e
0= 2p0cjdz B= (W) J( dzB. (28)

Let us now compute the Dirac current density at the output plane at z=z, corresponding to the input
wavefunction

a \
im (XL, 2" )= (epol/2E) V2 /ff exp[i(poz' —Et)/h], z' <z,
amfé
las |*+la_|?=1, (29)
a plane wave of momentump,. The associated input current density is
Jim(x, 2 ) =cPina¥Pin=1(0,0,1); z'<z, (30)

where v=c¢?p,/Eis the velocity of the eectrons. This current corresponds clearly to a system of rays paralléel
to the z-axis. The output wavefunction at the plane z=z, is



W(oul)(zr)=GAIl.(znZQ)W(in)(ZQ) > (3D

as seem from (26) and (29). To compute jo., We shall assume that z,—z, <</ This enables us to separate
the factors containingx, and p, in G| without regard to their noncommutativity. Then, up to first order in
X,

j(ou!)(xLa Zr)=cqlz)u!)ayl(out) %U(—-X/f; _y/j; 1) s (32)

with fgiven by (27). Noting that fis always positive, we see that the current density vector at every point in
the transverse plane at z, is pointing towards the point (0, 0, z.+/)on the z-axis, the focal point. This cor-
responds to a system of radially converging rays and our system indeed acts as a converging lens of focal length
fforthe Dirac current. The assumption z,— z, <« fused above in the computation of j .. iS Seen to be precisely
the "thin" lens approximation. Thus, we have derived the celebrated classical formula of Busch [10] for the
focal length of an axially symmetric thin magnetic lens, asthe lowest order approximation result in aformalism
based on the Dirac equation. Further, the presence of the term exp( —i6L. /%) in (26) explains the quantum
mechanics of the well-known image rotation through the angle 6 given by (28).

Egs. (25)-(28) describe the paraxial optics (gaussian optics, or first-order optics) of the Dirac electrons
in an axialy symmetric magnetic lens and can, in fact, be called the generalized Huygens principle for this
case, borrowing the terminology of light optics. Higher order corrections to these equations, resulting from a
systematic inclusion of more termsin (21)-(24), will account for the aberrations suffered by the Dirac elec-
tron beam propagation when there are deviations from the idea paraxia situation. It should be worthwhile
to study the practical design aspects including the aberration calculations based on the above formalism and
we shal return to the topic elsewhere.

To conclude let us make some observations:

As in the Foldy-Wouthuysen representation of the Dirac theory [13] it isy, that goes in the nonrelativistic
limit into the Schrédinger—Pauli wavefunction, as can be seen by comparing (16), (17), with the nonrelativ-
istic paraxial wave equation of Glaser [ 1], and with the spin terms disregarded in (16), (17) one gets the
non-relativistic scalar theory. Now, if the wy-equation (17) (without the spin terms) is taken to represent a
scalar theory in the relativistic domain of p, the use of Klein-Gordon current density, which is given by the
same formula as for the nonrelativistic Schrédinger current density, seems to lead to fairly satisfactory results
in the lowest order, as for example in understanding the focusing by the thin lens, if the relativistic massis
used instead of the rest mass along with the use of the relativistic expression for the momentum or the de Brog-
lie wavelength. This explains the apparent success of the nonrelativistic formulae in the relativistic domain
aso, when used with suitable substitution rules. But the proper quantum theory of relativistic electron lenses
based on the Dirac equation should have the form as we have described above.

It is seen that the effective hamiltonian # in (24) can be obtained from the classical hamiltonian
—(p*—=% )"? by (i) replacing n% —(a, -&,)?* followed by (ii) a similarity transformation leading to the
replacementsx, - @, , S.—%.Thisis exactly analogous to the two step process found in the light optics where
one passes from geometrica to wave optics through a "quantization” or “wavization” [ 14,15] and then from
scalar to the vector Maxwell optics [7,8] through the replacement ofx, by a matrix operator.

Problems of classical theory of charged particle optics, related to imaging process and the ones associated
with accelerator systems, have benefited substantially from Lie group and agebraic techniques [16]. These
algebraic techniques have also been used to clarify several issuesin light opticsrelated to ray optics [17], scalar
wave optics [18], and Maxwell optics [7,8]. Expression of the propagator G in operator form asin (23), (24)
and (26) shows that such algebraic techniques retain their relevance in the quantum theory of electron optics
aswell.

Finally, it should be emphasized that, though for illustration only lenses with rotational symmetry about the
z-axis have been considered above the general formalism contained in (4)-(24) can also dea with any other
type of magnetic lens with a straight optic axis, such as the quadrupole lens.
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