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Abstract. The most general evolution of the density matrix of a quantum
system with a finite-dimensional state space is by stochastic maps which take
a density matrix linearly into the set of density matrices. These dynamical
stochastic maps form a linear convex set that may be viewed as supermatrices.
The property of hermiticity of density matrices renders an associated supermatrix
hermitian and hence diagonalizable. The positivity of the density matrix does not
make the associated supermatrix positive though. If the map itself is positive, it
is called completely positive and they have a simple parameterization. This is
extended to all positive (not completely positive) maps. A general dynamical
map that does not preserve the norm of the density matrices it acts on can be
thought of as the contraction of a norm-preserving map of an extended system.
The reconstruction of such extended dynamics is also given.
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1. Introduction

A quantum system with a finitely many dimensional state space may be represented
by a N ×N quantum density matrix ρ. The density matrix must be of trace class and
should satisfy the properties of hermiticity and positivity:

tr(ρ) = 1 ; ρ† = ρ ; x∗
rρrsxs ≥ 0. (1)

For a closed system the dynamical evolution of the system is by the action of a unitary
time-dependent operator.

ρ(t2) = U(t1, t2)ρ(t1)U
†(t1, t2) (2)

where

U(t1, t2) = T
{

exp

(

−i

∫ t2

t1

H(t′)dt′
)}

.

The evolution is linear. But if we have an open system and if we are considering
the back reaction of the environment on the system then the dynamics cannot be by
unitary evolution but by a more general linear evolution[1]:

ρ(t2) = A(t1, t2)ρ(t1). (3)

The linearity of A(t1, t2) follows from the linearity of quantum mechanics and for
this reason we do not consider more complicated forms of maps on density matrices.
The superoperator A can be written as a supermatrix and the transformation can be
written as

ρrs −→ Ars;r′s′ρr′s′ = (Aρ)rs.

In the equation given above, the elements of the density matrix has been suitably
regrouped into a column vector so that A can be in the form of a N2 × N2 matrix.
The constraints (1) on the density matrix impose restrictions on A. It is instructive
to first recast A into another dynamical matrix [2, 3, 4, 5] B such that

Ars;r′s′(t) = Brr′;s′s(t).

In the form B the supermatrix has to satisfy the following relations:

B∗
s′s;rr′(t) = Brr′;s′s(t)(Hermiticity) (4)

Bnr′;s′n = δr′s′ (Normalization) (5)

x∗
ryr′Brr′;s′sxsy

∗
s′ ≥ 0 (Positivity). (6)

In terms of the pairs of indices rr′ and s′s, B is a hermitian matrix which gives
non-negative expectation values for factorizable supervectors.

u†Bu ≥ 0 if urs = xry
∗
s .

It is not necessary that B ≥ 0 for maintaining the positivity of the density matrices
under dynamical evolution even though it is a sufficient condition. If B ≥ 0 we will
call the map “completely positive”[2]. The terminology is slightly confusing unless one
keeps in mind that positivity of the map is a statement about its action on density
matrices while complete positivity can be regarded as a statement about the map itself,
in addition to saying something about its action. For instance the action of taking the
transpose of a density matrix: ρ → ρT is a positive map but not a completely positive
map. Complete positivity ensures that the evolution of the system of interest, S due
to the action of the map is extensible in a trivial way to a physical evolution in a larger
system S′ ⊗ S. Such an extension is especially useful when S is entangled to S′.
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Completely positive maps are interesting in the context of quantum information
theory and quantum computing in that it provides a description of the types of
dynamical evolution of a composite quantum system that can change the degree of
entanglement between parts of the system. In other words we can deal with the open
evolution of quantum systems rather than unitary isolated evolution thereby getting
a handle on the difficult problem of the influence of the environment on a potential
quantum computer. Extensive literature exists on the subject; we refer the reader to
[6, 7] and the references therein. Completely positive maps have also been used in
certain cosmological models and in attempts to construct a quantum theory of gravity
in the context of Quantum Causal Histories [8].

In this paper we look at maps which are positive but not completely positive.
Not completely positive maps do not represent dynamical evolution in the sense that
completely positive maps do. This point is discussed in sections 3 and 4.

The density matrices on which the dynamical maps act form a convex compact
set. Since positive maps transform such a set into itself, they themselves form a convex
set (the set of completely positive maps also form a convex set lying inside the set
of positive maps). The convexity property means that any linear combination of of
positive maps with nonnegative coefficients which sum to unity is also another valid
map. For instance the positive map B defined by

B =
∑

n

k(n)Bn ; k(n) ≥ 0 ;
∑

n

k(n) = 1

is also a positive map if Bn are positive maps. It can also be shown that [2][9]
1 ≤ n ≤ N2 where N is the dimensionality of the density matrices that the map acts
on. Out of the convex set of positive maps we can pick out those maps which cannot be
written as a sum of other maps. Such maps are called extremal. In the discussion that
follows we talk only about extremal maps and ’B’ is assumed to denote such maps.
Any generic map can be constructed out of the extremal maps as a linear sum through
the specification of at most N2 extra parameters. We look for parameterizations of
extremal maps. This, in conjunction with the N2 extra parameters which add up to
unity, will then suffice to parameterize a generic dynamical map acting on density
matrices. Note that such a characterization of the extremal maps is usually carried
out with the assumption that the additional restriction in equation (5) that the maps
be trace preserving also holds. This restricts the maps being considered to a bounded
convex set rather than to a convex cone.

Since B is hermitian it follows that it has an eigenvector decomposition

Brr′;s′s =
∑

α

µαζ
(α)
rr′ ζ

(α)∗
s′s = ζMζ†, (7)

where M is a diagonal matrix with eigenvalues µα and ζ
(α)
rr′ are the normalized

eigenvectors. For a completely positive map all the µα are nonnegative but this is
not true for all positive maps. If all the µα are nonnegative, we can absorb them into
the eigenvectors by defining

C
(α)
rr′ =

√
µα ζ

(α)
rr′

So for a completely positive map[2]

ρ −→
∑

α

C(α)ρC(α)† (8)
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with the trace condition
∑

α

C(α)†C(α) = 1.

Parameterization of extremal completely positive maps can be found in reference [17].
Note that if the completely positive map is not extremal, its action can be written as

ρ −→
∑

n,α

k(n)C(α)
n ρC(α)†

n . (9)

2. Not Completely Positive Maps

The action of an extremal map which is not completely positive on a density matrix
can be expressed as

ρ −→
m

∑

α=1

C(α)ρC(α)† −
n

∑

β=1

D(β)ρD(β)† (10)

with

D
(β)
rr′ = (|ν|)1/2η

(β)
rr′

where ν are the negative eigenvalues of the map and η
(β)
rr′ are the corresponding

eigenvectors.
It will turn out that the number of positive eigenvalues m have to be greater than

or equal to the number of negative eigenvalues n. The trace condition now becomes
m

∑

α=1

C(α)†C(α) −
n

∑

β=1

D(β)†D(β) = 1N×N . (11)

The positivity condition yields the general result
m

∑

α=1

C(α)†uαu†
αC(α) −

n
∑

β=1

D(β)†uβu†
βD(β) ≥ 0 (12)

Taking the trace on both sides of equation (11) we obtain:

m
∑

α=1

tr
[

C(α)†C(α)
]

−
n

∑

β=1

tr
[

D(β)†D(β)
]

= N (13)

Define
m

∑

α=1

C(α)†C(α) = J ≥ 0 (14)

n
∑

β=1

D(β)†D(β) = K ≥ 0. (15)

Since C(α)†C(α) is Hermitian so is J . We can therefore perform a unitary
transformation U that diagonalizes J . By the trace condition the same unitary
transformation automatically diagonalizes K. Then equation (11) becomes

J̃ − K̃ = 1

where J̃ = UJU † and K̃ = UKU †
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Let the eigenvalues of J̃ be j2
i and those of K̃ be k2

i (0 ≤ i ≤ N). Since
J̃ = diag(j2

1 , j2
2 . . . j2

N ) and K̃ = diag(k2
1 , k2

2 . . . k2
N ) we have the relation

j2
i = k2

i + 1

from the trace condition. Since k2
i ≥ 0 the number of eigenvalues ji must be greater

than or equal to the number of ki, i.e. m ≥ n as mentioned earlier.
Define ϕi so that

ji = coshϕi , ki = sinhϕi.

Now define

C(α) = [coshϕ] M (α) (16)

D(β) = [sinhϕ] N (β) (17)

where we have extracted the matrices [coshϕ] and [sinhϕ] from the matrices C(α) and
D(β) respectively. It follows from equations (14) and (15) that

m
∑

α=1

M (α)†M (α) = 1 (18)

n
∑

β=1

N (β)†N (β) = 1. (19)

Parameterizing the matrices M and N are already known. In the cases where
sinhϕ = 0, for all ϕ, we have only a smaller set of matrices to parameterize and
this is identical to the case of having a completely positive map. Here we assume
that sinhϕ 6= 0 and see how many parameters we need to write the map in the most
general case (up to a unitary transformation).

Since the matrices M †M are hermitian we first choose a unitary transformation
W1 that can diagonalize M (1)†M (1):

W †
1 M (1)†M (1)W1 =













cos2 θ
(1)
1 0

cos2 θ
(1)
2

. . .

0 cos2 θ
(1)
N













We can make further simplifications on M (1)†M (1) by noting the following [1]:
We have at our disposal now m matrices such that

m
∑

α=1

W †
1 M (α)†M (α)W1 = 1, (20)

out of which the first term, W †
1 M (1)†M (1)W1 has been diagonalized. We can now

make the following transformations on the first two terms of the sum in (20) without
changing the sum itself or the eigenvalues of the map:

W †
1 M (1)†M (1)W1 →

W †
1 M (1)†M (1)W1 −











cos2 θ
(1)
1 − 1 0

0
. . .

0 0
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W †
1 M (2)†M (2)W1 →

W †
1 M (2)†M (2)W1 +











cos2 θ
(1)
1 − 1 0

0
. . .

0 0











Such transformations which may be done on the set of matrices {M} (or on {N})do
not change the sum in (18) (or in (19)). The map which is made up of the sums

in (18) and (19) hence remains unchanged and so these transformations allow us to

fix cos θ
(1)
1 = 1. This freedom corresponds to performing orthogonal transformations

(rotations) in the space containing the matrices M (α). This in turn can be interpreted
as an orthogonal transformation on the density matrix ρ on which the map acts. An
alternate way of looking at the transformation is to note that the sum of two matrices,
A+B can always be written as the sum of two other matrices say, for instance, C +D

where C = (A + 3B)/2 and D = (A − B)/2. Once we have set cos θ
(1)
1 = 1, we

parameterize M (1) using N − 1 angles θ
(1)
i ; 2 ≤ i ≤ N .

Applying the transformation W1 to both sides of equation (18), exploiting the
extra freedom mentioned above and after doing some re-labeling, we obtain

m
∑

α=2

M̃
(α)†
1 M̃

(α)
1 =













0 0

sin2 θ
(1)
2

. . .

0 sin2 θ
(1)
N













(21)

Where M̃
(α)
1 = W †

1 M (α)V1 for 2 ≤ α ≤ m. V1 is another unitary matrix that reduces
M̃α

1 to the form that we want. We can now focus on the set of (N − 1) × (N − 1)

matrices M
(α)
1 defined as

M
(α)
1 ≡













sin θ
(1)
2 0

sin θ
(1)
3

. . .

0 sin θ
(1)
N













M̃
(α)
1 ; 2 ≤ α ≤ N

where we have dropped the first row and column of M̃
(α)
1 on the right hand side of

the equation and also extracted the factor containing sin θ
(i)
i from it. We assume that

none of the sin θ
(i)
i are zero since we are interested in computing the maximum number

of parameters required for describing a generic extremal map that is not completely
positive.

From equation (21) it follows that

m
∑

α=2

M
(α)†
1 M

(α)
1 = 1(N−1)×(N−1)

the matrix M
(2)
1 in the first term of this sum can be parameterized using N −

2 parameters using exactly the same procedure as before. Using a unitary
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transformation W2 and a further orthogonal transformation (if needed) we can

transform M
(2)
1 to the following form as before

M
(2)
1 −→













1 0

cos θ
(2)
2

. . .

0 cos θ
(2)
N−1













Repeating this procedure m times, we parameterize all the matrices C(α). D(β) can
also be parameterized in the same fashion. The total number of parameters needed
can be computed as follows. There are N angles ϕi. To parameterize the matrices
M (α) we need (N − 1) + (N − 2) + . . . (N − m) parameters and for N (β) we need
(N − 1) + (N − 2) + . . . (N − n) parameters. So in total we need

N2 − m(m − 1) + n(n − 1)

2
(22)

parameters.
Note that the matrices C(α) and D(β) are determined only up to m + n unitary

matrices according to

C(α) −→ C(α)U (α)

which leave equation (13) unchanged. We can see this also in the manner we defined

M̃
(α)
1 = W †

1 M (α)V1 where we had to introduce the arbitrary unitary matrix V1.

3. Dynamical Maps as Contractions

A straightforward way of generating positive maps is to consider the unitary evolution
of two systems coupled to each other. Let S be the system of of interest and R the
second system. Let the dimensionality of S be d and that of R be N . R can be treated
as a ‘reservoir’ with which S is interacting. Dynamical maps representing the time
evolution of S can then be thought of as contractions on the unitary evolution of the
combined system. If we choose a direct product density matrix as the initial state
then the dynamics of the coupled system is given by

R = ρS × τR −→ V ρS × τRV †

where V is a unitary matrix in the direct product space HS ×HR Using the index
notation employed in the previous discussion

ρrs × τab −→ Vra;r′a′ρr′s′τa′b′V
∗
sb;s′b′ . (23)

The evolution of the system S is extracted using the partial trace operation which is
a contraction.

ρrs −→ trR

(

Vra;r′a′ρr′s′τa′b′V
∗
sb;s′b′

)

= Vrn;r′a′ρr′s′τa′b′V
∗
sn;s′b′ .

For simplicity we assume that τ can be made diagonal by a suitable unitary
transformation in HR with eigenvalues τ(1), τ(2) . . . τ(n). Then the map on S is

ρrs −→
∑

ν,n,r′,s′

Vrr′(n, ν)ρr′s′τ(ν)V ∗
s′s(n, ν). (24)
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Here the operator V has been rewritten in a manner suggestive of the form of a
completely positive map that is not extremal, given in (9) . i.e.

ρ −→
∑

ν

∑

α

k(ν)C(α)
ν ρC(α)†

ν .

To get the form of the map in (9) it is sufficient that the dimensionality N of the
reservoir to be the same as that of the system. i.e. N = d. With this restriction τ(ν)
could correspond to a mixed state. If we further restrict τ to correspond to a pure
state so that it has only one eigenvalue then the map is extremal and reduces to the
standard form (8)

ρrs =
∑

n

V (n)
rr ρr′s′V

(n)∗
ss′ ≃

∑

α

C(α)ρC(α)†

in which α runs over 1 ≤ α ≤ d. In other words extremal completely positive maps
are contractions of unitary evolution in a space in which the system is coupled to a
reservoir, of the same number of dimensions of the system, whose initial state is a
pure projection.

We note here that all these maps are completely positive maps (not necessarily
extremal). if the dimension of the reservoir is made bigger than or equal to d2 then
any map on S (not necessarily extremal) can be expressed as a contraction of the
unitary evolution in a space in which the system is coupled to a reservoir whose initial
state is a pure projection.

We can also carry out the inverse construction where we start with a completely
positive map and view it as a unitary transformation on a larger system. Given an
extremal completely positive map of the form (8), we can construct a unitary matrix
V in mn dimensions with:

Vrα;r′1 = C
(α)
rr′ .

The conditions on C(α) are transcribed into
∑

α,n

V ∗
rα;n1Vsα;n1 = δrs

which is necessary for V to be a unitary matrix. The ambiguity in constructing the
other elements of V , where the last index is not equal to 1, does not affect the map.
In short, V can be constructed in such a fashion that it corresponds to any given
dynamical map on the system along with a particular choice of the states τ of the
reservoir.

4. Not Completely Positive Maps as Contractions

What about not completely positive maps? To obtain such a map as a contraction
we have to generalize the auxiliary space HR to be a space with an indefinite metric
and V to be a pseudo unitary operator in the mn dimensional space. Positivity of the
map is guaranteed if the generalized density matrix of the extended system is initially
entirely within the convex set of positive metric states of the mn dimensional space.
The sum over the index n in (24) goes over both positive and negative metric terms;
but the resultant density matrix is nonnegative. In general the not completely positive
maps have to be viewed as contractions of the evolution of unphysical systems. For
example the complex conjugation of the density matrix ρ of the system is a positive
map which is not completely positive. Physically it has the meaning of time reversal
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of the system. However if we view it as a contraction of the evolution of two coupled
systems, then this corresponds to time reversal of only of the systems which is rather
meaningless.

We can invert this derivation to realize the most general not completely positive
map as the contraction of a larger evolution in an indefinite metric space for the
reservoir. To make the map extremal we further restrict the density matrix of the
reservoir τ to have a single eigenvector(with positive metric) with eigenvalue unity.
Since such reservoirs are somewhat artificial, we have to consider this reconstruction
as a purely formal device.

5. Summary

We have studied linear dynamical maps which take the set of density matrices into the
set of density matrices. These maps form a convex set which is also compact in the
case of completely positive maps. It has already been shown in [17] that a completely
positive extremal map contain at most N terms, requiring a total of N(N − 1)/2
terms to parameterize each of the terms up to a set of N × N unitary matrices. The
completely positive maps can be viewed as the contraction of unitary evolution in an
extended space. Extremal maps correspond to the case where the auxiliary system in
the extended space is a pure projection. Conversely we can reconstruct the unitary
evolution of the expanded system from the map itself.

These considerations are extended in this paper to positive but not completely
positive maps. The extremal maps again have at most N terms. The number
of parameters required to describe each one of these terms up to a set of unitary
N × N transformations is given in equation (22). We can obtain these maps also
as contraction of an extended system. But here the extended system has a pseudo
unitary evolution matrix. It is also possible to obtain this pseudo unitary evolution
starting from the maps.

These results generalize the results obtained two decades ago by Gorini and
Sudarshan[11] for 2 × 2 matrices.

Needless to say, however complicated the dynamical processes leading to the linear
stochastic evolution that is represented by the dynamical map, we see that the same
dynamics obtains when we couple the system to a reservoir having dimension N2. In
the case of an extremal map it suffices to couple the system to a reservoir of dimension
N .

In this paper we have dealt only with dynamical maps and not with the continuous
semigroup of evolution. This study was carried out by Kossakowski[16] and followed by
others[13, 14]. In these, while the semigroup generators are parameterized no attempt
is made to embed them in a larger system. Since the Zeno effect[15] operates for very
small time intervals, care must be taken in generating a semigroup from the dynamics
of an extended system. We hope to examine this question in the near future.
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