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Abstract.

The partial scaling transform of the density matrix for multiqubit states is

introduced to detect entanglement of the quantum state. The transform contains

partial transposition as a special case. The scaling transform corresponds to partial

time scaling of subsystem (or partial Planck’s constant scaling) which was used

to formulate recently separability criterion for continous variables. A measure of

entanglement which is a generalization of negativity measure is introduced being based

on tomographic probability description of spin states.

http://arXiv.org/abs/quant-ph/0509006v1
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1. Introduction

Entanglement is a purely quantum characteristic of composite system [1] and it creates

quantum correlations among the subsystems of the system. Till now there is no complete

understanding and protocols to detect entanglement for generic multipartite system both

for qubit (qudit) case and for continous variables like photon quadrature components in

the multimode electromagnetic field. There exists partial positive transpose criterion of

separability [2, 3, 4], this criterion gives necessary condition for separability of composed

bi-partite system. In the case of two qubits and qubit-qutrit system this criterion is

also a sufficient condition for separability which allows to detect entanglement without

ambiguity. For all the other systems of qudits the positivity of partial transpose gives the

necessary condition for separability only. The partial positive transpose (PPT) was also

shown [4] to provide the necessary and sufficient condition of separability for a pure two-

mode Gaussian state of photons. From the point of view of physics the partial transpose

of subsystem density matrix means partial time reversal for the subsystem constituents.

Obviously the change of time sign for all the system is an admissible operation in the

sense that the density matrix obtained as result of time reversal corresponds to a state

that can be realised in nature. But in case of entangled state change of sign of time

for a subsystem constituents only is not an innocent operation and it can provide as

result the new operator from the initial density operator of the system which is not

an admissible density operator. The obtained operator can have negative eigenvalues

which make it unappropriate to serve as a density operator. The transformations of

density operator which provide as result a hermitian positive trace-class operator (which

can serve as density operator) form the set of positive maps [5, 6] or dynamical maps

[7, 8]. The transpose transform is an example of positive maps. The positive map of

initial state density operator can be realised by time evolution of the system: it is just a

dynamical map. Recently it was pointed out [9, 10] that there exist positive maps which

are related to other transforms, e.g. scaling transforms of time, Planck’s constant and

other universal constants. In [10] the scaling of time (or scaling of Planck’s constant) is

applied to a subsystem of a composed system to formulate a new criterion of separability

for multimode photon states. This criterion extends the criterion based on partial

transpose operation and contains continous parameters describing the positive map of

density operators. For entangled states the scaling provides as result operators with

negative eigenvalues. Due to this the partial scaling transform can serve as necessary

and sufficient condition of separability of Gaussian states of multimode electromagnetic

field which extends result of [4] for bi-partite systems only. One can understand the

time scaling transform as change of momentum of the particle p→ λp. Obviously such

change of momentum induced the transform of angular momentum (spin) also.

Till now the partial scaling transform of time (or Planck’s constant) was not used

to detect entanglement in multiqubit (multiqudit) system. The aim of this letter is

to introduce for the multiqubit system the map of density operator based on partial

scaling transform of time for the constituents of subsystems and to use the transform
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to distinguish the separable and the entangled states. We also apply the description of

qubit states by means of probability distribution (tomograms) [11] to consider a measure

of entanglement suggested in [12].

The letter is organised as follows.

In Section 2 partial transpose of density matrix is discussed. In Section 3

notion of bipartite and tripartite entanglement is considered. In Section 4 a scaling

transformations for quddits is introduced. Some examples (Werner [13], GHZ [14] and

W states [15]) for two and three qubits and qutrits are studied in Section 5. In Section

6 and Section 7 conclusions and further topics are presented.

2. Partial transpose

The operation of taking the transpose of a matrix defines a positive map:

T : ρ→ ρT ρ ≥ 0 ⇒ ρT ≥ 0 (1)

it is well known that this map is positive but not completely positive: by the Peres-

Horodecki [3] criterion this gives a necessary condition for a state of a bipartite system

to be separable. Physically this map is equivalent to time reversal:

t −→ −t (2)

Suppose we have a bipartite spin system: S = S1×S2, this yields the decomposition

of the Hilbert space of the whole system as a tensor product H = H1 ⊗H2. A density

state for the system S is described by a density matrix R, the decomposition of the

Hilbert space as tensor product induces the matrix representation R ≡ Raα,bβ , where

the latin and greek indices refer to first and the second system respectively. One defines

the operation of partial transpose that consists in performing the transposition only on

the indices of, say, the second system:

T2 = I ⊗ T : R ≡ Raα,bβ → RT2 ≡ Raβ,bα (3)

This operation can be seen as a partial time reversal that acts on the second subsystem

only: if the states present only classical correlations the map is always well defined and

provides as result an admissible density operator of composite system. Otherwise, in

presence of quantum entanglement the map may transform a density matrix of composite

system into a matrix that is not positive.

3. Bipartite and tripartite entanglement

Positive but not completely positive maps are known to provide entanglement witnesses

[3]. The usual approach is to take a bipartite quantum system with Hilbert space of

states H1 ⊗H2 and apply a map like the following one:

P2 = I ⊗ P (4)

that acts trivially on the first subsystem and by a positive but not completely positive

map P on the second one.
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Partial transposition is a special example of such a procedure, in this case we take:

T2 = I ⊗ T (5)

In general for a given P the criterion is only necessary for separability of states. But for

the whole set of positive but not completely positive maps, the criterion becomes also

sufficient. This is not a simple issue because it is not yet known how to characterize

positive but not completely positive maps for a system that is not a qubit. Nevertheless

it is known that for a two qubit and a qubit-qutrit system [3] and for pure Gaussian

states [4] the criterion is also sufficient.

Even for qubit system the situation becomes very different when one deals with

multipartite systems. Suppose for simplicity to have a tripartite spin system S123 =

S1 × S2 × S3, in this case we must specify what kind of entanglement we mean.

Indeed, one can consider bipartite entanglement for each one of the three possible

bipartitions of the system, namely S1×S23, S2×S31 and S3×S12, otherwise one could be

interested in tripartite entanglement: this yields to the classification of states discussed

in [16].

We say that a state is tri-separable if density matrix admits a decomposition as a

convex sum of local states [13]:

ρ =
∑

j

pjρ
(j)
1 ⊗ ρ

(j)
2 ⊗ ρ

(j)
3 ,

∑

j

pj = 1, pj ≥ 0 (6)

otherwise the state is entangled.

The following relation holds between bi-separability and tri-separability: if a state

is tri-separable it is also bi-separable for each choice of the bipartition, but a state can

be bi-separable for certain bipartion but not tri-separable. It was shown in [17] that

there are also states that are bi-separable for all possible bipartition of the system but

are tri-entangled.

It is clear that a map like (4) cannot be used in order to obtain tri-entanglement

witness because it is sensitive only to bipartite entanglement. In order to investigate

tripartite separability one has to consider maps like the following:

P = I ⊗ P ⊗ P ′ (7)

where P and P ′ are positive but not completely positive maps acting on the second and

the third subsystem respectively.

It is clear that it cannot be sufficient to consider only transposition in order to

obtain tripartite entanglement witness, this is simply because I ⊗T2 ⊗T3 = I⊗T23 and

one can obtain only a bipartite entanglement witness. Thus one can consider at least

two different positive but not completely positive maps.

Let us suppose that we have three families of positive but not completely positive

maps acting on the subsystems Pi(λi) for i = 1, 2, 3 depending on an array of parameters

that we indicate with the short hand notation λi, and consider the map acting on the

whole system

Pλ1λ2λ3
= P1(λ1) ⊗ P2(λ2) ⊗ P3(λ3) (8)



Partial scaling transform of multiqubit states as a criterion of separability 5

Let us also suppose that for a certain value of the parameters, say λi = 1, Pi(0) = Ii
thus we can study tripartite entanglement by varing all the parameters or bipartite

entanglement by fixing two of them to zero.

4. Scaling transform

In a previous paper [10] a family of maps was presented that can be useful in order to

detect entanglement in multimode pure Gaussian states [4, 10] of electromagnetic field.

It is defined in a continous variables system as a rescaling of momentum:
{

x −→ x

p −→ λp
(9)

For λ ∈ [−1, 1] it defines a semigroup of maps that are non canonical almost

everywhere. The map (9) is physically equivalent to a rescaling of time t −→ λt or

Planck’s constant h̄ −→ λh̄. In the case of λ = −1 it reduces to time reversal while

for λ = 1 is the identical map. The fact that (9) is in general non canonical play a

foundamental role in order to detect whether a given state is entangled [10]. It the

present letter we propose a realization of this map in the case of spin systems, that is,

those quantum systems with discrete variables. In the case of a qubit a generic (mixed)

state is written as

ρ =
1

2

[

1 + z x− iy

x+ iy 1 − z

]

(10)

One can define:

Tλ | ρ→ Tλρ =
1

2

[

1 + z x− iλy

x+ iλy 1 − z

]

(11)

Tλ defines a scaling transformation that for λ = 1 is the identical map and for

λ = −1 reduces to the transposition or time reversal.

The matrix representation of the map is

Tλ ≡













1 0 0 0

0 1
2
(1 + λ) 1

2
(1 − λ) 0

0 1
2
(1 − λ) 1

2
(1 + λ) 0

0 0 0 1













. (12)

that is, the matrix Tλ transforms the vector

~ρ =













ρ11

ρ12

ρ21

ρ22













(13)

which corresponds to qubit density matrix

ρ =

[

ρ11 ρ12

ρ21 ρ22

]

(14)
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into a new vector

~ρλ =













ρ11
1+λ

2
ρ12 + 1−λ

2
ρ21

1−λ
2
ρ12 + 1+λ

2
ρ21

ρ22













. (15)

This new vector corresponds to new density matrix

ρλ =

[

ρ11
1+λ

2
ρ12 + 1−λ

2
ρ21

1−λ
2
ρ12 + 1+λ

2
ρ21 ρ22

]

. (16)

In order to determine if this map is completely positive one has to consider the

auxiliary matrix:

Bλ =













1 0 0 1
2
(1 + λ)

0 0 1
2
(1 − λ) 0

0 1
2
(1 − λ) 0 0

1
2
(1 + λ) 0 0 1













. (17)

The map is completely positive if and only if the matrix Bλ is positive[7, 18], and it is

so only for λ = 1. In analogy to the fact that (9) is non canonical, Tλ is neither unitary

nor completely positive for almost all values of λ.

Notice that Tλ can be written as a convex sum of the identity map and transposition:

Tλ =
1 + λ

2
I +

1 − λ

2
T (18)

Being a sum of a completely positive map and transposition, it is clear that Tλ cannot

be useful in order to detect bound entanglement, i.e. Tλ can detect entanglement only

if T can. As a consequence bound entangled states cannot be detect by the map Tλ.

Equation (18) can be taken as a definition of the scaling transformation for a qudit

system.

5. Some examples

In this section we are going to test the power of the scaling tranform to detect

entanglement in bipartite and tripartite systems.

5.1. Werner states for two qubits

In this section we are going to test the capability of the maps Tλ as sources of

entanglement witnesses in the case of a two qubit system. In order to do that we

apply the one parameter family of maps:

Tλ = I ⊗ Tλ (19)

to the well known Werner states [13]. Werner states for two qubits are defined as follows:

wp = p|Ψ〉〈Ψ| + (1 − p)
I4
4

(20)
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where |Ψ〉 is a maximally entangled (Bell) state:

|Ψ〉 =
1√
2

(|00〉 + |11〉) (21)

and I4/4 is the maximally mixed state for a two qubits system. The density matrix

expression for a Werner state is:

wp =













1+p

4
0 0 p

2

0 1−p

4
0 0

0 0 1−p

4
0

p

2
0 0 1+p

4













(22)

The matrix (22) is known to be positive for all p ∈ [−1
3
, 1], separable for p ∈ [−1

3
, 1

3
]

and entangled for p ∈ (1
3
, 1].

Applying the 1 ⊗ Tλ map one gets:

wp;λ = Tλwp =

















1+p

4
0 0 p

2

(

1+λ
2

)

0 1−p

4
p

2

(

1−λ
2

)

0

0 p

2

(

1−λ
2

)

1−p

4
0

p

2

(

1+λ
2

)

0 0 1+p

4

















(23)

with λ ∈ [−1, 1].

The four eigenvalues of the matrices wp;λ are:

ǫ1(p;λ) = ǫ2(p;λ) =
1 − pλ

4
(24)

ǫ3(p;λ) =
1 − 2p+ pλ

4
(25)

ǫ4(p;λ) =
1 + 2p+ pλ

4
(26)

The map Tλ detects entanglement in Werner states if some of this eigenvalues is strictly

negative.

A simple calculation shows that Tλ detects negativity of matrix wp;λ only if

p ≥ (2 − λ)−1 hence Tλ gives a necessary and sufficient condition for separability since

for λ = −1 all the Werner states with p > 1/3 give at least one negative eigenvalue.

5.2. Measure of entanglement

In [12] the unitary spin tomogram of qubit state was introduced. It is defined as

joint probability distribution w of spin projections m1, m2 depending on unitary matrix

elements u ∈ U(4) group. The tomogram of a state of two qubits with density matrix

ρ reads

wρ(m1, m2, u) = 〈m1, m2 | u†ρu | m1, m2〉. (27)

The tomogram completely determines the density matrix ρ [9, 12]. The measure of

entanglement introduced in [12] reads

M(ρ) = max
∑

m1m2

(

|wρM
(m1, m2, u)| − wρM

(m1, m2, u)
)

. (28)
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Figure 1. on the left: phase diagram for matrices (23): on the vertical axis the

parameter p definig the state (20) is plotted, on the horizontal axis the parameter λ

definig the map (19) is plotted. The ”sep” indicates the domain of separability of

(22), the coloured regions corresponds to negative eigenvalues in (23) that witness

entanglement. On the right: the anologous phase diagram for two qutrits state (56).

The function M(ρ) = 0 for separable states and it is positive for entangled states. The

maximum is taken with respect to all unitary group elements and with respect to all

positive but not completely positive maps M of subsystem density matrix which indices

the map of composed system density matrix ρ→ ρM .

If one applies all the maps one will have for some of them the matrix ρM to be

nonpositive for entangled state ρ.

Below we applied the maps which depend on parameters λ. In view of this, the

maximum with respect to unitary matrix elements can be achieved if one takes the

eigenvalues of the matrix ρM . The maximum with respect to all positive but not

completely positive maps M of the subsystem density matrix becomes the maximum

with respect to λ.

Below we consider the eigenvalues of the matrix ρM and apply the constructed

measure in the reduced form.

For the trace preservation property the sum of the eigenvalues equals one for all

values of λ:
4

∑

j=1

ǫj(p;λ) = 1 (29)

We can introduce the quantity:

m(p, λ) =
4

∑

j=1

|ǫj(p, λ)| − 1 (30)

that is zero when all the eigenvalues are positive and is strictly positive when at least

one eigenvalue becomes negative. If we take the maximum over all value of λ ∈ [−1, 1]

M(p) = maxλ∈[−1,1]{m(p, λ)} (31)

this defines a measure of entanglement.

For the previous example this maximum is reached at λ = −1 for all values of p

and yields:

M(p) =

{

0 for p ≤ 1
3

3p−1
2

for p > 1
3

(32)
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Here it coincides with negativity measure [3].

5.3. States of three qubits

In this section we investigate the more interesting case of tripartite system, that is, a

system of three qubits.

For a composite system of n qu-dits one can consider the states:

w′
p = p|w′〉〈w′| + (1 − p)

Idn

dn
(33)

where |w′〉 is a maximally entangled Greenberger-Horne-Zeilinger like [14] state:

|w′〉 =
1√
d

d−1
∑

i=0

|i〉1 ⊗ |i〉2 ⊗ ...|i〉n (34)

The states (33) are known [19] to be entangled for p ≥ pent and separable for p ≤ pent,

with

pent =
1

dn−1 + 1
(35)

For a system of three qubits (34) is the GHZ state:

|GHZ〉 =
1√
3

(|000〉 + |111〉) (36)

this yields the following density matrix:

w′
p =



































p

2
+ 1−p

8
0 0 0 0 0 0 p

2

0 1−p

8
0 0 0 0 0 0

0 0 1−p

8
0 0 0 0 0

0 0 0 1−p

8
0 0 0 0

0 0 0 0 1−p

8
0 0 0

0 0 0 0 0 1−p

8
0 0

0 0 0 0 0 0 1−p

8
0

p

2
0 0 0 0 0 0 p

2
+ 1−p

8



































(37)

Because of the particular symmetric form of the states (33) they are bi-entangled if

and only if tri-entangled. In order to appreciate separately bipartite entanglement and

tripartite entanglement we modify states (33) introducing an addictional parameter:

w′
p,θ = p|Ψθ〉〈Ψθ| + (1 − p)

I8
8

(38)

for θ ∈ [0, π
2
], where

|Ψθ〉 =
1√
2

(|000〉+ cos θ|111〉 + sin θ|110〉) (39)

These states have no more the symmetric form of (33) and we expect a different

behaviour when describing tripartite and bipartite entanglement with respect to different

bipartition of the system.

The pure state |Ψθ〉〈Ψθ| contributes to the entanglement of (38) and the identity

tends to remove purity as well entanglement while p is decreasing from 1 to 0.
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The state vector in (39) is maximally entangled for θ = 0 for all possible choices of

partitions of the system, while for θ = π/2 it is separable for the decompositions S12×S3

while it is still maximally entangled for the decomposition S1 × S23 and S2 × S31.

Notice that the states w′
p,θ in (38) are symmetric for the interchange of the first and

the second system: this implies that we can consider maps with two parameters only:

I ⊗ Tλ ⊗ Tµ (40)

for λ = 1 we can study separability with respect to the bipartition S12 × S3, for µ = 1

the bipartition S31 × S2 (that is the same as S1 × S23) and by varing both λ and µ we

can study tripartite entanglement.

We consider the matrices:

w′
p,θ;λ,µ = (I ⊗ Tλ ⊗ Tµ)w

′
p,θ (41)

w′
p,θ is surely entangled if there is at least one value of λ and µ for which w′

p,θ;λ,µ is

strictly non-positive.

More precisely if there is some negative eigenvalue on the line λ = 1 this witness

a bipartite entanglement with respect to the decomposition S12 × S3, if a negative

eigenvalue is found on the line µ = 1 this witness a bipartite entanglement with

respect to the decomposition S31 × S2, finally a negative eigenvalue in generic point

witnesses tripartite entanglement, while the point λ = µ = −1 gives informations on

the bipartition S1 × S23.

In the symmetric case θ = 0 the eigenvalues, as functions of p, λ and µ, are:

ǫ1 =
p

2
+

1 − p

8
+
p

8
(1 + λ) (1 + µ) (42)

ǫ2 =
p

2
+

1 − p

8
− p

8
(1 + λ) (1 + µ) (43)

ǫ3 =
1 − p

8
+
p

8
(1 + λ) (1 − µ) (44)

ǫ4 =
1 − p

8
− p

8
(1 + λ) (1 − µ) (45)

ǫ5 =
1 − p

8
+
p

8
(1 − λ) (1 + µ) (46)

ǫ6 =
1 − p

8
− p

8
(1 − λ) (1 + µ) (47)

ǫ7 =
1 − p

8
+
p

8
(1 − λ) (1 − µ) (48)

ǫ8 =
1 − p

8
− p

8
(1 − λ) (1 − µ) (49)

In order to measure entanglement we can consider the function

m(p;λ, µ) =
8

∑

i=1

|ǫi(p, 0;λ, µ)| − 1 (50)

this function is zero when the matrix w′
p;λ,µ is positive and is strictly greater than zero

when at least one eigenvalue ǫi is negative.
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Figure 2. three qubit state (38): some phase diagrams for θ = 0 for several values of

p. On the horizontal and vertical axis the two parameters λ and µ defining the map

(40) are plotted. Coloured regions indicate negative eingenvalues of (41) that witness

entanglement of state (38). For p ≤ 1/5 the state is fully separable.

A measure of entanglement is obtained by taking the maximum over λ and µ:

M(p) = maxλ,µ{m(p;λ, µ)} (51)

it is easy to show that this maximum is reached at point λ = −1 and µ = −1 and that

m(p;−1,−1) = m(p;−1, 1) = m(p; 1,−1), this yields:

M(p) =

{

0 for −1
7
≤ p ≤ 1

5
5p−1

4
for 1

5
< p ≤ 1

(52)

That is, the amount of bipartite and tripartite entanglement is the same.

The general case θ 6= 0 can be worked by numerical analysis and some results are

shown in figures (3,4).

For example for θ = 1.4 and p = 0.4 the state is surely tri-entangled and bi-

entangled for the bipartitions S2 × S13 and S1 × S23, but it could be separable for the

bipartition S3 × S12.
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Figure 3. three qubit state (38): some phase diagrams for θ = 0.7. On the axis the

map parameters (40) λ and µ are plotted. The states are entangled in any sense for

p > 1/5.

5.4. W states and qutrits

In this section we study the states:

p|W 〉〈W |+ 1 − p

8
I8 (53)

where |W 〉 is the W state [15]:

|W 〉 =
1√
3

(|001〉 + |010〉 + |100〉) (54)

The amount of tripartite entanglement is equal to that of bipartite entanglement

for all the possible bipartitions: as an example the tripartite entanglement measure for

p = 0.6 is

M(p = 0.6) = m(0.6,−1,−1) = m(0.6,−1, 1) = m(0.6,−1, 1) ∼= 1.47 (55)

As a simple example for a system of two qutrits we consider the GHZ-like state

p|ψ〉〈ψ| + 1 − p

p
I9 (56)
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Figure 4. three qubit state (38): some phase diagrams for θ = 1.4. On the axis the

map parameters (40) λ and µ are plotted. The state could be separable for p ≤ 1/5.

For p = 0.4 it is shown that the state is tri-entangled and bi-entangled for S1 × S23

and S2 × S31 but it could be bi-separable for S3 × S12.

Figure 5. three qubits state (53): some phase diagrams for several values of the state

parameters p (53). On the axis the map parameters (40) λ and µ are plotted.
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where now

|ψ〉 =
1√
3

(|00〉 + |11〉 + |22〉) (57)

As in (20) the states in (56) refer to a bipartite system, hence we need only one

parameter: see the right side of figure (1). For (35) the state is fully separable for

p ≤ 1/4.

6. Outlook

We have seen that the proposed scaling transform cannot be useful to detect bound

entanglement, nevertheless it is useful to study multipartite entanglement. In future

publication we are going to consider a larger family of maps increasing the number of

parameters. It is known that for qubits the set of positive maps is described by 12

paramenters [18]. One could ask if it is possible to choice n < 12 paramenters that are

sufficient in order to witness the entanglement of any non-separable states.

Intuitively one can consider partial scaling of time transform with changing of

”rotation angular velocity” which corresponds to changes

σx → µ1σx, σy → µ2σy, σz → µ3σz

for qubits. Analogous transform can be obtained for orbital momentum.

For µ1, µ2, µ3 ∈ [−1, 1] this is a three parameter semigroup of transformations

that corresponds to non isotropic contraction of the Bloch ball. These maps

are positive for all the values of the parameters but are completely positive

only for points inside a tetrahedron in the space of parameters with vertices

(1, 1, 1); (1,−1,−1); (−1, 1,−1); (−1,−1, 1) [18].

7. Conclusions

To summarize the results obtained, we can point out that we have suggested a new

criterion of separability for multiqubit state. The criterion is based on partial scaling

transform of time (or Planck’s constant) which provides positive but not completely

positive map of qubit density matrix. Using the partial scaling map of density matrix

of composite multiqubit system, one can detect the entanglement. The partial scaling

criterion is reduced to partial transpose criterion for particular scaling parameter equal

−1.

We used the tomographic measure of entanglement which for the value of scaling

parameter equal −1 coincides with negativity measure.

The Werner states for two qubit system and some families of states for tripartite

system and bipartite qutrits system were investigated and the values of the state

parameters for which the system state is entangled were determined using the suggested

criterion.
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In future publication, we study other examples of multiqubit states using the

positive partial scaling transform criterion with increased number of parameters towards

a complete family of separability criteria.
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