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Abstract.

The partial scaling transform of the density matrix for multiqubit states is
introduced to detect entanglement of the quantum state. The transform contains
partial transposition as a special case. The scaling transform corresponds to partial
time scaling of subsystem (or partial Planck’s constant scaling) which was used
to formulate recently separability criterion for continous variables. A measure of
entanglement which is a generalization of negativity measure is introduced being based
on tomographic probability description of spin states.
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1. Introduction

Entanglement is a purely quantum characteristic of composite system [I] and it creates
quantum correlations among the subsystems of the system. Till now there is no complete
understanding and protocols to detect entanglement for generic multipartite system both
for qubit (qudit) case and for continous variables like photon quadrature components in
the multimode electromagnetic field. There exists partial positive transpose criterion of
separability [2, Bl €], this criterion gives necessary condition for separability of composed
bi-partite system. In the case of two qubits and qubit-qutrit system this criterion is
also a sufficient condition for separability which allows to detect entanglement without
ambiguity. For all the other systems of qudits the positivity of partial transpose gives the
necessary condition for separability only. The partial positive transpose (PPT) was also
shown [] to provide the necessary and sufficient condition of separability for a pure two-
mode Gaussian state of photons. From the point of view of physics the partial transpose
of subsystem density matrix means partial time reversal for the subsystem constituents.
Obviously the change of time sign for all the system is an admissible operation in the
sense that the density matrix obtained as result of time reversal corresponds to a state
that can be realised in nature. But in case of entangled state change of sign of time
for a subsystem constituents only is not an innocent operation and it can provide as
result the new operator from the initial density operator of the system which is not
an admissible density operator. The obtained operator can have negative eigenvalues
which make it unappropriate to serve as a density operator. The transformations of
density operator which provide as result a hermitian positive trace-class operator (which
can serve as density operator) form the set of positive maps [B, 6] or dynamical maps
[7, 8. The transpose transform is an example of positive maps. The positive map of
initial state density operator can be realised by time evolution of the system: it is just a
dynamical map. Recently it was pointed out [0, [I0] that there exist positive maps which
are related to other transforms, e.g. scaling transforms of time, Planck’s constant and
other universal constants. In [I0] the scaling of time (or scaling of Planck’s constant) is
applied to a subsystem of a composed system to formulate a new criterion of separability
for multimode photon states. This criterion extends the criterion based on partial
transpose operation and contains continous parameters describing the positive map of
density operators. For entangled states the scaling provides as result operators with
negative eigenvalues. Due to this the partial scaling transform can serve as necessary
and sufficient condition of separability of Gaussian states of multimode electromagnetic
field which extends result of [ for bi-partite systems only. One can understand the
time scaling transform as change of momentum of the particle p — Ap. Obviously such
change of momentum induced the transform of angular momentum (spin) also.

Till now the partial scaling transform of time (or Planck’s constant) was not used
to detect entanglement in multiqubit (multiqudit) system. The aim of this letter is
to introduce for the multiqubit system the map of density operator based on partial
scaling transform of time for the constituents of subsystems and to use the transform
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to distinguish the separable and the entangled states. We also apply the description of
qubit states by means of probability distribution (tomograms) [I] to consider a measure
of entanglement suggested in [12].

The letter is organised as follows.

In Section Bl partial transpose of density matrix is discussed. In Section
notion of bipartite and tripartite entanglement is considered. In Section H a scaling
transformations for quddits is introduced. Some examples (Werner [13], GHZ [14] and
W states [I5]) for two and three qubits and qutrits are studied in Section Bl In Section
and Section [0 conclusions and further topics are presented.

2. Partial transpose

The operation of taking the transpose of a matrix defines a positive map:
T : p—=p p=20=p">0 (1)

it is well known that this map is positive but not completely positive: by the Peres-
Horodecki [B] criterion this gives a necessary condition for a state of a bipartite system
to be separable. Physically this map is equivalent to time reversal:

t— —t (2)

Suppose we have a bipartite spin system: S = 51 X Sy, this yields the decomposition
of the Hilbert space of the whole system as a tensor product H = H; ® Hs. A density
state for the system S is described by a density matrix R, the decomposition of the
Hilbert space as tensor product induces the matrix representation R = R, 3, Where
the latin and greek indices refer to first and the second system respectively. One defines
the operation of partial transpose that consists in performing the transposition only on
the indices of, say, the second system:

T2 =I®T : R= Raa,b,@ — RT2 = Ra,@,ba (3)

This operation can be seen as a partial time reversal that acts on the second subsystem
only: if the states present only classical correlations the map is always well defined and
provides as result an admissible density operator of composite system. Otherwise, in
presence of quantum entanglement the map may transform a density matrix of composite
system into a matrix that is not positive.

3. Bipartite and tripartite entanglement

Positive but not completely positive maps are known to provide entanglement witnesses
[3]. The usual approach is to take a bipartite quantum system with Hilbert space of
states H; ® Hy and apply a map like the following one:

Po=1®P (4)

that acts trivially on the first subsystem and by a positive but not completely positive
map P on the second one.
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Partial transposition is a special example of such a procedure, in this case we take:
T=1&T (5)

In general for a given P the criterion is only necessary for separability of states. But for
the whole set of positive but not completely positive maps, the criterion becomes also
sufficient. This is not a simple issue because it is not yet known how to characterize
positive but not completely positive maps for a system that is not a qubit. Nevertheless
it is known that for a two qubit and a qubit-qutrit system [3] and for pure Gaussian
states [ the criterion is also sufficient.

Even for qubit system the situation becomes very different when one deals with
multipartite systems. Suppose for simplicity to have a tripartite spin system Sis3 =
S1 x Sy x S3, in this case we must specify what kind of entanglement we mean.

Indeed, one can consider bipartite entanglement for each one of the three possible
bipartitions of the system, namely S; X Sa3, Sy X S31 and S3 X S12, otherwise one could be
interested in tripartite entanglement: this yields to the classification of states discussed
in [16].

We say that a state is tri-separable if density matrix admits a decomposition as a
convex sum of local states [13]:

p=Ypir @l @pf,  Ypi=1,  p;20 (6)
J J
otherwise the state is entangled.

The following relation holds between bi-separability and tri-separability: if a state
is tri-separable it is also bi-separable for each choice of the bipartition, but a state can
be bi-separable for certain bipartion but not tri-separable. It was shown in [I7] that
there are also states that are bi-separable for all possible bipartition of the system but
are tri-entangled.

It is clear that a map like () cannot be used in order to obtain tri-entanglement
witness because it is sensitive only to bipartite entanglement. In order to investigate
tripartite separability one has to consider maps like the following:

P=IQPQP (7)

where P and P’ are positive but not completely positive maps acting on the second and
the third subsystem respectively.

It is clear that it cannot be sufficient to consider only transposition in order to
obtain tripartite entanglement witness, this is simply because I ® T, ® T3 = I ® T3 and
one can obtain only a bipartite entanglement witness. Thus one can consider at least
two different positive but not completely positive maps.

Let us suppose that we have three families of positive but not completely positive
maps acting on the subsystems P;(\;) for i = 1,2, 3 depending on an array of parameters
that we indicate with the short hand notation )\;, and consider the map acting on the
whole system

Prirors = P1(A1) @ Pa(A2) @ P3(A3) (8)
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Let us also suppose that for a certain value of the parameters, say A\; = 1, P;(0) = I;
thus we can study tripartite entanglement by varing all the parameters or bipartite
entanglement by fixing two of them to zero.

4. Scaling transform

In a previous paper [I0] a family of maps was presented that can be useful in order to
detect entanglement in multimode pure Gaussian states [, [[0] of electromagnetic field.
It is defined in a continous variables system as a rescaling of momentum:

{x—>x ()

p — Ap

For A € [—1,1] it defines a semigroup of maps that are non canonical almost
everywhere. The map ({) is physically equivalent to a rescaling of time ¢t — At or
Planck’s constant i — Ah. In the case of A = —1 it reduces to time reversal while
for A = 1 is the identical map. The fact that (@) is in general non canonical play a
foundamental role in order to detect whether a given state is entangled [I0]. It the
present letter we propose a realization of this map in the case of spin systems, that is,
those quantum systems with discrete variables. In the case of a qubit a generic (mixed)
state is written as

1| 142 xz—1y
= _ 10
P 2[x+z’y 1—21 (10)

One can define:

1

T | wTApz—[ (1)

T defines a scaling transformation that for A = 1 is the identical map and for

1+2z z—1i\y
2

r+iy 11—z

A = —1 reduces to the transposition or time reversal.
The matrix representation of the map is

1 0 0
0 L1+A) 1(1-2)
0 L1-2) 11+
0 0 0

that is, the matrix 7T} transforms the vector

N~
NN [—=

_ o O O

P22

which corresponds to qubit density matrix

p= |t o] (14

P21 P22
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into a new vector

P11
| et e a9
%012 + %Pm
L P22
This new vector corresponds to new density matrix
_ P11 %Plz + %1021 1
P =1 121 142 . (16)
| 5 P12 T 5P P22

In order to determine if this map is completely positive one has to consider the
auxiliary matrix:

1 0 0 14N
0 0 l1-) 0
By = 2 17
A 0 DY 0 0 (17)
S(1+X) 0 0 1

The map is completely positive if and only if the matrix B, is positive[d, 8], and it is
so only for A = 1. In analogy to the fact that (@) is non canonical, T) is neither unitary
nor completely positive for almost all values of .

Notice that T can be written as a convex sum of the identity map and transposition:

142 1-2A
T, = ; I+-5°T (18)

Being a sum of a completely positive map and transposition, it is clear that T\ cannot

be useful in order to detect bound entanglement, i.e. T\ can detect entanglement only
if T can. As a consequence bound entangled states cannot be detect by the map T).
Equation ([I¥) can be taken as a definition of the scaling transformation for a qudit
system.

5. Some examples

In this section we are going to test the power of the scaling tranform to detect
entanglement in bipartite and tripartite systems.

5.1. Werner states for two qubits

In this section we are going to test the capability of the maps T\ as sources of
entanglement witnesses in the case of a two qubit system. In order to do that we
apply the one parameter family of maps:

T =1®T), (19)

to the well known Werner states [I3]. Werner states for two qubits are defined as follows:
I

w, = plO)(¥| + (1 —p)— (20)

4
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where |¥) is a maximally entangled (Bell) state:
1
V2

and I;/4 is the maximally mixed state for a two qubits system. The density matrix

&) (100) + |11)) (21)

expression for a Werner state is:

1
oo
0O = 0 0
1
o0

The matrix @2) is known to be positive for all p € [—1, 1], separable for p € [—3, 1]

and entangled for p € (3, 1].
Applying the 1 ® T) map one gets:

S 0 51

o () o

wpn = Thwy, = 0 p (1=X 1—p 0 (23)

2 (T) 4
5(4%) o o
with A € [—1,1].
The four eigenvalues of the matrices w, are:

1 —pA

Qi) = elph) =~ (24)
1 —2p+pA

calpi N) I (25)
1+ 2p+pA

ea(pi V) e (26)

The map 7, detects entanglement in Werner states if some of this eigenvalues is strictly
negative.

A simple calculation shows that 7T) detects negativity of matrix w,, only if
p > (2 —A)7! hence T) gives a necessary and sufficient condition for separability since
for A = —1 all the Werner states with p > 1/3 give at least one negative eigenvalue.

5.2. Measure of entanglement

In [I2] the unitary spin tomogram of qubit state was introduced. It is defined as
joint probability distribution w of spin projections mi, my depending on unitary matrix
elements u € U(4) group. The tomogram of a state of two qubits with density matrix
p reads

w,(my, ma, u) = (my,my | ulpu | my, my). (27)
The tomogram completely determines the density matrix p [9, [2]. The measure of
entanglement introduced in [I2] reads

M(p) = max 37 (|wpy (ma,ma, w)| = wpy, (mr, ma, w)). (28)

mims2
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Figure 1. on the left: phase diagram for matrices [£3)): on the vertical axis the
parameter p definig the state () is plotted, on the horizontal axis the parameter A
definig the map () is plotted. The ”sep” indicates the domain of separability of
&2), the coloured regions corresponds to negative eigenvalues in (23] that witness
entanglement. On the right: the anologous phase diagram for two qutrits state (&4).

The function M(p) = 0 for separable states and it is positive for entangled states. The
maximum is taken with respect to all unitary group elements and with respect to all
positive but not completely positive maps M of subsystem density matrix which indices
the map of composed system density matrix p — py.

If one applies all the maps one will have for some of them the matrix py; to be
nonpositive for entangled state p.

Below we applied the maps which depend on parameters A. In view of this, the
maximum with respect to unitary matrix elements can be achieved if one takes the
eigenvalues of the matrix pj;. The maximum with respect to all positive but not
completely positive maps M of the subsystem density matrix becomes the maximum
with respect to .

Below we consider the eigenvalues of the matrix pj, and apply the constructed
measure in the reduced form.

For the trace preservation property the sum of the eigenvalues equals one for all
values of A:

4
Do) =1 (29)
j=1

We can introduce the quantity:

4
j=1

that is zero when all the eigenvalues are positive and is strictly positive when at least
one eigenvalue becomes negative. If we take the maximum over all value of A € [—1, 1]

M(p) = mazse-1y{m(p, A)} (31)
this defines a measure of entanglement.

For the previous example this maximum is reached at A = —1 for all values of p
and yields:

0 for p<

M(p) = { 3p—1

5 fOI' p>

(32)

W=l
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Here it coincides with negativity measure [3.

5.3. States of three qubits

In this section we investigate the more interesting case of tripartite system, that is, a
system of three qubits.
For a composite system of n qu-dits one can consider the states:
Lyn
w, = plw) ('] + (1= p)—- (33)
where |w’) is a maximally entangled Greenberger-Horne-Zeilinger like [T4] state:

’—id_lz' i i
|w>—ﬂ§|>1®|>z®...|>n (34)

The states (B3]) are known [T9] to be entangled for p > p.,; and separable for p < pe,,
with

1
Pent = 11 (35)
For a system of three qubits (B4) is the GHZ state:
1
GHZ) = — (]000) + |111 36
| ) 73 (1000) + [111)) (36)
this yields the following density matrix:
] - ]
by 0 0 0 O 0 0 b
o L 0 0 0 0 0 0
0 o 2 0 0 0 0 0
, 0 0o 0o X 0 0 0 0
o 0 0 0 0 X 0 0 0 (37)
0 o 0 o0 o0 &2 0 0
0 o 0 0 0 0 £ 0
. O 0 0 0 0 0 t4i2]

Because of the particular symmetric form of the states (B3)) they are bi-entangled if
and only if tri-entangled. In order to appreciate separately bipartite entanglement and
tripartite entanglement we modify states (B3)) introducing an addictional parameter:

Is

w, g = p|We) (ol + (1 — p)g (38)
for 6 € [0, 3], where
1
|Uy) = —= (]000) + cos §]111) + sin 6]110)) (39)

V2
These states have no more the symmetric form of (B3)) and we expect a different
behaviour when describing tripartite and bipartite entanglement with respect to different
bipartition of the system.
The pure state |Wy)(Wy| contributes to the entanglement of (BY) and the identity
tends to remove purity as well entanglement while p is decreasing from 1 to 0.
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The state vector in (BY) is maximally entangled for § = 0 for all possible choices of
partitions of the system, while for § = 7 /2 it is separable for the decompositions S5 X S3
while it is still maximally entangled for the decomposition S; x Sp3 and Sy x S3;.

Notice that the states w;, , in ([38) are symmetric for the interchange of the first and
the second system: this implies that we can consider maps with two parameters only:

I®T\®T, (40)

for A = 1 we can study separability with respect to the bipartition S5 x S3, for p =1
the bipartition S3; x S (that is the same as S; x Ss3) and by varing both A and p we
can study tripartite entanglement.

We consider the matrices:

W, g5, = RTART,)w,, (41)

wy, 5 is surely entangled if there is at least one value of A and p for which wy, g, , is
strictly non-positive.

More precisely if there is some negative eigenvalue on the line A = 1 this witness
a bipartite entanglement with respect to the decomposition S5 x S3, if a negative
eigenvalue is found on the line u = 1 this witness a bipartite entanglement with
respect to the decomposition S3; x 5o, finally a negative eigenvalue in generic point
witnesses tripartite entanglement, while the point A = y = —1 gives informations on
the bipartition S; x Sos.

In the symmetric case § = 0 the eigenvalues, as functions of p, A and p, are:

1—
a=24+2"L P nya+p (42)
2 8 8
p l=-p p
——4+—L_ It 1 4
e=5+—g g1+ ({1+u (43)
1 —
= —t 4 (LN (- p) (44)
1 —
64=Tp—§(1+)\)(1—u) (45)
1 —
=t (L= (1) (46)
1 —
=gt —g(L=N(1+p) (47)
1 —
=t (1=N(1-p) (48)
1 —
=t —S(1-N(1-p (49)
8 8
In order to measure entanglement we can consider the function
8
m(p; A, 1) = D le(p, 052, p)] — 1 (50)
i=1

this function is zero when the matrix wy, , ,

when at least one eigenvalue ¢; is negative.

is positive and is strictly greater than zero
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Figure 2. three qubit state [B): some phase diagrams for § = 0 for several values of
p. On the horizontal and vertical axis the two parameters A and p defining the map
Q) are plotted. Coloured regions indicate negative eingenvalues of {1l that witness
entanglement of state [BY). For p < 1/5 the state is fully separable.

A measure of entanglement is obtained by taking the maximum over A and u:

M(p) = mazy ,{m(p; A, 1)} (51)
it is easy to show that this maximum is reached at point A = —1 and p = —1 and that
m(p; —1,—1) = m(p; —1,1) = m(p; 1, —1), this yields:
0 for —% <p< %

M(P):{ 5p—1
— for é<p§1

(52)

That is, the amount of bipartite and tripartite entanglement is the same.

The general case 6 # 0 can be worked by numerical analysis and some results are
shown in figures (BIH).

For example for § = 1.4 and p = 0.4 the state is surely tri-entangled and bi-
entangled for the bipartitions Sy x Si3 and S; x Ss3, but it could be separable for the
bipartition S5 x Si».
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Figure 3. three qubit state [B): some phase diagrams for § = 0.7. On the axis the
map parameters ) A and p are plotted. The states are entangled in any sense for

p>1/5.

5.4. W states and qutrits
(53)

In this section we study the states:
1—
pfs

AW+ —
(54

where |W) is the W state [15]:
(1001) + 010} + |100))

1
W) = —
W=
The amount of tripartite entanglement is equal to that of bipartite entanglement

for all the possible bipartitions: as an example the tripartite entanglement measure for

p=20.61is

M(p=0.6) =m(0.6,—1,—1) =m(0.6,—1,1) = m(0.6,—1,1) = 1.47 (55)
As a simple example for a system of two qutrits we consider the GH Z-like state
(56)

1—

Pl ]+
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map parameters [) A and p are plotted. The state could be separable for p < 1/5.
For p = 0.4 it is shown that the state is tri-entangled and bi-entangled for S; x Sa3
and S9 x S31 but it could be bi-separable for S3 x Sis.
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parameters p ([B3). On the axis the map parameters @) A and p are plotted.
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where now

1
V3

As in (20) the states in (BO) refer to a bipartite system, hence we need only one

parameter: see the right side of figure (). For (BH) the state is fully separable for
p <1/4.

|¥) (100) + [11) +122)) (57)

6. Outlook

We have seen that the proposed scaling transform cannot be useful to detect bound
entanglement, nevertheless it is useful to study multipartite entanglement. In future
publication we are going to consider a larger family of maps increasing the number of
parameters. It is known that for qubits the set of positive maps is described by 12
paramenters [I8]. One could ask if it is possible to choice n < 12 paramenters that are
sufficient in order to witness the entanglement of any non-separable states.

Intuitively one can consider partial scaling of time transform with changing of
"rotation angular velocity” which corresponds to changes

Oy — H10y, Oy — U200y, Oy — H30;

for qubits. Analogous transform can be obtained for orbital momentum.

For py, po, s € [—1,1] this is a three parameter semigroup of transformations
that corresponds to non isotropic contraction of the Bloch ball. These maps
are positive for all the values of the parameters but are completely positive

only for points inside a tetrahedron in the space of parameters with vertices
(17 17 1)7 (17 _17 _1)7 <_17 17 _1)7 (_17 _17 1) [] 8]'

7. Conclusions

To summarize the results obtained, we can point out that we have suggested a new
criterion of separability for multiqubit state. The criterion is based on partial scaling
transform of time (or Planck’s constant) which provides positive but not completely
positive map of qubit density matrix. Using the partial scaling map of density matrix
of composite multiqubit system, one can detect the entanglement. The partial scaling
criterion is reduced to partial transpose criterion for particular scaling parameter equal
—1.

We used the tomographic measure of entanglement which for the value of scaling
parameter equal —1 coincides with negativity measure.

The Werner states for two qubit system and some families of states for tripartite
system and bipartite qutrits system were investigated and the values of the state
parameters for which the system state is entangled were determined using the suggested
criterion.
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In future publication, we study other examples of multiqubit states using the
positive partial scaling transform criterion with increased number of parameters towards
a complete family of separability criteria.
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