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Abstract

The density matrix of composite spin system is discussed in relation to the
adjoint representation of unitary group U(n). The entanglement structure
is introduced as an additional ingredient to the description of the linear
space carrying the adjoint representation. Positive maps of density operator
are related to random matrices. The tomographic probability description of
quantum states is used to formulate the problem of separability and entan-
glement as the condition for joint probability distribution of several random
variables represented as the convex sum of products of probabilities of ran-
dom variables describing the subsystems. The property is discussed as a
possible criterion for separability or entanglement. The convenient criterion
of positivity of finite and infinite matrix is obtained. The U(n)-tomogram
of a multiparticle spin state is introduced. The entanglement measure is
considered in terms of this tomogram.

KEY WORDS: unitary group, entanglement, adjoint representation, to-
mogram, operator symbol, random matrix.

1 Introductiion

The notion of entanglement [1] is related to the quantum composition prin-
ciple of the states of subsystems for a given multipartite system. For pure
states, the notion of entanglement and separability can be given as follows.

If the wave function of a state of a bipartite system is represented as the
product of two wave functions depending on coordinates of the subsystems,
the state is simply separable; correspondingly, in other cases, the state is en-
tangled. An intrinsic approach to the entanglement measure was suggested

1

http://arXiv.org/abs/quant-ph/0310022v1


in [2]. The measure was introduced as the distance between the system den-
sity matrix and the tensor product of the subsystem states. There are several
other different characteristics and measures of entanglement considered by
several authors [3–9]. Each of the entanglement measures describes a degree
of correlations between the subsystems’ properties. The notion of entan-
glement is not an absolute notion for a given system but depends on the
decomposition into subsystems. The same quantum state can be considered
as entangled, if one kind of division of the system into subsystems is given,
or as completely disentangled, if another decomposition of the system into
subsystems is considered.

For instance, the state of two continuous quadratures can be entangled
in Cartesian coordinates and disentangled in polar coordinates. Coordinates
are considered as measurable observables labeling the subsystems of the given
system. The choice of different subsystems mathematically implies the exis-
tence of two different sets of the subsystems’ characteristics (we focus on bi-
partite case). We may consider the Hilbert space of statesH(1, 2) orH(1′, 2′).
The Hilbert space for the total system is, of course, the same but the index
(1, 2) means that there are two sets of operators P1 and P2, which select
subsystem states 1 and 2. The index (1′, 2′) means that there are other two
sets of operators P ′

1 and P ′
2, which select subsystem states 1′ and 2′. The

operators P1,2 and P ′
1′,2′ have specific properties. They are represented as

tensor products of operators acting in the space of states of the subsystem 1
(or 2) and unit operators acting in the subsystem 2 (or 1). In other words,
we consider the space H , which can be treated as tensor product of spaces
H(1) and H(2) or H(1′) and H(2′). In the subsystems 1 and 2, there are
basis vectors | n1〉 and | m2〉, as well as in the subsystems 1′ and 2′ there
are basis vectors | n′

1〉 and | m′
2〉. The vectors | n1〉 | m2〉 and the vectors

| n′
1〉 | m′

2〉 form the sets of basis vectors in the composite Hilbert space,
respectively. These two sets are related by means of unitary transformation.
An example of such a composite system is a bipartite spin system.

If one has spin-j1 [the space H(1)] and spin-j2 [the space H(2)] systems,
the combined system can be treated as having basis | j1m1〉 | j2m2〉.

Another basis in the composite-system-state space can be considered in
the form | jm〉, where j is one of the numbers |j1 − j2|, |j1 − j2| + 1, . . . ,
j1 + j2 and m = m1 + m2. The basis | jm〉 is related to the basis | j1m1〉 |
j2m2〉 by means of unitary transform given by Clebsch–Gordon coefficients
C (j1m1j2m2|jm). From the viewpoint of given definition, the states | jm〉
are entangled states. For example, if j1 = j2 = 1/2, there are entangled spin
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states of the composite system, which nowadays are called Bell states
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These states are maximally entangled states. In terms of spin, the states
| Φ±〉 are the superpositions of j = 1, m = ±1 states and the states | Ψ±〉
are the superpositions of j = 0, 1, m = 0 states.

The spin states can be described by means of the tomographic map [10–
12].For bipartite spin systems, the states were described by the tomographic
probabilities in [13, 14]. Some properties of the tomographic spin description
were studied in [15]. In the tomographic approach, the problems of the quan-
tum state entanglement can be cast into the form of some relations among
the probability distribution functions. On the other hand, to have a clear
picture of entanglement, one needs mathematical formulation of properties of
the density matrix of the composite system, a description of the linear space
of the composite system states. Since the density matrix is hermitian, the
space of states is a subset of linear space of adjoint representation of the group
U(n2), where n = 2j + 1 is the dimension of the spin states of two spinning
particles. Thus one needs to characterize the connection of the entanglement
phenomena with the structures in the space of adjoint representation of the
U(n2) group.

The aim of this paper is to connect entanglement problems with the
properties of tomographic probability distributions and discuss the properties
of the convex set of positive states for composite system with taking into
account the subsystem structures. We used Hilbert–Schmidt distance to
calculate the measure of entanglement as the distance between a given state
and the tensor product of the partial traces of the density matrix of the
given state. In [16] another measure of entanglement as a characteristic
of subsystem correlations was introduced. This measure is determined via
covariance matrix of some observables. Review of different approaches to the
entanglement notion and entanglement measures is given in [17], where the
approach to describe entanglement and separability of composite systems is
based on entropy methods.

Due to variety of approaches to the entanglement problem, one needs
to understand better what in reality this word ‘entanglement’ describes. Is
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it a synonym of the word ‘correlation’ between two subsystems or it has
to capture some specific correlations attributed completely and only to the
quantum domain?

The paper is organized as follows.
In Sec. 2 we study the subsystem structure of a given linear space. In Sec.

3 we consider the relation of the group U(n2) to the set of density matrices. In
Sec. 4 we discuss positive maps. In Sec. 5 we investigate local transforms. In
Sec. 6 we treat the probability distributions as vectors. In. Sec. 7 we prove
the invariance of the intrinsic entanglement measure. In Sec. 8 we define the
separable states. In Sec. 9 generic symbols of operators are presented. In
Sec. 10 an example of Weyl symbols is considered and in Sec. 11 an example
of quadrature tomogram is done. In Sec. 12 symbols of density operators for
multipartite system are discussed. Spin tomography is reviewed in Sec. 13.
Two qubits are considered in the tomographic representation in Sec. 14. The
relation of dynamical map to purification procedure is described in Sec. 15.
Some properties of quadratic forms are reviewed in Sec. 16. The tomogram
for the group U(N) is introduced in Sec. 17. Conclusions and results are
listed in Sec. 18.

2 Linear Space of a Composite System, Its

Structure, and Its Convex Subset of Posi-

tive States

In this section, we review the meaning and notion of composite system in
terms of additional structures on the linear space of state for the composite
system.

2.1 States and Observables

In quantum mechanics, there are two principal ingredients, which are asso-
ciated with linear operators acting in a Hilbert space. The first ingredient is
related to the concept of quantum state and the second one, to the concept of
observable. The state is associated to Hermitian nonnegative, trace-class, lin-
ear operator. The observables are associated to Hermitian operators. Though
the both states and observables are identified with the Hermitian operators,
there is an essential difference between these two objects. The observables
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have additional product structure. Thus we consider product of two linear
Hermitian operators corresponding to the observables. First measuring an
observable and (after measuring the first one) measuring another observable
just correspond to the product of two operators.

For the states, the notion of product is redundant. The product of two
states is not a state. For states, one keeps only the linear structure of vector
space. For finite n-dimensional system, the Hermitian states and the Her-
mitian observables live in Lie algebra of the unitary group U(n). But the
states correspond to nonnegative Hermitian operator. The observables can
be associated with both types of the operators including nonnegative and
nonpositive ones. Space of states is linear space which, in principle, is not
equipped by a product structure. Due to this, if one considers transforma-
tions in linear space of states, one does not need to preserve any product
structure. In the set of observables, one needs to care what is happening
with product of operators provided some transformations are applied.

2.2 Vectors

Let us first introduce some extra constructions of the map of a matrix onto
a vector. Given a rectangular matrix M with elements Mid, where i =
1, 2, . . . , n and d = 1, 2, . . . , m. Then one can consider the matrix as a vector
~M with N = nm components constructed by the following rule:

M1 = M11, M2 = M12, Mm = M1m, Mm+1 = M21, . . .MN = Mnm.
(1)

Thus we construct the map M → ~M =t̂ ~MMM.
We have introduced the linear operator t̂ ~MM which maps the matrix

M on a vector ~M. Now we introduce the inverse operator p̂ ~MM which
maps a given vector column in the space with dimension N = mn onto the
rectangular matrix. This means that given a vector ~M = M1, . . . ,MN , we
use the rule of relabeling the components of the vector introducing two indices
i = 1, . . . , n and d = 1, . . . , m. The relabeling is accomplished according to
(1). Then we collect the relabeled components into matrix table. Thus we
get the map

p̂ ~MM
~M = M. (2)

One can see that their composition

t̂ ~MM p̂ ~MM
~M =1 · ~M (3)
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acts on the vector as unit operator in the linear space of vectors.
Given a n×n matrix the map suggested can also be extended. The ma-

trix can be treated as n2-dimensional vector and, vice versa, the vector of
dimension n2 can be mapped by this procedure onto the n×n matrix.

Let us consider a linear operator acting on the vector ~M and related to
a linear transform of the matrix M . First, we study the correspondence of
the linear transform of the form

M → gM = M l
g (4)

to the transform of the vector

~M → ~Ml
g = Ll

g
~M. (5)

One can show that the n2×n2 matrix Ll
g is determined by the tensor product

of the n×n matrix g and n×n unit matrix, i.e.,

Ll
g = g ⊗ 1. (6)

Analogously, the linear transform of the matrix M of the form

M →Mg = M r
g (7)

induces the linear transform of the vector ~M of the form

~M → ~Mr
g = t̂ ~MM

M r
g = Lr

g
~M, (8)

where the n2×n2 matrix Lr
g reads

Lr
g = 1 ⊗ gtr. (9)

Similarity transformation of the matrix M of the form

M → gMg−1 (10)

induces the corresponding linear transform of the vector ~M of the form

~M → ~Ms = Ls
g
~M, (11)

where the n2×n2 matrix Ls
g reads

Ls
g = g ⊗ (g−1)tr. (12)
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One can ask how to determine the inverse map of vector ~M onto matrix
M , i.e., how to define the operator p̂ ~MM . In fact, the reconstruction can be

defined by means of star-product of vectors ~M in a linear space. One can
define the associative product of two N -vectors ~M1 and ~M2 using the rule

~M = ~M1 ⋆ ~M2, (13)

where

~Mk =
N∑

l,s=1

Kk
ls( ~M1)l( ~M2)s. (14)

If one applies a linear transform to the vectors ~M1, ~M2, ~M of the form

~M1 → ~M′
1 = L ~M1, ~M2 → ~M′

2 = L ~M2, ~M → ~M′ = L ~M,

the invariance of the star-product kernel yields

~M′
1 ⋆

~M′
2 = ~M′, if L = G⊗G−1tr, G ∈ GL(n).

The kernel Kk
ls (structure constants) which determines the associative star-

product satisfies the quadratic equation. Thus if one wants to make the cor-
respondence of the vector star-product to the standard matrix product (row
by column), the matrix M must be constructed appropriately. For example,
if the vector star-product is commutative, the matrix M corresponding to
the N -vector ~M can be chosen as diagonal N×N matrix. This consider-
ation shows that the map of matrices on the vectors provides star-product
of the vectors (defines the structure constants or the kernel of star-product)
and, conversely, if one has the vectors, the map of the vectors onto the ma-
trices with the standard multiplication rule is determined by the structure
constants (or by the kernel of the vector star-product).

The constructed map of matrices on the vectors gives a possibility to en-
large the dimensionality of the group acting in the linear space of matrices in
comparison with the standard one. Thus, given a n×n matrix M the left ac-
tion, the right action, and similarity transformation of the matrix are related
to the complex group GL(n). On the other hand, the linear transformations

in the linear space of n2-vectors ~M obtained by using the introduced map
are determined by the matrices belonging to the group GL(n2). There are
transformations on the vectors which cannot be simply represented on ma-
trices. If M → Φ(M) is a linear homogeneous function of the matrix M , we
may represent it by

Φab = Baa′, bb′Ma′b′.
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Under rather clear conditions, Baa′,bb′ can be expressed in terms of its non-
normalized left and right eigenvectors:

Baa′,bb′ =
∑

ν

xaa′(ν)y†bb′(ν),

which corresponds to

Φ(M) = xMy† =
n2∑

ν=1

x(ν)My†(ν).

There are possible linear transforms on the matrices and corresponding
linear transforms on the induced vector space which belong not to a group
but to an algebra of matrices. One can describe the map of n×n matrices M
(source space) onto vectors ~M (target space) using specific basis in the space
of the matrices. The basis is given by the matrices Ejk (j, k = 1, 2, . . . , n)
with all matrix elements equal to zero except the element in jth row and kth
column which is equal to unity. One has the obvious property

Mjk = Tr (MEjk) . (15)

In our procedure, the basis matrix Ejk is mapped onto the basis column-

vector ~Ejk, which has all components equal to zero except the unity compo-
nent related to the position in the matrix determined by the numbers j and
k. Then one has

~M =
n∑

j,k=1

Tr (MEjk) ~Ejk. (16)

For example, for similarity transformation of the finite matrix M , one has

~Ms
g =

N∑

j,k=1

Tr
(
gMg−1Ejk

)
~Ejk. (17)

Now we will define the notion of ‘composite’ vector which corresponds to
dividing a quantum system into subsystems.

We will use the following terminology.
In general, the given linear space of dimensionality N = mn has a struc-

ture of bipartite system, if the space is equipped with the operator p̂ ~MM

and the matrix M (obtained by means of the map) has matrix elements in
factorizable form

Mid → xiyd. (18)
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This M = x ⊗ y corresponds to the special case of nonentangled states.
Otherwise, one needs

M =
∑

ν

x(ν) ⊗ y(ν).

In fact, to consider in detail the entanglement phenomenon, in the bipartite
system of spin, one has to introduce a hierarchy of three linear spaces. The
first space of pure spin states is two-dimensional linear space of complex
vectors

| ~x〉 =

(
x1

x2

)
. (19)

In this space, the scalar product is defined as follows:

〈~x | ~y〉 = x∗1y1 + x∗2y2. (20)

So it is two-dimensional Hilbert space. We do not equip this space with a
vector star-product structure. In the primary linear space, one introduces
linear operators M̂ which are described by 2×2 matrices M . Due to the map
discussed in the previous section, the matrices are represented by 4-vectors
~M belonging to the second complex 4-dimensional space. Star-product of

the vectors ~M determined by the kernel Kk
ls is defined in such a manner in

order to correspond to the standard rule of multiplication of the matrices.
In addition to the star-product structure, we introduce the scalar product

of the vectors ~M1 and ~M2, in view of the definition

〈 ~M1 | ~M2〉 = Tr (M †
1M2), (21)

which is the trace formula for scalar product of matrices.
This means introducing the metric gαβ in the standard notation for scalar

product

〈 ~M1 | ~M2〉 =
4∑

α,β=1

(M1)
∗
αg

αβ(M2)β, (22)

where the matrix gαβ is of the form

gαβ =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , gαjgjβ = δαβ. (23)
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The scalar product is invariant under action of the group of nonsingular 4×4
matrices ℓ, which satisfy the condition

ℓ−1 = gℓ†g. (24)

The product of matrices ℓ satisfies the same condition since g2 = 1.
Thus, the space of operators M̂ in primary two-dimensional space of

spin states is mapped onto linear space which is equipped with a scalar
product (metric Hilbert space structure) and associative star-product (kernel
satisfying quadratic associativity equation). In the linear space of the 4-

vectors ~M, we introduce linear operators (superoperators), which can be
associated with algebra of 4×4 complex matrices.

3 Density Operators and Positive Maps

In this section, we focus on density matrices. This means that our matrix
M is considered as a density matrix ρ which describes a quantum state. We
consider here the action of the unitary transformation U(n) of the density
matrices and corresponding transformations on the vector space. If one has
structure of bipartite system, we also consider the action of local gauge trans-
formation both in the ‘source space’ of density matrices and in the ‘target
space’ of the corresponding vectors.

The n×n density matrix ρ has matrix elements

ρik = ρ†ki, Tr ρ = 1, 〈ψ|ρ|ψ〉 ≥ 0. (25)

Since the density matrix is hermitian, it can be always identified as an element
of the convex subset of the linear space associated with the Lie algebra of
U(n) group, on which the group U(n) acts with the adjoint representation

ρ→ ρU = UρU †. (26)

The system is said to be bipartite, if the space of representation is equipped
with an additional structure. It means that for

n2 = n1 · n2, n1 = n2 = n

one can make first the map of n×n matrix ρ onto n2-dimensional vector ~ρ
according to the previous procedure, i.e., one equips the space by an operator
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t̂~ρρ. Given this vector one makes a relabeling of the vector ~ρ components
according to the rule

~ρ→ ρid,ke, i, k = 1, 2, . . . , n1, d, e = 1, 2, . . . , n2, (27)

i.e., obtaining the quadratic matrix

ρq = p̂ρq~ρ~ρ. (28)

The unitary transform (26) of the density matrix induces the linear transform
of the vector ~ρ of the form

~ρ→ ~ρU = (U ⊗ U∗)~ρ. (29)

There exist linear transforms (called positive maps) of the density matrix,
which preserve its trace, hermicity, and positivity. It is the transform intro-
duced in [18]

ρ0 → ρs =
∑

k

pkUkρ0U
†
k ,

∑

k

pk = 1, (30)

where Uk are unitary matrices and pk are positive numbers.
If the initial density matrix is diagonal, i.e., it belongs to Cartan sub-

algebra of Lie algebra of the unitary group, the diagonal elements of the
obtained matrix give smoother probability distribution than the initial one.
There exists the generic transform (see [18, 19])

ρ0 → ρ =
∑

k

Vkρ0V
†
k ,

∑

k

V †
k Vk = 1. (31)

For large number of terms in the sum, the above map gives the most stochas-
tic density matrix

ρ0 → ρs = (n)−11.

The transform (30) is the partial case of the transform (31). We discuss the
transforms separately since they are used in the literature in the presented
form.

One can see that the constructed map of density matrices onto vectors
provides the corresponding transforms of the vectors, i.e.,

~ρ0 → ~ρs =
∑

k

pk(Uk ⊗ U∗
k )~ρ0 (32)
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and
~ρ0 → ~ρ =

∑

k

(Vk ⊗ V ∗
k )~ρ0. (33)

It is obvious that the linear transforms of the vectors, which preserve their
properties to correspond to the density matrix, are essentially larger than
the standard unitary transform of the density matrix.

Formulas (32) and (33) mean that the positive map superoperators acting
on the density matrix in the vector representation are described by n2×n2

matrices
Ls =

∑

k

pk(Uk ⊗ U∗
k ) (34)

and
L =

∑

k

Vk ⊗ V ∗
k , (35)

respectively.
Positive map is called ‘noncompletely positive’ if

L =
∑

k

Vk ⊗ V ∗
k −

∑

s

vs ⊗ v∗s ,
∑

k

V †
k Vk −

∑

s

v†svs = 1.

This map is related to nonphysical evolution of a subsystem.

4 Positive Map and Random Matrices

Formula (34) can be considered in the context of random matrix representa-
tion. In fact, the matrix Ls can be interpreted as the weighted mean value
of the random matrix Uk ⊗U∗

k . The dependence of matrix elements and pos-
itive numbers pk on index k means that we have a probability distribution
function pk and averaging of the random matrix Uk ⊗ U∗

k by means of the
distribution function. So the matrix Ls reads

Ls = 〈U ⊗ U∗〉. (36)

Let us consider example of 2×2 unitary matrix. We can consider the matrix
of SU(2) group of the form

u =

(
α β

−β∗ α∗

)
, |α|2 + |β|2 = 1. (37)
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The 4×4 matrix Ls takes the form

Ls =




ℓ m m∗ 1 − ℓ
−n s −q n
−n∗ −q∗ s∗ n∗

1 − ℓ −m −m∗ ℓ


 . (38)

The matrix elements of the matrix Ls are the means

m = 〈αβ∗〉,
ℓ = 〈αα∗〉,
n = 〈αβ〉, (39)

s = 〈α2〉,
q = 〈β2〉.

Moduli of these matrix elements are smaller than unity.
Determinant of the matrix Ls reads

detLs = (1 − 2ℓ)
(
|q|2 − |s|2

)
+ 4 Re

[
q∗m∗n+mns∗

]
. (40)

If one represents the matrix Ls in block form

Ls =

(
A B
C D

)
, (41)

then

A =

(
ℓ m
−n s

)
, B =

(
m∗ 1 − ℓ
−q n

)
, (42)

and
D = σ2A

∗σ2, C = −σ2B
∗σ2, (43)

where σ2 is Pauli matrix.
One can check that the product of two different matrices Ls can be cast

in the same form. This means that the matrices Ls form the 9-parameter
compact semigroup. For example, in the case ℓ = 1/2 and m = 0, one has
the matrices

A =

(
1/2 0
−n s

)
, B =

(
0 1/2
−q n

)
. (44)
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Determinant of the matrix Ls in this case is equal to zero. All the matrices
Ls have the eigenvector

~ρ0 =




1/2
0
0

1/2


 , (45)

i.e.,
Ls~ρ0 = ~ρ0. (46)

This eigenvector corresponds to the density matrix

ρ1 =

(
1/2 0
0 1/2

)
, (47)

which is obviously invariant of the positive map.
For random matrix, one has correlations of the random matrix elements,

e.g., 〈αα∗〉 6= 〈α〉〈α∗〉.
The matrix Lp

Lp =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (48)

maps the vector

ρin =




ρ11

ρ12

ρ21

ρ22


 (49)

onto the vector

~ρt =




ρ11

ρ21

ρ12

ρ22


 . (50)

This means that the positive map (48) connects the positive density matrix
with its transposed. This map can be presented as the connection of the
matrix ρ with its transposed of the form

ρ→ ρT = ρ∗ =
1

2

(
ρ+ σ1ρσ1 − σ2ρσ2 + σ3ρσ3

)
.

14



There is no unitary transform connecting these matrices.
This noncompletely positive map in N -dimensional case is given by gen-

eralized formula

ρ→ ρs = −ερ+
1 + ε

N
1N , ε > 0.

The standard unitary transform can be interpreted as average random trans-
form with probability distribution

pk = δ(k), (51)

where δ(k) is either Kronecker symbol δk0 for discrete index k or Dirac delta-
function for continuous index k.

For standard unitary transform, one cannot find the matrix U satisfying
the equation

U ⊗ U∗ = Lp. (52)

But if one makes averaging with generic distribution function [not with prob-
ability distribution (51)], the equation

〈U ⊗ U∗〉 = Lp (53)

has the solution.
The standard unitary transform of density matrix is 3-parameter subset

of this 9-parameter semigroup.
Thus we constructed matrix representation of positive map of density

operators of spin-1/2 system. To construct this representation, one needs
to use the map of matrices on the vectors discussed in the previous section.
Formulas (31) and (35) can be interpreted also in the context of random
matrix representation, but we use the uniform distribution for averaging in
this case. So one has equality (35) in the form

L = 〈V ⊗ V ∗〉 (54)

and the equality
〈V †V 〉 = 1, (55)

which provides constrains for used random matrices V .
Using random matrix formalism, the positive (but not completely posi-

tive) maps can be presented in the form

L = 〈V ⊗ V ∗〉 − 〈v ⊗ v∗〉, 〈V †V 〉 − 〈v†v〉 = 1.

15



In [18] the positive maps (30) and (31) were used to describe non-Hamiltonian
evolution of quantum states for open systems. If the map corresponds to
an extended Hamiltonian evolution, the leading terms are of order t2 (Zeno
effect) and consequently, in the λ2t-approximation of Prigogine and van Hove,
one can derive rate equations from macroscopic equations of motion.

We have to point out that, in general, such evolution is not described by
first-order-in-time partial differential equation. Like in the previous case, if
there are added structures of the matrix in the form

ρid,ke → xiydzkte, (56)

which means association with the initial linear space two extra linear spaces in
which xi, zk are considered as vector components in the n1-dimensional linear
space and yd, te are vector components in n2-dimensional vector space, we
will tell that one has bipartite structure of the initial space of state [bipartite
structure of the space of adjoint representation of the group U(n)]. Usually
the adjoint representation of any group is defined per se without any reference
to possible substructures. Here we introduce the space with extra structure.
In addition to be space of adjoint representation of the group U(n), it has
structure of bipartite system. The generalization to multipartite (N -partite)
structure is straightforward. One needs only the representation of positive
integer n2 in the form

n2 =
N∏

k=1

n2
k. (57)

If one considers more general map given by superoperator (35) rewritten
in the form

L = 〈V ⊗ V ∗〉, 〈V †V 〉 = 1,

the number of parameters determining the matrix L can be easily evaluated.
For example, if

V =

(
a b
c d

)
, V ∗ =

(
a∗ b∗

c∗ d∗

)
,

where matrix elements are the complex numbers, the normalization condition
provides 4 constrains for the real and imaginary parts of matrix elements of
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the following matrix:

L =




〈|a|2〉 〈ab∗〉 〈ba∗〉 〈bb∗〉
〈ac∗〉 〈aa∗〉 〈bc∗〉 〈bd∗〉
〈ca∗〉 〈cb∗〉 〈da∗〉 〈db∗〉
〈cc∗〉 〈cd∗〉 〈dc∗〉 〈dd∗〉


 ,

namely,

〈|a|2〉 + 〈|b|2〉 = 1, 〈|c|2〉 + 〈|d|2〉 = 1, 〈a∗c〉 + 〈a∗d〉 = 0.

Due to structure of the matrix L, there are 6 complex parameters

〈ab∗〉, 〈ac∗〉, 〈ad∗〉, 〈bc∗〉, 〈bd∗〉, 〈cd∗〉

or 12 real parameters.
Geometrical picture of positive map can be clarified if one considers trans-

form of the positive density matrix onto another density matrix as transform
of ellipsoid into another ellipsoid. The generic positive transform means a
generic transform of the ellipsoid, which changes its orientation, values of
semiaxis, and position in the space. But the transform is not making from
the ellipsoid the surface like hyperboloid or paraboloid. For pure states, the
positive density matrix defines the quadratic form which is maximally de-
generated. In this sense, we say “ellipsoid” also including all its degenerate
forms corresponding to density matrix of ranks less than n (in n-dimensional
case). The number of parameters defining the map 〈V ⊗V ∗〉 in n-dimensional
case is equal to n2(n2 − 1).

5 Local and Nonlocal Transforms

In this section, we discuss the transforms of the density operators of bipartite
system. We concentrate on the case of two spin-1/2 systems. Let the first
system be in the state with 2×2 density matrix

ρA =

(
ρA

11 ρA
12

ρA
21 ρA

22

)
(58)

and the second system is in the state with 2×2 density matrix

ρB =

(
ρB

11 ρB
12

ρB
21 ρB

22

)
. (59)
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According to the suggested map, we associate with the state density matrices
(58) and (59) the 4-vectors with components

~ρA =




ρA
11

ρA
12

ρA
21

ρA
22


 , ~ρB =




ρB
11

ρB
12

ρB
21

ρB
22


 . (60)

The density matrices (58) and (59) [i.e., vectors (60)] belong to linear spaces
of adjoint representations of groups UA(2) and UB(2), respectively.

For the product state (simply separable state) of composite system with
4×4 density matrix

ρAB = ρA ⊗ ρB, (61)

the corresponding 16-vector associated to 4×4 density matrix

ρAB =




ρA
11ρ

B
11 ρA

11ρ
B
12 ρA

12ρ
B
11 ρA

12ρ
B
12

ρA
11ρ

B
21 ρA

11ρ
B
22 ρA

12ρ
B
21 ρA

12ρ
B
22

ρA
21ρ

B
11 ρA

21ρ
B
12 ρA

22ρ
B
11 ρA

22ρ
B
12

ρA
21ρ

B
21 ρA

21ρ
B
22 ρA

22ρ
B
21 ρA

22ρ
B
22


 (62)

has the form

~ρAB = C
(
~ρA ⊗ ~ρB

)
, ~ρA ⊗ ~ρB = C~ρAB. (63)

Here the 16×16 matrix C acting on the 16-component vector ~ρA ⊗ ~ρB , which
is standard tensor-product of two vectors, has the form

C =




12 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0
0 12 0 0 0 0 0 0
0 0 0 12 0 0 0 0
0 0 0 0 12 0 0 0
0 0 0 0 0 0 12 0
0 0 0 0 0 12 0 0
0 0 0 0 0 0 0 12




. (64)

The matrix C consists of 2×2-block zero and unity matrices.
The linear space of Hermitian matrices is equipped also by commutator

structure defining Lie algebra of the group U(n). The kernel, which defines

18



this structure (Lie product structure) is determined by the kernel, which
determines star-product.

In the space of 16-vectors, one defines the scalar product as follows:

~ρ1 · ~ρ2 =
16∑

α,β=1

ρ∗1αCαβρ2β . (65)

The product is invariant, in view of linear transform (group transform)

~ρ1 → ~ρ′1 = L~ρ1 ~ρ2 → ~ρ′2 = L~ρ2, (66)

if the 16×16 matrix L satisfies the condition

L−1 = CL†C. (67)

Vector (63) belongs to linear space of adjoint representation of the unitary
group U(4) and star-product of the vectors is identified with the associative
algebra generated by the Lie algebra. The local gauge transformations are
defined as tensor product of independent unitary transforms of the density
matrices ρA (58) and ρB (59). These transformations are described by the
group U(2)×U(2). In the space of vectors ~ρA and ~ρB, the local transform
superoperators have the matrix form

ÛA(2)~ρA =
(
UA(2) ⊗ U∗

A(2)
)
~ρA (68)

and
ÛB(2)~ρB =

(
UB(2) ⊗ U∗

B(2)
)
~ρB. (69)

In the 16-dimensional space of vectors ~ρAB, the local transforms are described
by the superoperator

~ρAB → ~ρloc
AB = Lloc~ρAB, (70)

with the matrix

Lloc = C
(
UA(2) ⊗ U∗

A(2)
)
⊗
(
UB(2) ⊗ U∗

B(2)
)
C. (71)

The local positive map transforms induce in the space of adjoint represen-
tation of the group U(4) the transform of the vectors ~ρAB associated to the
matrices

LpU = C
(∑

k

pkU
A
k ⊗ UA∗

k

)
⊗
(∑

k′

ωk′UB
k′ ⊗ UB∗

k′

)
C (72)
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and
LpV = C

(∑

k

V A
k ⊗ V A∗

k

)
⊗
(∑

k′

V B
k′ ⊗ V B∗

k′

)
C, (73)

respectively.
The matrix (72) can be expressed in terms of semigroup matrices LA and

LB as follows:
LpU = C

(
LA ⊗ LB

)
C, (74)

where
LA = 〈UA ⊗ UA∗〉, LB = 〈UB ⊗ UB∗〉. (75)

Analogously
LpV = C

(
〈V A ⊗ V A∗〉 ⊗ 〈V B ⊗ V B∗〉

)
C. (76)

The matrices LpV form 18-parameter semigroup.

6 Distributions as Vectors

The notion of entanglement can be better clarified using the concept of dis-
tance between the quantum states. In this section, we consider the notion of
distance between the quantum states in terms of vectors. First, let us discuss
the notion of distance between conventional probability distributions. This
notion is well known in the classical probability theory.

Given probability distribution P (k), k = 1, 2, . . .N , one can introduce

vector ~P in the form of column with components P1 = P (1), P2 = P (2), . . . ,
PN = P (N). The vector satisfies the condition

N∑

k=1

Pk = 1. (77)

The set of the vectors does not form a linear space but only a convex subset.
Nevertheless, in this set one can introduce distance between two distributions
using the vector intuition

D2 =
(
~P1 − ~P2

)2
=
∑

k

P1kP1k +
∑

k

P2kP2k − 2
∑

k

P1kP2k. (78)

One can use another identification of distribution with vectors.

20



Since all P (k) ≥ 0, one can introduce Pk =
√
P (k) as components of

vector ~P . The ~P can be thought as column with nonnegative components.
Then the distance between the two distributions takes the form

D2 =
(
~P1 − ~P2

)2
= 2 − 2

∑

k

√
P1(k)P2(k). (79)

Two different definitions (77) and (78) can be used for the notion of
distance between the distributions.

Let us discuss now the notion of distance between the quantum states
determined by density matrices. In the density-matrix space (in the set
of linear space of adjoint U(n) representation), one can introduce distances
analogously. The first case is

Tr (ρ1 − ρ2)
2 = D2 (80)

and the second case is

Tr (
√
ρ1 −

√
ρ2)

2 = D2. (81)

In fact, the distances introduced can be written naturally as norms of vectors
associated to density matrices

D2 = |~ρ1 − ~ρ2|2 (82)

and
D2 =

(
~(

√
ρ1) − ~(

√
ρ2)
)2
, (83)

respectively.
In the above expressions, we use scalar product of vectors ~ρ1 and ~ρ2 as

well as scalar products of vectors ~(
√
ρ

1
) and ~(

√
ρ

2
), respectively.

Both definitions immediately follow by identification of matrices either
ρ1 and ρ2 with vectors according to the map of the previous sections or
matrices

√
ρ1 and

√
ρ2 with vectors. Since the density matrices ρ1 and ρ2

have nonnegative eigenvalues, the matrices
√
ρ1 and

√
ρ2 are defined without

ambiguity. This means that the vectors ~(
√
ρ

1
) and ~(

√
ρ

2
) are also defined

without ambiguity.
One can easily see that the distance given as the norm of real vector is in-

variant of the orthogonal group including the improper transform, which are
discrete transforms like permutations of the vector components and changing
sign of the components. The norm of the vector is invariant with respect to
all these transforms. Thus, the invariance group of the norm contains the
standard local rotations of the orthogonal group and the discrete transforms.
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7 Invariance of Intrinsic Measure

Given the density matrix ρAB in the linear space equipped with bipartite
structure. Then the partial traces exist

ρA = TrB ρAB, ρB = TrA ρAB. (84)

The Hilbert–Schmidt distance between ρAB and ρA ⊗ ρB, i.e.,

e = Tr (ρAB − ρA ⊗ ρB)2 (85)

was considered to define the parameter e as intrinsic measure of the state
entanglement. It was not proved that this measure is invariant under local
group U(n1)×U(n2) transformations. The proof is straightforward. One uses
the structure of the tensor product in the form

Un1n2
= U(n1) ⊗ U(n2) →




U11V U12V . . . U1nV
U21V U22V . . . U2nV
. . . . . . . . . . . .
Un1V Un2V . . . UnnV


 , (86)

where Uik are matrix elements of the U(n1) group and V is the matrix of
U(n2) group.

Due to unitarity
U−1

n1n2
= U †

n1n2
(87)

and using the form of this matrix given by Eq. (86), one has

TrB

(
Un1n2

ρABU
†
n1n2

)
= ρ̃A = U(n1)ρAU

†(n1), (88)

TrA

(
Un1n2

ρABU
†
n1n2

)
= ρ̃B = V ρBV

†. (89)

This means that

Tr (ρAB − ρA ⊗ ρB)2 = Tr (ρ̃AB − ρ̃A ⊗ ρ̃B)2 . (90)

Thus the entanglement e is invariant under local transformations. One can
introduce another measure of entanglement, which is also invariant under
local transformations

ẽ =
∣∣∣ρ1/2

AB − trA ρ
1/2
AB trB ρ

1/2
AB

∣∣∣
2
.

Since we have shown that norm of a vector in adjoint representation of the
unitary group is invariant under action of the group, which is larger than the
local group, the measures of entanglement introduced are invariant under
action of local transformations.
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8 Separable Systems and Separability Crite-

rion

According to known definition, the system density matrix is called separable
(for composite system) if one has decomposition of the form

ρAB =
∑

k

pk

(
ρ

(k)
A ⊗ ρ

(k)
B

)
,

∑

k

pk = 1, 1 ≥ pk ≥ 0. (91)

The formula does not demand orthogonality of the density operators ρ
(k)
A and

ρ
(k)
B for different k. Since every density matrix is a convex set of pure density

matrices, one could demand that ρ
(k)
A and ρ

(k)
B be pure. This formula can be

interpreted in the context of random matrix representation. In fact, one has

ρAB = 〈ρA ⊗ ρB〉, (92)

where ρA and ρB are considered as random density matrices of the subsystems
A and B, respectively.

There are several criteria for the system to be separable. We suggest in the
next sections a new approach to the problem of separability and entanglement
based on the tomographic probability description of quantum states. The
states which cannot be represented in the form (91) by definition are called
entangled states [17]. Thus the states are entangled if in formula (91) at least
one coefficient (or more) pi is negative which means that the positive ones
can take values more than unity.

Let us discuss the condition for the system state to be separable. Accord-
ing to Peres criterion [20], the system is separable if partial transpose of the
matrix ρAB (91) gives the positive density matrix. This condition is neces-
sary but not sufficient. Let us discuss this condition within the framework
of positive-map matrix representation. On the example of spin-1/2 bipatite
system, we have shown that the map of density matrix onto its transpose can
be included in the matrix semigroup of matrices Ls. One should point out
that this map cannot be obtained by means of the averaging with all positive
probability distributions pk. On the other hand, it is obvious that generic
criterion, which contains the Peres one as a partial case, can be formulated
as follows.

Let us map the density matrix ρAB of a bipartite system onto vector ~ρAB.
Let us act on the vector ~ρAB by an arbitrary matrix, which represents the
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positive maps in subsystems A and B. Thus we get a new vector

~ρ
(p)
AB =

(
LA ⊗ LB

)
~ρAB. (93)

Let us construct the density matrix ρ
(p)
AB using inverse map of vectors onto

matrices. If the initial density matrix is separable, the new density matrix
ρ

(p)
AB must be positive (and separable).

In the case of bipartite spin-1/2 system, by choosing LA = 1 and LB

being matrix coinciding with the matrix gαβ, we obtain the Peres criterion
as a partial case of the criterion of separability formulated above. Thus, our
criterion means that separable matrix keeps positivity under action of tensor
product of two semigroups. In the case of bipartite spin-1/2 system, the
16×16 matrix of the semigroup tensor product is determined by 18 parame-
ters.

Let us discuss the positive map (54) which is determined by the semigroup
for n-dimensional system. It can be realized as follows.

The n×n Hermitian generic matrix ρ is mapped onto complex n2-vector
~ρ by the map described above. The complex vector ~ρ is mapped by means
of multiplying by the unitary matrix S onto real vector ~ρr, i.e.,

~ρr = S~ρ, ~ρ = S−1~ρr. (94)

The matrix S is composed from n unity blocks and the blocks

S
(jk)
b =

1√
2

(
1 1
−i i

)
, (95)

where j corresponds to column and k corresponds to row in the matrix ρ.
For example, in the case n = 2, one has the vector ~ρr of the form

~ρr =




ρ11√
2Re ρ12√
2 Im ρ12

ρ22



. (96)

One has the equalities
~ρ2

r = ~ρ2 = Tr ρ2. (97)

The semigroup preserves the trace of the density matrix. Also the discrete
transforms, which are described by the matrix with diagonal matrix blocks
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of the form

D =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 , (98)

preserve positivity of the density matrix.
For the spin case, the semigroup contains 12 parameters.
Thus, the direct product of the semigroup (54) and the discrete group

of the transform D is the positive map preserving positivity of the density
operator.

9 Symbols, Star-Product and Entanglement

In this section, we describe how entangled states and separable states can
be considered using properties of symbols and density operators of different
kinds, e.g., from the viewpoint of Wigner function or tomogram. The general
scheme of constructing the operator symbols is as follows [15].

Given a Hilbert space H and an operator Â acting on this space, let us
suppose that we have a set of operators Û(x) acting on H , a n-dimensional
vector x = (x1, x2, . . . , xn) labels the particular operator in the set. We
construct the c-number function fÂ(x) (we call it the symbol of operator Â)
using the definition

fÂ(x) = Tr
[
ÂÛ(x)

]
. (99)

Let us suppose that relation (99) has an inverse, i.e., there exists a set of
operators D̂(x) acting on the Hilbert space such that

Â =
∫
fÂ(x)D̂(x) dx, Tr Â =

∫
fÂ(x) Tr D̂(x) dx. (100)

Then, we will consider relations (99) and (100) as relations determining the
invertible map from the operator Â onto function fÂ(x). Multiplying both

sides of Eq. (2) by the operator Û(x′) and taking trace, one has the consis-
tency condition satisfied for the operators Û(x′) and D̂(x)

Tr
[
Û(x′)D̂(x)

]
= δ (x′ − x) . (101)

The consistency condition (101) follows from the relation

fÂ(x) =
∫
K(x,x′)fÂ(x′) dx′. (102)
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The kernel in (102) is equal to the standard Dirac delta-function, if the set
of functions fÂ(x) is a complete set.

In fact, we could consider relations of the form

Â→ fÂ(x) (103)

and
fÂ(x) → Â. (104)

The most important property of the map is the existence of associative prod-
uct (star-product) of functions.

We introduce the product (star-product) of two functions fÂ(x) and fB̂(x)

corresponding to two operators Â and B̂ by the relationships

fÂB̂(x) = fÂ(x) ∗ fB̂(x) := Tr
[
ÂB̂Û(x)

]
. (105)

Since the standard product of operators on a Hilbert space is an associative
product, i.e., Â(B̂Ĉ) = (ÂB̂)Ĉ, it is obvious that formula (105) defines an
associative product for the functions fÂ(x), i.e.,

fÂ(x) ∗
(
fB̂(x) ∗ fĈ(x)

)
=
(
fÂ(x) ∗ fB̂(x)

)
∗ fĈ(x). (106)

Using formulas (99) and (100), one can write down a composition rule
for two symbols fÂ(x) and fB̂(x), which determines star-product of these
symbols. The composition rule is described by the formula

fÂ(x) ∗ fB̂(x) =
∫
fÂ(x′′)fB̂(x′)K(x′′,x′,x) dx′ dx′′. (107)

The kernel in the integral of (107) is determined by the trace of product of
the basic operators, which we use to construct the map

K(x′′,x′,x) = Tr
[
D̂(x′′)D̂(x′)Û(x)

]
. (108)

Formula (108) can be extended to the case of star-product of N symbols of
operators Â1, Â2, . . . , ÂN . Thus one has

WÂ1
(x) ∗WÂ2

(x) ∗ · · · ∗WÂN
(x) =

∫
WÂ1

(x1)WÂ2
(x2) · · ·WÂN

(xN)

×K (x1,x2, . . . ,xN ,x) dx1 dx2 · · · dxN ,(109)
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where the kernel has the form

K (x1,x2, . . . ,xN ,x) = Tr
[
D̂(x1)D̂(x2) · · · D̂(xN )Û(x)

]
. (110)

Since this kernel determines the associative star-product of N symbols, it
can be expressed in terms of the kernel of star-product of two symbols. The
trace of an operator ÂN is determined by the kernel as follows:

Tr ÂN =
∫
WÂ(x1)WÂ(x2) · · ·WÂ(xN)

×Tr
[
D̂(x1)D̂(x2) · · · D̂(xN)

]
dx1 dx2 · · · dxN . (111)

When the operator Â is a density operator of a quantum state, formula (111)
determines the generalized purity parameter of the state. When the operator
Â is equal to the product of two density operators and N = 1, formula (111)
determines the fidelity.

10 Weyl Symbol

In this section, we will consider a known example of the Heisenberg–Weyl-
group representation. As operator Û(x), we take the Fourier transform of
displacement operator D̂(ξ)

Û(x) =
∫

exp

(
x1 + ix2√

2
ξ∗ − x1 − ix2√

2
ξ

)
D̂(ξ)π−1 d2ξ, (112)

where ξ is a complex number, ξ = ξ1 + iξ2, and the vector x = (x1, x2) can
be considered as x = (q, p), with q and p being the position and momentum.
One can see that

Tr Û(x) = 1.

The displacement operator may be expressed through the creation and an-
nihilation operators in the form

D̂(ξ) = exp(ξâ† − ξ∗â). (113)

The displacement operator is used to create coherent states from the vacuum
state. For the creation and annihilation operators, one has

â =
q̂ + ip̂√

2
, â† =

q̂ − ip̂√
2
, (114)
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where q̂ and p̂may be thought as the coordinate and momentum operators for
the carrier space of an harmonic oscillator. The operator â and its Hermitian
conjugate â† satisfy the boson commutation relation

[â, â†] = 1̂.

Let us introduce the Weyl symbol for an arbitrary operator Â using the
definition given by Eq. (99)

WÂ(x) = Tr
[
ÂÛ(x)

]
. (115)

The form of operator Û(x) is given by Eq. (112). One can check that Weyl
symbols of the identity operator 1̂, position operator q̂ and momentum op-
erator p̂ have the form

W
1̂
(q, p) = 1, Wq̂(q, p) = q, Wp̂(q, p) = p. (116)

The inverse transform, which expresses the operator Â through its Weyl
symbol, is of the form

Â =
∫
WÂ(x)Û(x)

dx

2π
. (117)

One can check that for W
1̂
(x) = 1, formula (117) reproduces the identity

operator, i.e., ∫
Û(x)

dx

2π
= 1̂. (118)

Comparing (117) with (100), one can see that the operator D̂(x) is connected
with Û(x) by the relationship

D̂(x) =
Û(x)

2π
. (119)

Let us consider now star-product of two Weyl symbols (it is usually called
Moyal star-product). If one takes two operators Â1 and Â2, which are ex-
pressed through Weyl symbols by formulas

Â1 =
∫
WÂ1

(x′)Û(x′)
dx′

2π
, Â2 =

∫
WÂ2

(x′′)Û(x′′)
dx′′

2π
, (120)

with vectors
x′ = (x′1, x

′
2) and x′′ = (x′′1, x

′′
2),
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the operator Â (product of operators Â1 and Â2) has Weyl symbol given by

WÂ(x) = Tr
[
ÂÛ(x)

]
=

1

4π5

∫
dx′ dx′′ d2ξ d2ξ′ d2ξ′′WÂ1

(x′)WÂ2
(x′′)

× exp
{
2−1/2

[
(ξ′1 − iξ′2)(x

′
1 + ix′2) − (ξ′1 + iξ′2)(x

′
1 − ix′2)

+(ξ′′1 − iξ′′2 )(x′′1 + ix′′2) − (ξ′′1 + iξ′′2 )(x′′1 − ix′′2) + (ξ1 − iξ2)(x1 + ix2)

−(ξ1 + iξ2)(x1 − ix2)
]}

Tr
[
D̂(ξ′)D̂(ξ′′)D̂(ξ)

]
, (121)

where ξ = ξ1 + iξ2, with ξ′ = ξ′1 + iξ′2 and ξ′′ = ξ′′1 + iξ′′2 .
Using properties of displacement operators

D̂(ξ′)D̂(ξ′′) = D̂(ξ′+ξ′′) exp
(
i Im (ξ′ξ′′∗)

)
, Tr

[
D̂(ξ)

]
= πδ2(ξ), (122)

one can get known explicit form of the kernel, which determines star-product
of Weyl symbols.Thus we described the construction of Weyl symbols, includ-
ing Wigner function, by means of the star-product formalism.

11 Tomographic Representation

In this section, we will consider an example of the probability representation
of quantum mechanics [21]. In the probability representation of quantum me-
chanics, the state is described by a family of probabilities [22–24]. According
to the general scheme, one can introduce for the operator Â the function
fÂ(x), where

x = (x1, x2, x3) ≡ (X,µ, ν),

which we denote here as wÂ(X,µ, ν) depending on the position X and the
parameters µ and ν of the reference frame

wÂ(X,µ, ν) = Tr
[
ÂÛ(x)

]
. (123)

We call the function wÂ(X,µ, ν) the tomographic symbol of the operator Â.

The operator Û(x) is given by

Û(x) ≡ Û(X,µ, ν) = exp

(
iλ

2
(q̂p̂+ p̂q̂)

)
exp

(
iθ

2

(
q̂2 + p̂2

))
| X〉〈X |

× exp

(
−iθ

2

(
q̂2 + p̂2

))
exp

(
−iλ

2
(q̂p̂+ p̂q̂)

)

= Ûµν | X〉〈X | Û †
µν . (124)
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The angle θ and parameter λ in terms of the reference frame parameters are
given by

µ = eλ cos θ, ν = e−λ sin θ.

Moreover, q̂ and p̂ are position and momentum operators

q̂ | X〉 = X | X〉 (125)

and | X〉〈X | is the projection density. One has the canonical transform of
quadratures

X̂ = Ûµν q̂ Û
†
µν = µq̂ + νp̂,

P̂ = Ûµν p̂ Û
†
µν =

1 +
√

1 − 4µ2ν2

2µ
p̂− 1 −

√
1 − 4µ2ν2

2ν
q̂.

Using the approach of [25] one can obtain the relationship

Û(X,µ, ν) = δ(X − µq̂ − νp̂).

In the case we are considering, the inverse transform determining the operator
in terms of tomogram [see Eq. (100)] will be of the form

Â =
∫
wÂ(X,µ, ν)D̂(X,µ, ν) dX dµ dν, (126)

where

D̂(x) ≡ D̂(X,µ, ν) =
1

2π
exp (iX − iνp̂− iµq̂) , (127)

i.e.,

D̂(X,µ, ν) =
1

2π
exp(iX)D̂

(
ξ(µ, ν)

)
. (128)

The unitary displacement operator in (128) reads now

D̂
(
ξ(µ, ν)

)
= exp

(
ξ(µ, ν)â+ − ξ∗(µ, ν)â

)
,

where ξ(µ, ν) = ξ1+iξ2, with ξ1 = Re (ξ) = ν/
√

2 and ξ2 = Im (ξ) = −µ/
√

2.
Trace of the above operator which provides the kernel determining the

trace of an arbitrary operator in the tomographic representation reads

Tr D̂(x) = eiXδ(µ)δ(ν).
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The function wÂ(X,µ, ν) satisfies the relation

wÂ (λX, λµ, λν) =
1

|λ| wÂ(X,µ, ν). (129)

This means that the tomographic symbols of operators are homogeneous
functions of three variables.

If one takes two operators Â1 and Â2, which are expressed through the
corresponding functions by the formulas

Â1 =
∫
wÂ1

(X ′, µ′, ν ′)D̂(X ′, µ′, ν ′) dX ′ dµ′ dν ′,

(130)

Â2 =
∫
wÂ2

(X ′′, µ′′, ν ′′)D̂(X ′′, µ′′, ν ′′)dX ′′ dµ′′ dν ′′,

and Â denotes the product of Â1 and Â2, then the function wÂ(X,µ, ν), which

corresponds to Â, is star-product of functions wÂ1
(X,µ, ν) and wÂ2

(X,µ, ν).
Thus this product

wÂ(X,µ, ν) = wÂ1
(X,µ, ν) ∗ wÂ2

(X,µ, ν)

reads
wÂ(X,µ, ν) =

∫
wÂ1

(x′′)wÂ2
(x′)K(x′′,x′,x) dx′′ dx′, (131)

with kernel given by

K(x′′,x′,x) = Tr
[
D̂(X ′′, µ′′, ν ′′)D̂(X ′, µ′, ν ′)Û(X,µ, ν)

]
. (132)

The explicit form of the kernel reads

K(X1, µ1, ν1, X2, µ2, ν2, Xµ, ν)

=
δ
(
µ(ν1 + ν2) − ν(µ1 + µ2)

)

4π2
exp

(
i

2

{
(ν1µ2 − ν2µ1) + 2X1 + 2X2

−
[
1 −

√
1 − 4µ2ν2

ν
(ν1 + ν2) +

1 +
√

1 − 4ν2µ2

µ
(µ1 + µ2)

]
X

})
.(133)

The kernel for star-product of N operators is

K (X1, µ1, ν1, X2, µ2, ν2, . . . , XN , µN , νN , X, µ, ν)

=
δ
(
µ
∑N

j=1 νj − ν
∑N

j=1 µj

)

(2π)N
exp



 i
2





N∑

k<j=1

(νkµj − νjµk) + 2
N∑

j=1

Xj

−


1 −
√

1 − 4µ2ν2

ν




N∑

j=1

νj



+
1 +

√
1 − 4µ2ν2

µ




N∑

j=1

µj







X







 .(134)
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The above kernel can be expressed in terms of the kernel determining star-
product of two operators.

12 Multipartite Systems

Let us assume that for multimode (N -mode) system one has

Û(~y) =
N∏

k=1

Û
(
~x(k)

)
, (135)

D̂(~y) =
N∏

k=1

D̂
(
~x(k)

)
, (136)

where
~y =

(
x

(1)
1 , x

(1)
2 , . . . , x(1)

m , x
(2)
1 , x

(2)
2 , . . . , x(N)

m

)
. (137)

This means that symbol of density operator of the composite system reads

fρ(~y) = Tr
[
ρ̂

N∏

k=1

Û(~x(k))
]
. (138)

The inverse transform reads

ρ̂ =
∫
d~y fρ(~y)

N∏

k=1

D̂(~x(k)), d~y =
N∏

k=1

m∏

s=1

dx(k)
s . (139)

If the symbol corresponds to a system Wigner function W (~q, ~p), the operator
Û(~x(k)), where ~x(k) = (qk, pk), was discussed above. It has the form

Û(~x(k)) = D(αk)(−1)a†

k
akD(−αk), (140)

where

αk =
1√
2

(qk+ipk), D(αk) = eαka†
k
−α∗

k
ak , [ak, am] = 0, [ak, a

†
m] = δkm.

(141)
The operator

D̂(~xk) =
1

π
Û(~x(k)). (142)

The tomographic symbols are also defined by analogous formulas with specific
~x and operators Û(~xk), D̂(~xk).
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Now we formulate properties of symbols in the case of entangled and
separable states, respectively.

Given a composite m-partite system with density operator ρ̂.
If the nonnegative operator can be presented in the form of ‘probabilistic

sum’
ρ̂ =

∑

~z

P(~z)ρ̂
(a1)
~z ⊗ ρ̂

(a2)
~z ⊗ · · · ⊗ ρ̂

(am)
~z , (143)

with positive probability distribution function P(~z), where components of ~z
can be either discrete or continuous, we call the state ‘separable state’. This
means that the symbol of the state can be presented in the form

fρ(~y) =
∑

~z

P(~z)
m∏

k=1

f (ak)
ρ (~xk, ~z). (144)

For example, the Wigner function of separable state of bipartite system has
the form

W (q1, q2, p1, p2) =
∑

~z

P(~z)W (1)(q1, p1, ~z)W
(2)(q2, p2, ~z). (145)

Analogous formula can be written for the tomogram of separable state.

13 Spin Tomography

Below we concentrate on bipartite spin systems.
The tomographic probability (spin tomogram) completely determines the

density matrix of a spin state. It has been introduced in [10, 11, 15].
The tomographic probability for spin-j state is defined via the density

matrix by the formula

〈jm | D†(g)ρD(g) | jm〉 = W (j)(m,~0), m = −j,−j + 1, . . . , j, (146)

where D(g) is the matrix of SU(2)-group representation depending on the
group element g determined by three Euler angles. The set of the tomogram
values for each ~0 is an overcomplete set. We need only finite number of
independent locations which will give information on the density matrix of
the spin state. Due to structure of the formula, there are only two Euler
angles involved. They are combined into the unit vector

~0 = (cosφ sinϑ, sin φ sinϑ, cos ϑ). (147)
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This is the map from S3 to S2.
The physical meaning of the probability W (m,~0) is the following.
It is the probability to find, in the state with the density matrix ρ, the spin

projection on direction ~0 equal to m. For bipartite system, the tomogram is
defined as follows:

W (m1m2
~01
~02) = 〈j1m1j2m2 | D†(g1)D

†(g2)ρD(g1)D(g2) | j1m1j2m2〉.
(148)

It completely determines the density matrix ρ. It has the meaning of joint
probability distribution for spin j1 and j2 projectionsm1 andm2 on directions
~01 and ~02. Since the map ρ ⇀↽ W is linear and invertible, the definition of
separable system can be rewritten in the following form of decomposition of
the joint probability into sum of products (of factorized probabilities):

W (m1m2
~01
~02) =

∑

k

pkW
(k)(m1

~01)W̃
(k)(m2

~02). (149)

This form can be considered to formulate the criterion of separability of the
two spin state.

The state is separable iff the tomogram can be written in the form (149)
with

∑
k pk = 1, pk ≥ 0. It seems that we simply use the definition but,

in fact, we cast the problem of separability into the form of property of
the positive joint probability distribution of two random variables. This
is area of probability theory and one can use results and theorems on the
joint probability distributions. If one does not use any theorem, one has to
study solvability of relation (149) considered as the equation for unknown
probability distribution pk and unknown probability functions W (k)(m1

~01)
and W (k)(m2

~02).

14 Example of Spin-1/2 Bipartite System

For spin-1/2 state, the generic density matrix can be presented in the form

ρ =
1

2
(1 + ~σ · ~n) , ~n = (n1, n2, n3), (150)

where ~σ are Pauli matrices and ~n2 ≤ 1, with vector ~n for a pure state being
unit vector. This decomposition means that we use as basis in 4-dimensional
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vector space the vectors corresponding to Pauli matrices and unit matrix,
i.e.,

~σ1 =




0
1
1
0


 , ~σ2 =




0
−i
i
0


 , ~σ3 =




1
0
0
−1


 ,

~1 =




1
0
0
1


 . (151)

The density matrix vector

~ρ =




ρ11

ρ12

ρ21

ρ22


 (152)

is decomposed in terms of the basis vectors

~ρ =
1

2

(
~1 + n1~σ1 + n2~σ2 + n3~σ3

)
. (153)

It means that tomogram of spin-1/2 state can be given in the form

W
(

1

2
,~0
)

=

(
1

2
+
~n ·~0

2

)
, W

(
−1

2
,~0
)

=

(
1

2
− ~n ·~0

2

)
. (154)

Inserting these probability values into relation (149) for each value of k we
get the relationships:

W
(

1

2
,
1

2
,~01,~02

)
=

1

4
+

1

2

(
∑

k

pk~nk

)
·~01+

1

2

(
∑

k

pk~n
∗
k

)
·~02+

∑

k

pk

(
~nk ·~01

) (
~n8

k ·~02

)
,

(155)

W
(

1

2
,−1

2
,~01,~02

)
=

1

4
+

1

2

(
∑

k

pk~nk

)
·~01−

1

2

(
∑

k

pk~n
∗
k

)
·~02−

∑

k

pk

(
~nk ·~01

) (
~n∗

k ·~02

)
,

(156)

W
(
−1

2
,
1

2
,~01,~02

)
=

1

4
−1

2

(
∑

k

pk~nk

)
·~01+

1

2

(
∑

k

pk~n
∗
k

)
·~02−

∑

k

pk

(
~nk ·~01

) (
~n∗

k ·~02

)
.

(157)
One has the normalization property

1/2∑

m1, m2=−1/2

W (m1m2
~01
~02) = 1. (158)
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One easily gets

W
(

1

2
,
1

2
,~01,~02

)
+W

(
1

2
,−1

2
,~01,~02

)
=

1

2
+

(
∑

k

pk~nk

)
·~01. (159)

This means that derivative in ~01 on the left-hand side gives

∂

∂~01

[
W
(

1

2
,
1

2
,~01,~02

)
+W

(
1

2
,−1

2
,~01,~02

)]
=

(
∑

k

pk~nk

)
. (160)

Analogously

∂

∂~02

[
W
(

1

2
,
1

2
,~01,~02

)
+W

(
−1

2
,
1

2
,~01,~02

)]
=

(
∑

k

pk~n
(⋆)
k

)
. (161)

Taking the sum of (156) and (157)) one sees that

1

2

∂

∂~0i

∂

∂~0j

[
W
(

1

2
,−1

2
,~01,~02

)
+W

(
−1

2
,
1

2
,~01,~02

)]
= −

∑

k

pk(nk)i(n
(⋆)
k )j.

(162)
Since we look for solution where pk ≥ 0, we can introduce

~Nk =
√
pk~nk, ~N

(⋆)
k =

√
pk~n

(⋆)
k . (163)

This means that the derivative in (162) can be presented as tensor

− Tij =
∑

k

(Nk)i(N
(⋆)
k )j . (164)

One has ∑

k

pk~nk =
∑

k

√
pk
~Nk. (165)

∑

k

pk~n
⋆
k =

∑

k

√
pk
~N

(⋆)
k . (166)

The conditions of solvability of the obtained equations is a criterion for sep-
arability or entanglement of bipartite quantum spin state.

For Werner state [26] with the density matrix

ρAB =




(1 + p)/4 0 0 p/2
0 (1 − p)/4 0 0
0 0 (1 − p)/4 0
p/2 0 0 (1 + p)/4


 , ρA = ρB =

1

2

(
1 0
0 1

)
,

(167)
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one can reconstruct known results that for p < 1/3 the state is separable
and for p > 1/3 the state is entangled, since in the decomposition of density
operator in the form (149) the state

ρ0 =
1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (168)

has the weight p0 = (1 − 3p)/4.
For p > 1/3, the coefficient po becomes negative.
There is some extension of the presented consideration.
Let us consider the state with the density matrix (nonnegative and Her-

mitian)

ρ =




R11 0 0 R12

0 ρ11 ρ12 0
0 ρ21 ρ22 0
R21 0 0 R22


 , Tr ρ = 1. (169)

Using procedure of mapping the matrix onto vector ~ρ and applying to the
vector nonlocal linear transform corresponding to Peres partial transpose and
making inverse map of the transformed vector onto the matrix, we obtain

ρm =




R11 0 0 ρ12

0 ρ11 R12 0
0 R21 ρ22 0
ρ21 0 0 R22


 . (170)

In the case of separable matrix ρ, the matrix ρm is nonnegative matrix.
Calculating eigenvalues of ρm and applying condition of their positivity, we
get

R11R22 ≥ |ρ12|2, ρ11ρ22 ≥ |R12|2. (171)

Violation of these inequalities gives a signal that ρ is entangled. For Werner
state (167), Eq. (171) means

1 + p > 0, 1 − p > 2p, (172)

which recovers the condition of separability p < 1/3 mentioned above.
The joint probability distribution (148) of separable state is positive af-

ter making the local and nonlocal (Peres-like) transforms connected with
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positive map semigroup. But for entangled state, function (148) can take
negative values after making this map in the function. This is a criterion of
entanglement in terms of tomogram of the state of multiparticle system.

15 Dynamical Map and Purification

In this section, we consider connection of positive maps with purification
procedure. In fact, formula

ρ→ ρ′ =
∑

k

pkUkρU
†
k , (173)

where Uk are unitary operators, can be considered in the form

ρ→ ρ′ =
∑

k

pkρk, pk ≥ 0,
∑

k

pk = 1. (174)

Here the density operators ρk read

ρk = UkρU
†
k . (175)

This form is the form of probabilistic addition. This mixture of density
operators can be purified

ρ′ → ρ′′ = N



∑

kj

√
pkpj

ρkP0ρj√
Tr ρkP0ρjP0


 , (176)

where P0 is a fiducial projector and

N−1 = Tr



∑

kj

√
pkpj

ρkP0ρj√
Tr ρkP0ρjP0


 . (177)

The map (173) could be interpreted as the evolution in time of the initial
matrix ρ0 considering unitary operators Uk(t) depending on time. Thus one
has

ρ0 → ρ(t) =
∑

k

pkUk(t)ρ0U
†
k(t). (178)

In this case, the purification procedure provides the dynamical map of a pure
state

| ψ0〉〈ψ0 |→| ψ(t)〉〈ψ(t) |, (179)
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where | ψ(t)〉 obeys to a nonlinear equation and, in the general case, this
equation is not differential equation in time variable like the Schrödinger
equation.

For a specific case, the evolution (178) can be described by semigroup.
The density matrix (178) obeys to first-order differential equation in time for
this case [27–29].

The reason why there is no differential equation in time for generic case
is due to the absence of the property

ρij(t2) =
∑

mn

Kmn
ij (t2, t1)ρmn(t1), (180)

where the kernel of evolution operator satisfies

Kmn
ij (t3, t2)K

pq
mn(t2, t1) = Kpg

ij (t3, t1). (181)

It means that trajectory (curve) is not determined by differential equation
in time.

Thus via purification procedure and dynamical map of the density matrix
we get the dynamical map of a pure state (nonlinear dynamical map). This
map can be used in nonlinear models of quantum motion.

16 Density Matrix and Real Quadratic Forms

It is convenient to associate the Hermitian nonnegative n×n density ma-
trix ρ with real quadratic form determined by the real matrix D using the
relationships

r =
ρ+ ρ∗

2
, iR =

ρ− ρ∗

2
, rt = r, Rt = −R, (182)

and

D =

(
r R
Rt r

)
. (183)

The quadratic form is the scalar function (homogeneous polynomial of second
order)

f
(
~x, ~y, r, R

)
=
(
~x, ~y

)
D

(
~x
~y

)
≥ 0. (184)

Nonnegativity of f
(
~x, ~y, r, R

)
takes place for all nonnegative Hermitian ma-

trices ρ.
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In fact, for complex vectors,

~z = ~x+ i~y, (185)

one has
~z∗ρ~z = f

(
~x, ~y, r, R

)
. (186)

All real transforms of the form

D → D′ = ADAT (187)

keep the quadratic form nonnegative.
Let us consider the real 2n×2n matrix A given in block form

A =

(
a b
c d

)
, (188)

where a, b, c, and d are real n×n matrices.
If the matrix (187) has the form

D′ =

(
r′ R′

R′t r′

)
, (189)

one has the relationships:

arat + bRtat + aRbt + brbt = r′, (190)

crct + dRtct + cRdt + drdt = r′t, (191)

arct + bRtct + aRdt + brdt = R′, (192)

crat + dRtat + cRbt + drbt = R′t. (193)

Also R′t = −R′, r′t = r′.
For the case

b = c = 0, (194)

one has possible solutions
a = d (195)

and
a = −d. (196)

Solution (196) for a = 1 describes a Peres-like transposition of the matrix ρ.
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For the case a = d = 0, one has possible solutions

b = c (197)

and
b = −c. (198)

In the case (195), one has

r′ = arat, R′ = aRat, (199)

r′ + iR′ = a(r + iR)at. (200)

In the case (196), one has

r′ = arat, R′ = −aRat, (201)

r′ + iR′ = a(r − iR)at. (202)

Thus for block diagonal matrices A the possible transforms of the initial
density matrix matrix ρ have the form

ρ→ ρ(±)
a = a

{
ρ
ρt

}
at. (203)

In the vector form ρ↔ ~ρ, the transform (203) is described by superoperators

L±
a =

{
a⊗ a

(a⊗ a)Lt . (204)

Obviously one can apply the averaging procedure to get the matrix 〈a ⊗
a〉. It is a partial case of the general transform 〈v ⊗ v〉 for real v. Here
superpoperator Lt makes from the vector ~ρ ↔ ρ the vector ~ρt ↔ ρt, where
ρt is transposed density matrix ρ.

The superoperator Lt in the case n = 2 is described by the matrix gαβ.
The solutions (197) and (198) provide analogous transforms (203) and (204)
with replacement a→ b.

For n = 2, the choice a = σ1 gives

ρ→ σ1ρ
tσ1 = ρt, (205)

which is exactly Peres transpose transform.
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For n = 3, the choice

a =




1 0 0
0 −1 0
0 0 −1


 (206)

provides two transforms of the Hermitian density matrix

ρ =



ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


→ ρ′ =




ρ11 ρ12 −ρ13

ρ21 ρ22 −ρ23

−ρ31 −ρ32 ρ33


 (207)

and

ρ→ ρ′′ =




ρ11 ρ21 −ρ31

ρ12 ρ22 −ρ32

−ρ13 −ρ23 ρ33


 . (208)

Obviously, the unitary transform u of the form

ρ→ uρu†

does not change the nonnegative eigenvalues of the density operator but this
transform differs from the transforms discussed above, e.g., if |det a| 6= 1, the
above transforms do not preserve the determinant of the density matrix.

The given construction can provide also noncompletely positive map. For
example, if the transform of Hermitian nonnegative 3×3 matrix ρjk is de-
scribed by the formula

ρjk → ρjk

(
cosh2 θ cos(θj − θk) − sinh2 θδjk

)

(there is no sum over j, k), it corresponds to applying to vector ~ρ the matrix
〈a ⊗ a〉 with real matrices a. The formula can be used also for arbitrary
integer n. But averaging is done using quasidistribution (not the probability
distribution). This means that in sum

∑
k εkak⊗ak the numbers εk take both

positive and negative values ±1. It is another example of noncompletely
positive map. The example of Peres transpose transform discussed in the
previous sections for the case n = 2 belongs also to the case of positive but
not completely positive maps.
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17 Tomogram of the Group U(n)

In order to formulate a criterion of separability for a bipartite spin system
with spin j1 and j2, we introduce the tomogram w(~l, ~m, g(n)) for the group
U(n), where

n = n1n2, n1 = 2j1 + 1, n2 = 2j2 + 1,

and g(n) are parameters of the group element. Vectors ~l and ~m label a basis
| ~l, ~m〉 of the fundamental representation of the group U(n). For example,
since this representation is irreducible, being reduced to representation of
U(n1) ⊗ U(n2)-subgroup of the group U(n), the basis can be chosen as the
product of basis vectors:

| j1, m1〉 | j2, m2〉 =| j1, j2, m1, m2〉. (209)

Due to irreducibility of this representation of the group U(n) and its sub-

group, there exists a unitary transform u
~l~m
j1j2m1m2

| ~l, ~m〉 such that

| j1, j2, m1, m2〉 =
∑

~l ~m

u
~l~m
j1j2m1m2

| ~l, ~m〉, (210)

| ~l~m〉 =
∑

m1m2

(u−1)
~l~m
j1j2m1m2

| jl, j2, m1, m2〉. (211)

One can define the U(n)-tomogram for a Hermitian nonnegative n×n density
matrix ρ, which belongs to Lie algebra of the group U(n), by a generic
formula:

w(~l, ~m, g(n)) = 〈~l, ~m | U †(g(n))ρU(g(n)) | ~l, ~m〉. (212)

Formula (212) defines the tomogram in basis | ~l, ~m〉.
Now let us define the U(n)-tomogram using basis | j1, j2, m1, m2〉, i.e.,

w(j1,j2)(m1, m2, g
(n)) = 〈j1, j2, m1, m2 | U †(g(n))ρU(g(n)) | j1, j2, m1, m2〉.

(213)
This tomogram is spin-tomogram [13] for g(n) ∈ U(2)⊗U(2) subgroup of the
group U(n). Properties of this tomogram follow from its meaning to be joint
probability distribution of two random spin projections m1, m2 depending on
g(n) parameters.

One has normalization condition
∑

m1,m2

w(j1,j2)(m1, m2, g
(n)) = 1. (214)
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Also all the probabilities are nonnegative, i.e.,

w(j1,j2)(ml, m2, g
(n)) ≥ 0. (215)

Due to this, one has
∑

m1,m2

|w(j1,j2)(ml, m2, g
(n))| = 1. (216)

For spin-tomogram,
g(n) →

(
~O1, ~O2

)
(217)

and
w(j1,j2)(ml, m2, g

(n)) → w(m1, m2, ~O1, ~O2). (218)

The separability and entanglement condition discussed in the previous
section for bipartite spin-tomogram can be considered also from the viewpoint
of the properties of U(n)-tomogram. If the two-spin n×n density matrix ρ
is separable, it keeps to be separable under action of generic positive map of
the subsystem density matrices. This map can be described as follows.

Let ρ to be mapped onto vector ~ρ with n2 components. The components
are simply ordered rows of the matrix ρ, i.e.,

~ρ =
(
ρ11, ρ12, . . . , ρ1n, ρ21, ρ22, . . . , ρnn,

)
. (219)

The n2×n2 matrix L is taken in the form

L =
∑

s

psL
(j1)
s ⊗ L(j2)

s , ps ≥ 0,
∑

s

ps = 1, (220)

where n1×n1 matrix L(j1)
s and n2×n2 matrix L(j2)

s describe the positive maps
of density matrices of spin-j1 and spin-j2 subsystems, respectively. We map
vector ~ρ onto vector ~ρL

~ρL = L~ρ (221)

and construct the n2×n2 matrix ρL, which corresponds to the vector ~ρL.
Then we consider U(n)-tomogram of the matrix ρL, i.e.,

w
(j1,j2)
L (ml, m2, g

(n)) = 〈j1, j2, m1, m2 | U †(g(n)ρLU(g(n)) | j1, j2, ml, m2〉.
(222)

Using this tomogram we introduce the function

F (g(n), L) =
∑

m1,m2

∣∣∣w(j1,j2)
L (m1, m2, g

(n))
∣∣∣ . (223)
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For separable states, this function does not depend on the U(n)-group pa-
rameter g(n) and positive-map matrix elements of the matrix L.

For normalized density matrix ρ of the bipartite spin-system, this function
reads

F (g(n), L) = 1. (224)

For entangled states, this function depends on g(n) and L and it is not equal
to unity. This property can be chosen as necessary and sufficient condition
for separability of bipartite spin-states. In fact, the formulated approach can
be extended to multipartite systems too. The generalization is as follows.

Given N spin-systems with spins j1, j2, . . . , jN . Let us consider the group
U(n) with

n =
N∏

k=1

nk, nk = 2jk + 1. (225)

Let us introduce basis

| ~m〉 =
N∏

k=1

| jkmk〉 (226)

in the linear space of the fundamental representation of the group U(n). We
define now U(n)-tomogram of a state with n2×n2 matrix ρ:

wρ(~m, g
(n)) = 〈~m | U †(g(n))ρU(g(n)) | ~m〉. (227)

For positive Hermitian matrix ρ with Tr ρ = 1, we formulate a criterion of
separability as follows.

Let the map matrix L to be of the form

L =
∑

s

ps

( N∏

k=1

⊗L(k)
s

)
, ps ≥ 0,

∑

s

ps = 1, (228)

where L(k)
s is positive-map matrix of the density matrix of kth spin subsystem.

We construct the matrix ρL as in the case of bipartite system using the matrix
L. The function

F (g(n), L) =
∑

~m

|wρL
(~m, g(n))| ≥ 1 (229)

is equal to unity for separable state and it depends on the matrix L and U(n)-
parameters g(n) for entangled states. This criterion can be applied also in the
case of continuous variables, e.g., for Gaussian states of photons. Function
(229) can provide the measure of entanglement. Thus one can use maximum
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value (or a mean value) of this function as a characteristic of entanglement.
In fact, the separability criterion is related to the following positivity criterion
of finite or infinite matrix A. The matrix A is positive iff the sum of moduli
of diagonal matrix elements of the matrix UAU † is equal to positive trace of
the matrix A for arbitrary unitary matrix U .

18 Conclusions

To conclude, we formulated the notion of separability and entanglement as
a criterion for joint tomographic probability of subsystem states to be repre-
sented in the specific form of sum of products of tomograms of the subsys-
tems.

We have shown that the positive map of density matrix of multiparticle
system expressed in terms of superoperator acting in Lie algebra (adjoint
representation) of unitary group can be considered as a semigroup, which
contains all local unitary transforms acting in subspaces corresponding to
the subsystem states.

The set of separable states is shown to be invariant under action of this
group.

The intrinsic measure of entanglement is shown to be invariant under
action of the local group.

The formalism of vectors representing the matrices is convenient tool for
the consideration. We introduced unitary spin tomogram and formulated
necessary and sufficient condition of entanglement.
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