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Abstract

We show that the physical requirement of flux conservation can sub-
stitute for the usual matching conditions in point interactions. The study
covers an arbitrary superposition of § and ¢’ potentials on the real line and
can be easily applied to higher dimensions. Our procedure can be seen as a
physical interpretation of the deficiency index of some symmetric, but not
self-adjoint operators.

(1.)  Point interactions of the delta type have a long history in quantum physics [1]. In this
note we show that the conventional matching conditions for these potentials can be obtained
easily by enforcing the conservation of the flux across the discontinuity.

For one-dimensional quantum system with a point interaction at x = 0, the continuity

equation for the current 7 and the density p, namely p + div)= 0 becomes

j- =jle <0)=jy =jx>0) (1)

in a stationary state; the current is
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There are essentially four types of solutions to (1) and (2). If the flux is zero, we can

consider the point x = 0 as an infinite wall, and we have two families of total-reflection solutions,
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labeled by a (constant) phase shift, namely

ikx ia ,—ikx
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wa(:v) = { 0 >0 wg (I) = { e—ikr 4 piBoike 0~ () (3)

Notice that for generic a, 3, neither 1(z) nor ¢'(z) vanish at x = 0, but the flux does.

(2.)  For non-zero flux, we have another two-parameter family. Let us assume first

»(0—) = 1(0+) (4)

with perhaps discontinuous ¢’ from (1) and (2)

disc ¢’ (0)

¥(0) disc ¥* (0) — ¥*(0) discy)'(0) = 20)

=real const. = g (5)

where disc f(0) = f(0+) — f(0—).
Eq. (5) characterizes a §(x)— potential of strength g. In fact, for the scattering situation

Y <0) = ™ +bk)e ™ x> 0)=(1+ f(k)e*,

~ ~

Ol <0) = 1+ f(k)e ™, x> 0)=e ™ 4 b(k)e™ (6)

we obtain from (4) and (5) the well known [2] S-matrix

(14 fk) (k) 2k g 1
SW:( b(k) 1+f(k)>_< g 2zk>2¢k—g‘ (7)

The pole at k = —ig/2 represents a bound state (for g < 0) or an antibound state (for g > 0).

(3.) The fourth family of solutions is obtained by imposing the alternative conditions
disc(0) = gu’(0),  discy!(0) =0, (8)
in which case the S-matrix becomes

S(k) = ( —qrik 2 ) 2 —igik )

which is the scattering conventionally ascribed to a §'(z)— potential [3]; it also supports a single

bound state (for g; < 0) or antibound state (for g, > 0).
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Notice that the §(x)— potential is blind to the odd wave, f(k) = b(k) = 0_(k) = 0, and
that the §'(x)— potential proceeds exclusively in odd wave, f(k) = —b(k) = d.(k) = 0. Here,
d+(k) are the even/odd-phase shifts of the one-dimensional partial waves [4].

(4.) Our analysis allows logically for a superposition of 6(z)— and ¢'(z)— potentials which seem

to have been so far overlooked in the literature. Namely, define ®(x) and ¥(x) by
1
®(z) = cosap(z) + — sinay)(z) W(x) = —msin ayp(x) + cos ar)’(x) (10)

where m is a quantity with the dimensions of an inverse length. Then ® and ¥ can substitute

by ¢ and ¢’ in (2) provided they are real since

et ( cosa  +sina/m ) 1 (11)

—m sin « CoS «v

Now we define the general problem by
disc ®(0) =0 disc ¥(0) = g®(0) (12)

and solve for b, f,lA) and f of eq. (6); the calculation is straightforward, yielding

2ik g(cosa — Egin ) 1

g(m cosa — ik sin ov)? 2ik ) 2ik — g (cos2 a+ 7’;—22) sin®a’

S(k) = ( (13)

which interpolates naturally between the §(z) — potential, cosaw =1, sina = 0 eq. (7); and the,
d'(x) — potential, cosa =0, sina =1 eq. (9) with g = —g;.
(5.) Some features of formula (13) are worth comment.

~

1. f(k) = f(k), as demanded by time-reversal invariance[5]; however, b(k) # b(k) except in

the extreme cases § or ¢'.
2. Yp—o(x) = 0 except in the ¢'(z) case, when p—g(z) =1 .

3. S is, of course, unitary; its spectrum determines the eigenphase shifts

2ik + g(cosa + £ sin?a)

 exp20, = 1. 14
2ik—g(cos2oz+7lz—22sin2a) b =02 (14)

exp 2id; =
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This result is worth stressing: our family of interactions proceeds in a single partial wave,
the “orthogonal” one is not affected by the potential. This is in consonance with the
simplicity of the S-matrix, eq. (13): potentials which produce single-mode interaction
have particularly simple pole structure in the S-matrix[6]. This includes the delta po-
tential (only even wave), the delta prime (only odd waves), the “solitonic” potential
V(x) = —L({ 4+ 1) sech®x,£ = 0,1,2, ... (only forward scattering) and the one-dimensional

Coulomb potential (only odd-wave interaction).

. For sina # 0 (i.e., excluding the d(z) case), the two poles of S are given by

2
k= im? (1 + \J 1+ <%> cos? o sin’ a) /bsin2 o (15)

so there is always a bound state and an antibound state, for any sign of g, in the mixed

case 0 # a # m/2. We already remarked that in the pure cases (& = 0 or a = 7/2) there

is only one pole, meaning either a bound or antibound state.

. The eigenvector of the zero-phase shift is readily seen to be

ﬁ .
V:< 1= SN + COS ) (16)

tksin o« — mcos «

and depends only on tan «, say, not on g; in particular at low energies V ~ (_11), that is,
the odd wave is not affected, corresponding to the pure ¢ case; at high energies V' ~ (}),
characteristic of the ¢’ potential, with no force in the even channel. This is a sensible result,
because the scale dimension of the §(x) is 1, but that of our ¢’ is 3 (when dim [momentum)|

= +1). Note that the naive dimension of the ¢ would be 2, not 3!

. The reasons to call the matching conditions (8) a ¢’(x)— potential are obscure; in fact, for
the ¢ case one can derive conditions (4) and (5) by integrating the Schrodinger equation

across the discontinuity; this is not so for the §'(x).



Also, it is easy to show that a “regularized” ¢'(z) potential
o1
ghn% —{0(z+a)=0(z)} (17)
a— a

with renormalized coupling g, leads to the conventional §(z) (not §'(z)!) potential.[7]

The rationale to call conditions (8) a ¢'(z) is that, writing the Schrédinger equation
'+ e = g8 (x)p, " is proportional to ¢, hence ¢’ to § and 1 to the step function.
Hence, heuristically, ¢” and v’ are “continuous” at the singularity, but ¢ makes a jump,
i.e., conditions (8). Notice that the naive ¢’(x) would have dimension +2 so it would
potentially be scale invariant, whereas the ¢’ we are using has dimension three; in fact, no

trace of scale invariance remains in the ¢’ S-matrix, eq. (9).

. It is not difficult to extend these results to higher dimensions; we state only the d = 3

result.[1] The analogue of eq. (5) is now

1

u' Julop = const. = - (18)
where ¥(r) = u(r)/r and u(0) = 0; as
9(r) = ~ulr); (19)

Since u = Asin(r + dg), the “coupling constant” determines the phase shift by
kcot 69 = —1/a. (20)

In this case, a is called the scattering length. The d = 2 case has been the subject of some

recent papers[8] and we refer the reader to them.

. The rigorous treatment of the contact potentials entails the theory of extensions of sym-
metric, non-self-adjoint operators, which started with a paper of Fadeev and Berezin.[9]

But self-adjointness of the Hamiltonian implies unitarity of the evolution operators, and



also of the S-matrix, which, in turn, is guaranteed by flux conservation; so there is not
much surprise that the families of extensions of the kinetic energy operator D = —d?*/dx?
acting on R™ — {0} would coincide with the families of matching conditions, which we have

worked out in detail for the d = 1 case.[10]
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