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Abstract

We investigate the spin-statistics connection in arbitrary dimen-
sions for hermitian spinor or tensor quantum fields with a rotation-
ally invariant bilinear Lagrangian density. We use essentially the
same simple method as for space dimension D = 3. We find the
usual connection (tensors as bosons and spinors as fermions) for D =
8n + 3, 8n + 4, 8n + 5, but only bosons for spinors and tensors in
dimensions 8n ± 1 and 8n. In dimensions 4n + 2 the spinors may be
chosen as bosons or fermions.

The argument hinges on finding the identity representation of the
rotation group either on the symmetric or the antisymmetric part of
the square of the field representation.

1 Introduction

The spin-statistics connection is an essential ingredient in our description of
the world with quantized fields, which assures on one hand the existence of
macroscopic fields (like the radiation field), and on the other hand gives rise
through anticommuting fields (Pauli principle) to the valence electrons, the
chemical bonds etc., and therefore to the existence of forms and structures:

1Permanent address: Departamento de F́ısica Teórica. Universidad de Zaragoza. E-
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the Pauli principle is really the differentiating principle in Nature.

The connection asserts that the wavefunction of several identical particles
in D = 3 with integer spin remains unchanged under an arbitrary permu-
tation of the arguments, in which case bosons (Bose-Einstein statistics, BE)
obtains, whereas for half-integer spin the permuted wavefunction picks up
a minus sign whenever one performs a transposition of the order (or, more
generally, an odd sign permutation) (Fermi-Dirac statistics, FD). This trans-
lates in the usual way in the commutation (BE) or anticommutation (FD)
of fields at different space points.

With hindsight, we can say that historically the first case of such correla-
tion appeared in the statistical mechanics of Lichtquanten or photons (from
Planck 1900 to Einstein 1905, to Bose 1924). But the main application came
with the interpretation of the Pauli exclusion principle (1925) by Heisenberg
and by Dirac (1926) in terms of the (anti-)symmetry of the many particle
wavefunctions under transposition, and subsequent application to many elec-
tron atoms. This relation between spin and statistics is fundamental; it led
to the periodic system of chemical elements, peculiar intensity rules in band
spectra of homonuclear diatomic molecules, non-classical scattering of alpha
particles, or the Ehrenfest-Oppenheimer theorem [1] (1931) on the statis-
tics of compound systems, among the oldest applications, and more recently
to the selection rules for the decay of unstable particles e.g. positronium,
coherent boson states and the existence of the laser, superfluidity of helium
four (Kapitza 1938) and later superconductivity as coherent states of Cooper
pairs (BCS theory, 1957) and even superfluidity in helium three through con-
densation of pairs of atoms.2

There is more to the quantum states that mere rays. The wavefunction
is really a section on a vector bundle with base the space of rays (projec-
tive space), and a sign change after permutation on the arguments of the
wavefunction is allowed as long as the associated density matrix is invari-

2 The symmetry or antisymmetry of the wave functions obtains only in a quantum
field theory. We find remarkable that a healthy positivistic attitude, namely that the per-
mutation of identical particles should produce no observable effects, would have different
ways to be implemented in the quantum theory! This is possible at all, of course, because
of the projective or rather the bundle nature of quantum states, which we have already
emphasized [2].
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ant: in particular, a pure state lifted to a vector repesentative could acquire
a plus or minus sign, corresponding to the two unique one-dimensional ir-
reducible representations (irreps) of the symmetric group; the sign cancels
going down to the base space: in this context, that is the precise form of the
common statement that quantum states are state vectors up to a phase, here
up to a sign. In mathematical terms, statistics sign is just a Schur multiplier.

The same argument shows also [2] why half-integer angular momentum
could exist in quantum theory in the first place; namely, the pertinent projec-
tive representations of the rotation group (say, SO(n)) come from the linear
representations of the double covering (universal covering for n > 2), the
Spin(n) group. That is, spin 1/2 is an admissible (projective) representation
of the 3D rotation group, although it does not come from a linear one, and
picks up a minus sign under a full rotation.

We find it logical that (in space dimension 3, and as we shall see also in
D = 8n + 3, +4 or + 5) these two nonclassical properties ”compensate each
other”; namely, the case of Fermi statistics goes along with half-integer spin
whereas the Bose statistics occurs with integer spin. There are two compen-
sating minus signs for spinors (permutations of fermions and 2π rotation),
but none in the Bose (tensor) case, which therefore looks more, but it is alto-
gether not, wholly classical. This connection is essentially the spin-statistics
relation.

In this paper we are going to see whether the spin-statistics connection
holds in arbitrary dimensions. The motivation to study this question is fairly
clear today: unification of forces by the Kaluza-Klein mechanism, super-
symmetry and superstrings, extended objects and M−theory, etc., all point
to the necessity of higher dimensions, whether invisible or macroscopic; in
F−theory we even face the case of (2, 10) spacetime dimensions, that is,
two times. As these theories are quantum theories, one needs to see how the
usual argument, i.e. the symmetry of the bilinear scalar product under 3D
rotations, extends now to other D > 3 dimensions. Although at the moment
the question is rather academic, if one of these higher dimensional theories
stands in the future, the question will be an important one, and so we believe
that the present investigation is justified.
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2 Review of the usual proof

There are many proof of the Spin-Statistics relation in relativistic quantum
field theory, starting with the original one by Pauli in 1940 [3]; for a thorough
review of the situation up to the year 2000 see the book [4]. For our purposes
we shall recall here the proof of the theorem as given by Sudarshan many
years ago [5], which starts from a 3D rotationally invariant field Lagrangian
density and contains the essential features. The manifold applications of
the theorem in nonrelativitic contexts claims for a demonstration not requir-
ing relativistic invariance. Axiomatic formulations of quantum field theory,
which do not use Lagrangians, do need special relativity to prove commuta-
tivity properties of the fields at distant points [6]. However, the requirement
of relativistic invariance is somewhat inappropiate, since most of the manifes-
tations of this relationship are in the nonrelativistic domain: atoms, nuclei,
condensed matter situations, quantum liquids, phonons in solids, etc. Also
the key topological feature, namely the symmetry group not being simply
connected, appears already in the pure space part.

The fundamental principle of field dynamics is the Action Principle, as
established by Weiss (1938) and in its quantized form by Schwinger (1951)
[7]. This presentation of the quantum theory demands that the variation of
any object Φ in the theory be given by its commutator with the variation of
S, the action of the system. That is

δΦ = [Φ,−iδS], (1)

which is simply the generalization of the quantum rule [q, p] = i~. It char-
acterizes the action as universal generator of variations. The action is the
time integral of the Lagrangian; we shall describe now a classical mechanical
theory in the first order formalism in which the Lagrangian is a function on
the TT ∗Q manifold, where Q (dim Q = n) is the configuration space, T ∗Q
the phase space (or cotangent bundle) and TM means the tangent bundle
to any manifold M . In the first order formalism we have the Lagrangian
function L0 ∈ F (TT ∗Q), with

L0 = paq̇a − H(qb, pb) (2)

with summation on a, 1 ≤ a ≤ n, and where Ȧ = (∂/∂t)A.
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The equations of motion are not altered by the (anti)symmetrization

L = 1/2(paq̇a − qaṗa) − H(qb, pb) (3)

So, defining ξ := (qa, pa) as a column vector, we can take the Lagrangian as
(tB is the transpose of B)

L = 1/2(tξ C (∂/∂t)ξ) − H(ξ) (4)

where C = −tC is a purely numerical (invertible) real antisymmetric matrix.
Notice the ”symplectic” character of this first order Lagrangian associated
to the use of first order time derivative. The variable ξ (with 2n number of
components) depends in time, and the dynamical term H(ξ) does not contain
time derivatives. Notice also in this formalism the kinetic term is bilinear in
the fields.

Inspired by this, we know write our Action and the Lagrangian density
operators for arbitrary quantum fields χ as

S[χ] =

∫ t

t0

dt

∫

d3xL[χ], L = (1/4)(tχK(∂/∂tχ)− (∂/∂ttχ)Kχ)−H[χ] (5)

following also Schwinger [7] [8]. Here χ = χ(x, t) is a finite-dimensional
hermitian quantum field, H is the Hamiltonian density, and K is an antiher-

mitian numerical matrix: The dynamical variable becomes hermitian, and
K should be taken antihermitian, K = −K†.

But now there are naturally two possibilities: the matrix K can be real
antisymmetric or purely imaginary amd symmetric, as already Schwinger
said half a century ago; and these two possibilities would fix the commu-
tation/anticommutation properties of the field variation δχ with the fields
contained in χ, leading finally to the sought-for connection between spin and
statistics.

Here we shall use for Φ just the fields χ. The complete Lagrangian would
have many pieces, viz.:

L = L1(kinetic, time)+L2(kinetic, space)+L3(mass )+L4( interactions)
(6)
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where we know already that the first term, from rotational invariance alone,
should be a scalar and so we shall impose SO(3) invariance in the quantum
mechanical sense of above, that is, linear SU(2) invariance. The form of the
temporal kinetic term, with the imposed rotational invariance, is the only in-

gredient we need for our proof of the theorem. Whether the remaining terms
in the Lagrangian, specially the dynamics encoded in the Hamiltonian, would
spoil the arguments, we leave open at this point and will comment later on.

The general variation δS contains three terms: variation in the content
of the integral inside the fixed boundary, which gives the equations of mo-
tion, variations of the limits of integration, and thirdly variations of the field
quantities at the fixed boundary. For our case only the third variation is
pertinent, namely the variations of the fields at the boundaries, which can
be taken as two spacelike surfaces at times t0 and t, respectively: we consider
the variation only on the ”future”, at time t, and omit the (repeated) t label.

The equation becomes

4iδχa(x) = [χa(x),

∫

d3y {δ tχb(y)Kbcχc(y) −t χb(y)Kbcδχc(y)}] (7)

where x = (x, t), y = (y, t),etc.

This is completely general. Now we require that

” The field variation δχa(x) either conmmutes or anticommutes with the
field itself”: this is equivalent to restricting ourselves to fermi or bose statis-
tics (we specifically exclude parastatistics; the only kind of parastatistics that
is valid is the reducible parastatistics as introduced by H. S. Green [9]; see
also [10]).

A) The field variation COMMUTES with the field itself. Then we obtain
in the usual way (see [5] )

2iδ3(x − y) = [χa(x), χb(y)]Kab (8)

where K has to be real antisymmetric. This matrix K might be degenerate:
call K0 the restriction of K to the minimal components of a particular spin
in χ: K0 is then regular (invertible). We can then write symbolically

2iK−1

0 = [χ, χ] (9)
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where
K0 = −tK0 with det K0 6= 0 (10)

which is the most general way of expressing the fundamental commutation
relations characteristic of Bose fields: different field components commute,
but field and momentum components have an ”i” as their commutator.

B) The field variation ANTICOMMUTES with the field itself. Then from
the previous eq. we obtain, (with {a, b} := ab + ba):

2δ3(x − y) = {χa(x), χb(y)}Kab (11)

with K now a real symmetric matrix. Again, by restricting to minimum
fields, we can write the anticommutation rules for Fermi fields in a form
similar as before:

2K−1

0 = {χ, χ}. (12)

But the character of K can be obtained also from the kinetic term of the
Lagrangian by appealing to rotational invariance: namely tχK∂/∂tχ has
to be a SO(3) scalar (invariant), as K connects only pieces of χ with the
same spin. Recalling that the kinetic term involves the antisymmetric time
derivative, for integer spin the matrix K has to be antisymmetric, whereas
for halfinteger spin K is symmetric:

In three space dimensions the squares of the irreducible representations
of SU(2) are well known; for example, for l integer

Dl ⊗ Dl = D0+ + D1− + D2+ + ... + D2l+ (13)

whereas for s half-integer

Ds ⊗ Ds = D0− + D1+ + ... + D2s+ (14)

where (+) indicates the symmetric, and (−) the antisymmetric, parts of the
product. This says that for tensors, the Identity irrep (scalar product) is in
the symmetric part, whereas for spinors is in the antisymmetric part (e.g.
D1/2⊗D1/2 = D1+D0 = 3(sym)+1(asym)). This crucial result comes really
from the symplectic character of the fundamental, spin 1/2 irrep of SO(3),
as Spin(3) = SU(2) = SpU(1).

This encompasses the spin-statistics theorem in 3 space dimensions: the
specific form of K = −K† in the lagrangian implies that integer spin would
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have K as real antisymmetric, hence the commutation relations and Bose
statistics. With half-integer spin fields is the other way around: symmetric
K would imply anticommutators, hence Fermi statistics and the Pauli exclu-
sion principle.

The argument can be reversed, namely starting from this result, we would
conclude the symmetry/antisymmetry of K, and from this the rules Bose or
Fermi respectively for BE or FD, recalling that the time derivative is an an-
tisymmetric operator.

Our argument in 3D is really in consonance with special relativity: namely,
the use of a spacelike surface to state initial operator conditions is a wholly
Lorentz invariant statement. It is still valid for, say, Galilean invariant theo-
ries, as long as one deals with quantum field theories, in which particles can
be created and destroyed.

We address now the question whether the validity of the proof could not
be spoiled by the neglected terms in the Lagrangian. The space part of the
kinetic density should cause no problems, and indeed our argument should
be a proof of the spin-statistics theorem for nonrelativistic field theories, in
which particle creation/destruction is allowed. Wightman has emphasized
that simple, quantum-mechanical many-body systems with fixed number of
particles need not obey the standard spin-statistics relation. The reason for
the sufficiency of the time derivative comes from the variation principle refer-
ing, in our case, to two spacelike surfaces.

What about limitations coming from peculiar Hamiltonians? We do not
have a full answer to this, but would like to make the following remarks:
in some cases, in which the Hamiltonian is not bounded from below, as in
the naive case of the Dirac equation, the right statistics comes to the rescue,
and makes sense of such a Hamiltonian, as the ”anticommutator” statis-
tics incorporates the exclusion principle, and the equivalent of hole theory
and redefinition of the vacuum makes the rest. A general Hamiltonian with
no lower bound would be of course unacceptable already at the classical level.

Another question is the applicability of the method to composite systems;
it is a bit striking that e.g. protons and neutrons, being fermions, make up
compound systems like the deuteron or the alpha particle with tested bo-
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son character. Here we only remind the reader of the old quoted Ehrenfest-
Oppenheimer paper [1], making very plausible that composite even/odd num-
ber of fermions should enjoy corresponding bose/fermi statistics. But one
should admit frankly that the whole issue of statistics of composite systems
deserves a closer look.

3 Particle statistics in arbitrary dimensions

Before going into technical details we would like to show why the symmetry
type of K in 3D is not to be expected for 8 space dimensions.

The reason is this: in 3D, the Id irrep of Spin(3) appears in the antisym-
metric part of the square, viz.:

D1/2 ∧ D1/2 = D0 : 2 ⊗ 2 = 3(sym) + 1(asym) (15)

whereas in 8D the two chiral irreps of Spin(8), 8s,c behave like the vector
irrep 8v, also of dim 8, because triality (see e.g. [11]) permutes the three
irreps, so the Id irrep appears necessarily in the symmetric square of any of
the three irreps :

8v ∨ 8v = 1 + 35, 8v ∧ 8v = 28 (16)

8s ∨ 8s = 1 + 35′, 8s ∧ 8s = 28 same for 8c; (17)

here 28 is the adjoint, 35 the 2−symmetric traceless, 35′ the (anti-)self-dual
4-form, etc. Thus for D = 8 the identity (Id) irrep appears in the symmetric
part of the square of either chiral irrep, contrary to the situation in 3D; so
they can only describe bose fields, according the arguments above. In the
Appendix we delve more deeply in the dimension 8 case.

Indeed, from the properties of Clifford algebra we can see that the 8D
case is a case of real type for the spin irreps, whereas in 3D the type is
quaternionic (pseudoreal). The general result is now easily obtained from
the Clifford periodicity-8 theorem for spin groups, which itself can be easily
obtained from the finite Clifford groups [12]. The result for the Type T of
Spin(n) irrep is

Dim 8n + 3, 8n + 4, 8n + 5 : T = −1 (peudoreal) (18)
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Dim 4n + 2, : T = 0 (complex) (19)

Dim 8n + 1, 8n, 8n − 1 : T = +1 (real) (20)

In the first case, because Spin(n) group lies inside the symplectic part,
the normal situation obtains. The Id irrep is in the antisymmetric part. In
the third case, is the opposite: the Spin group lies in the orthogonal part,
and the Id irrep is in the symmetric part. This generalizes the cases D = 3
and D = 8 respectively.

In the complex case, 2 mod 4, the Id irrep, being real, has to be in the
(mixed) product of the two complex conjugate irreps; by putting them to-
gether we get real fields (Majorana). There are two Id irreps, and we can
always arrange to have one in the antisymmetric part, if we wish, but it is
not forced upon us. In other words, spinors in 4n + 2 dimensions can be
either bosons or fermions.

Since the governing crtiterion is the Type, whether R (real, +1), C (com-
plex, 0) or H (quasireal, -1), the general result, as far as the argument
depends on the group of the space only, is:

For 8n + 3, +4, +5 , the usual spin-statistics connection obtains, and
spinors are fermions.

For 8n ± 1, 0, a wrong connection extants (i.e., tensors and spinors have
to be bosons).

For 4n + 2 (complex case), spinors can be fermions or bosons, it is up to
us. Tensors are bosons in all cases (correspondence principle).

4 Concluding remarks

We see that the proof of the commutation rules in arbitrary dimension is very
simple; it uses only the temporal part if the kinetic term in the Lagrangian.
This is in the spirit of Neuenschwander query [13] regarding a simple proof
of the spin-statistics connection, extended now to arbitrary dimensions.
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We find surprisingly few references to the n−dimensional spin-statistics
question in the published literature; the reason might be that statistics deals
with two or more particles, but in higher dimensions we still have to find one!
Weinberg [14] is one of the few references to higher dimension spin-statistics
connection; see also [15].

The derived results are for wavefunctions of theories with quantized fields,
allowing variable number of particles. For a fixed number of identical parti-
cles one could use either symmetrized or antisymmetrized wavefunctions [16].

We are not considering dimensions 1 and 2. There is no little group in
D = 1, as SO(1) = {1}, hence no spin, and indeed there is some freedom
to chose the quantization rules: recall quantized solitons in 1 + 1 dimension
should behave as fermions (Coleman, Mandelstam 1975). Also, the covering
group of SO(2) is R: then there is a vast margin for statistics. The large
literature for space dimension 2, where anyons live, han been reviewed e.g.
by Forte [17].

5 Appendix

We include here for completeness some mathematical results regarding spin
groups and spin representations; see [11] and [12]

The first eitght spin groups already reflect the Irrep Type as stated above,
because the isomorphisms

Spin(1) Spin(2) Spin(3) Spin(4) Spin(5) Spin(6)
|| || || || || ||

O(1) U(1) SpU(1) SpU(1)2 SpU(2) SU(4)
Type +1 0 −1 −1 −1 0

(21)

and again Spin(7) and Spin(8) are real, Type (+1).

In three dimensions, the spin group Spin(3) has a faithful irrep of complex
dimension 2, isomorphic indeed to SU(2) = SpU(1). The relation with the
rotation group

1 → Z2 → SU(2) → SO(3) → 1 (22)
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implies spinors rotate 1/2 turn when vectors make a full turn. In 8 space
dimensions the situation is different. The group Spin(8) has as center Z2×Z2,
so it has three order two subgroups, whose quotients coincide with the two
real chiral spin representations 8s = ∆L , 8c = ∆R and the vector one, 8v. A
further quotient by the remaining Z2 produces the projective group PO(8)
from either:

Spin(8)







SpinorL = ∆L, dim 8 real
V ector = SO(8)
SpinorR = ∆R, dim 8 real







PO(8) (23)

Now in 8 dimensions the three real dim−8 representations are permuted
by the symmetric group in three symbols S3 (Cartan’s triality, [11]). Recall
O(8), with symbol D4 is the unique simple Lie algebra with a large than Z2

automorphism group. Therefore the square of either irrep of the three should
be similar, so it is impossible that the chiral irrep and the vector irreps differ
in the symmetry type of the product. Indeed, the products of these 8−dim
irreps are (with + sym, − asym parts)

V ector2 = graviton(35+) + dilaton(1+) + 2 − form(28−)
Spinor2

L = selfdual + 4−form(35+) + scalar(1+) + 2−form(28−)
Spinor2

R = antiselfdual 4−form(35+) + scalar(1+) + 2−form(28−)
V ector × Spinor = Gravitino(56) + vector(8)

SpinorL × SpinorR = 3−form(56) + vector(8)

We use the particle content of SuperGravity N = 2 in ten dimensions, whose
massless little group is O(8).

Indeed, the exceptional Lie algebra F4 contains the four fundamental ir-

reps of D4: dim F4 = 52 = 8 × 7/2 + 3 × 8. The Weyl group of F4 (order
1152) is the symmetry group of the 24−cell, the most symmetric of the reg-
ular polytopes, living in 4 dimensions [18], and tessellating S3.
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