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What price the spin—statistics theorem?
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Abstract. We examine a number of recent proofs of thésptatistics theorem. All, of course,

get the target result of Bose—Einstein statistics for identical integral spin particles and Fermi—Dirac
statistics for identical half-integral spin particles. It is pointed out that these proofs, distinguished
by their purported simple and intuitive kinematic character, require assumptions that are outside
the realm of standard quantum mechanics. We construct a counterexample to these non-dynamical
kinematic ‘proofs’ to emphasize the necessity of a dynamical proof as distinct from a kinematic
proof. Sudarshan’s simple non-relativistic dynamical proof is briefly described. Finally, we make
clear the price paid for any kinematic ‘proof’.
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1. Introduction

A number of proofs of the connection beten spin and statistics which have recently
appeared in the literature are reviewed and shown to contain an arbitrary phase factor.
In these proofs, the correct connection is ratderistically the result of a choice which

is not dictated by quantum mechanics in its usual form, as already acknowledged by the
proponents of perhaps the most sophisticated of these proofs [1,2]. We review a simpler
proof which has long been available [3-5]; (for a review and extensive references, see
[6,7]), based on the action principle and the symmetry (antisymmetry) of the scalar product
of two tensors (spinors), which retainsthe precepts of canonical quantum theory.

It is generally accepted that identical pelles in quantum theory have a unique con-
nection between spin and statistics: identical integral spin particles obey Bose—Einstein
statistics and have a wave function symmetric under the exchange of any two particles.
Identical half-integral spin particles obey Fermi—Dirac statistics and have a wave function
antisymmetric under the exchange of any two particles. The ‘standard’ proof of this result
[8] is based on relativistic quantum field theory which might seem inappropriate and pos-
sibly even irrelevant for such important and extremely non-relativistic systems as atoms,
molecules, conduction electrons, lasers, liquid helium, micro-degree Bose—Einstein con-
densates, phonons, etc. As a consequence, there is strong motivation to derive the spin—
statistics connection without making use of relativistic invariance of field theory [9,10].
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The most explicit discussion has been given recently by Berry and Robbins who consider
two isolated identical particles with spi spin projectionsn, andmy, located af’ and
—T, corresponding to the state

W= [(r);my,my).
Under exchange of the particles, this state goes into

W=~ |@(=T);mp,my).

Berry and Robbins seek an intuitive exchange operator which is related to — but cannot
be exactly equal to — a simple rotation through an amgégound the center of mass. As
pointed out by Bacry [11], when the configuration is particularly simple an ordinary ro-
tation throughrt can accomplish this transformation. §wcumvent complications which

arise when the spins are not antiparallel and perpendicular to their separatiorr\j&2jpr

Berry and Robbins construct an exchange operator which is an element of an Abelian
unitary group in a space of dimensi¢dS+ 1)(4S+ 2)(4S+ 3)/6, enlarged from the
(2S+1)?-dimensional physical space. With tlienstruction, the ‘rotation’ through = 7t
transformsW¥ into Wey and is to be identified as the exchange operator.0Ascreases

from O to 1, it is a parallel transport of the spins which, however, is accomplished at the
price of making excursions into unphysical states. But@ot 0 and8 = 1, physical
statesare mapped onto physical states, and the particle exchanged state is identified as
the transported state. In what sense a transformation which must be invisible except at its
end-points can be regarded as intuitive and physical or continuous and single valued is not
obvious. Projected from the higher dimensional space of unphysical states to the space of
physical states, it need be neither differentiable nor single valued nor unitary. It is at the
least trans-quantum mechanics.

2. Simple derivations of the spin—statistics connection

Bacry considers the simplest case of two particles of Spm% z-projectionsm o = i%
atry» = +ay on they-axis. The system is rotated through an armgkround thex-axis by
the operator

P(1) = @TLxa+ (L2 0xa+Lxz+(1/2)02) )
which changes; » to 2,1, My 2 to mp 1 and changes the overall sign. In eq. (1),

Lyi+Lxo=01 X Pr+ T x B2
:l-CM‘f‘l-reI:(j>< |3—+-Q>< B,

where

6=319 and P=pip
are the center of mass variables;

d=ti-d and p=PP2
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are the relative variables. Since rotation is about the &M; 0 and Lcm = 0, so the
rotation operator becomes

R (TT) = d((1/2)0x1+(1/2)0x 2+ Lrelx) 2)
(The CM wave function is not taken into account.) That is,
'@X(n’)w(laz) = —LIJ(Z, 1) - (_)ZSLP(Za 1) = Wex(laz)a (3)

as required, antisymmetric under the exchange of two %mafticles, and exhibiting the

characteristic ‘Pauli’ phasg-)?S. However, all that cameally be said is that the rotated
state and the exchanged state are the same within a phase factor. So

iy (MW(1,2) = —W(2,1) = €9Wey(1,2). (4)

If we demand that a2 rotation should leave everything unchanged, thh-e 1 and the
phase factor'@ = +1. Bacry and also Berry and Robbins make the assumption that the
phase factor must be1, but there is no other reason to do so than to obtain the spin—
statistics connection. (See the counterexamp$&in A spin-% particle is a ready example

of a case where arRrotation returns to the same physical state, but changes the sign of
the wave function, so we cannot simply assume that identical configurations have identical
wave functions. Their wave functions are related by a phase which depends on their his-
tories. We [3—7] have derived the spin—statistics connection using the kinetic Lagrangian
density of second-quantized hermitian fieldbeTwo simplest cases are the scalar Klein—
Gordon field in the linearized form

1, . -
Lo ~ 5{~TTo+ o0} + Z P+ ; D Doy
]
and the electromagnetic field with the electric term

1 . .
Lem ~ E{Ej/‘\k_ EjA} ik
and the magnetic term
(D X A)j(D X A)kgjk

and the constrainfl - E = 0. Both of these kinetic Lagrangian densities exhibit charac-
teristic antisymmetric time derivative terms and symmetric ‘mass’ terms. Hermiticity and
exchange invariance of the Lagrangian establish the symmetry type of the numerical matri-
cesn? and the metrigjy, and rotational invariance of the Lagrangian density (or equally
well, the Hamiltonian density) combine to require these integral spin fields to commute.
Bose-Einstein statistics and symmetric wave functions are a necessary consequence.

An analogous result holds for the (hermitigirac field where the mass term in the
Dirac Lagrangian is

«iﬂD ~ Z Mr,s’l’r Lps~
rs

Again hermiticity and exchange invariance are required of the Lagrangian density. The
difference for half-integral spin particles is that the rotationally invariant combination of
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two spinors is antisymmetric. Witness the spin-singlet combinatr- Sa of the usual

Pauli spinors. This is in contrast with the symmetric rotationally invariant product of,
for example, vector component$ + y2 + 22 (symmetry ofgjx above) for integral spin
particles. The net result for half-integral spins is that hermiticity, exchange invariance and
rotational invariance of the kinetic Lagrangian combine to require anticommutation for the
half-integral spin fields. Fermi—Dirac statistics and antisymmetric wave functions follow.
The kinetic Lagrangian for the Sabdiinger field is

leading to

QUJ-Ti 3’( Ajki
. 0.4
Ajid g = — ( 54?) = Hijkk. (5)

For our proof of the spin—statistics theorgmandy' should be written in terms of hermi-
tian fieldsg,x of the same spinor or tensor character, and their trangpase’,

Y=0p+ix and y'=¢ —ix".

Finally the hermitian fields must be ‘stacked’ to give

-~ (3)

For spin—% this is a hermitian spinor (majorana) field of dimensiof2 %+ 1) =4
Rewriting the Schodinger kinetic Lagrangian, we obtain

S TR
j—q)dlatcb

in an obvious notation. Hermiticity and rotational invariance dictate the symmetry type of
the numerical matrixy and exchange invariance of the kinetic Lagrangian then establishes
the spin—statistics connection as in the above examples.

There are loose ends for which we refer to our earlier paper [7]. These include:

1. The use of somewhat unfamiliar hermitibelds, which demands the introduction

648

of 2 x 2(2S+ 1) components obeying linear equations, to represent complex charged
fields of higher spin.

. The above arguments follow from either the mass terms or the kinetic energy terms

in the Lagrangian.

. The possibility of antisymmetrising on ‘charge’ degrees of freedom, thereby defeat-

ing the proof. We show that if the charge degrees of freedom are not the unit matrix,
they can be diagonalized with equal and opposite energy spectra, implying an energy
spectrum unbounded below, which we reject. The requirement of a lower bound to
the spectrum (and positivity of the norm) is as close as we come to special relativity
but it clearly can be made independently (from the second law of thermodynamics)
leaving a fully non-relativistic proof.

. The Lagrangian density will usually possess a Lorentz invariance or a Galilean in-

variance, but only the Euclidean (rotations and translatior®jrinvariance plus
time translation (Newtonian group) invariance is needed in the proof; but no boosts
(neither Lorentz nor Galilei).
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5. The neglect of interactions and the use only of the quadratic kinetic Lagrangian.
Here we do require that ‘the tail wags the dog’, and that all terms in the Lagrangian
must respect the exchange properties of the kinetic energy and mass terms.

6. Unusual cases such as fractional statistics (in two dimensions) are excluded from
consideration of the Schwinger action piiple presented here. Green’s parastatis-
tics can be consistent only with multicponent Hilbert spaces (‘vector’ quantum
mechanics), and so they are excluded here. Nor do we address topological extended
structures in this paper.

7. It is important to emphasize that this is an optimal proof in that counterexamples
appear if any postulate is relaxed or omitted.

3. Homotopy and multivalued wave functions

For closed loop excursions in parameteaap, quantum amplitudes undergo phase changes
of a subtle kind [13]. If the space is not simply connected, there is a non-trivial homotopy
group [14] which can associate a ‘winding’-number and a net phase change with non-
contractible 2t excursions. The state vectors belong to a one-dimensional representation
of the (Abelianized) first homotopy group. For two identical particleRirspace with
coincident pointd\ removed and exchanged points identified and counted once, the con-
figuration space is

M=RxR-0)/S with 15(4)=S. (6)

There are two kinds of closed loops: contractible and non-contractible. There are only two
irreducible representations 8f: the first assigns af1) to both elements; the other (which

is faithful) assigns+1) to contractible loops but{1) to non-contractible loops. For spatial
wave functions this odd parity is for odd orbital momentum. The ‘trivial’ representation
of the homotopy group — assumed in all the above proofs based on particle transport —
is not demanded for any other reason, since the other choice is consistent with all other
requirements of quantum mechanics. In many-body physics (in dimension thréd) the
particle manifold is

M= RXxRx---xR-A)/S,

and the homotopy group i% (.#n) = Sy. Because we use only the ‘scalar’ Hilbert spaces
only one-dimensional representations are allowed. These are the Bose and Fermi systems
which are the two representations of the Abelianized.e., Abelianizedsy which gives

S (justZy, the cyclic group of order two). The geric Green ansatz and parastatistics are

in conflict with ordinary (‘scalar’) quantum mechanics. By taking reducible representa-
tions of Sy we can include an auxiliary (color) label in the constituent fields.

4. Physical transformation for spin exchange

The ‘parallel transport’ operator consttad by Berry and Robbins to accomplish exchange
has the blemish that it involves extra degrees of freedom which result in excursions outside
the space of physical states, although the completed rotations2yy ... associated with
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exchange do not. In this section we construtiiternative operator for the exchange of
arbitrary spins which uses only physical operators and remains within the space of physical
states. The net result, however, is the sgshase ambiguity already met by Bacry, Berry
and Robbins, and Balachandranal, which — in our view — precludes any conclusion
about the spin—statistics connection. A spin exchange operator for two %m’articlesA

andB is

_ 1 A 1B, =A =B
F=3(1"1°+38".0% )
with
F2=1”.18 (8)

On symmetric spin stateSE& 1, triplet), F = +1; and on antisymmetric spin states
(S=0, singlet),F = —1. This operator can be embedded in the one-parameter group

Gﬂ@):{?mi@%}éw )

For8=0,G(0) =1;for8 =,

G(m) = {%-%}(—1}. (10)

The factor(—1)" provides for the inversion of the Bacry-type space wave function to com-
plete the exchange. If we chose the upper sign we would get a fadtéor the antisym-
metric state and-1 for the symmetric state. To get the usual connection we must choose
the lower sign

G(e):{¥ +é9%}é“’. (11)

Note thatG(6) does not move out of the space of physical states as was the case with the
parallel transport operator of Berry and Robbins. It is defined to act only on the two spins
in their symmetric or antisymmetric states, where it produces the correct sign. Observe
that we could equally well, reverse the signGfrr) with a factor €' and get the wrong
connection. Nor are we obligated to consider a continuous transformation, but the spin-
exchange operatds(m) is sufficient. One can generalize this construction for arbitrary
spinS. The spin matrices would now 2S5+ 1) x (2S+ 1) dimension. The unit matrix and

the spin matrices no longer constitute a coat@ket, but one couldid the five quadrupole
matrices, the seven sextupole matrices, etc., up t¢2Bgh-pole matrices. These are

14+3+5+7+--= (25+1)?

independent matrices which form a basis for (88 1)?-dimensional Hilbert—Schmidt
operators. From the fact that the product of any two of these matrices has vanishing trace,
there is a unique decomposition for af85+ 1) x (2S+ 1) matrix. It follows that

1

(ZS+1){1A-1B+SA-SB+QA-QB+---}. (12)
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F has eigenvectors in the space of the two spin wave functions which are symmetric or
antisymmetric. The projection operators to these states are
1+F

We embed these into
Gy = {ni+é9n¢}eiw. (14)

The upper sigrG_ gives the normal connection for integral spins, the lower signfor
half-integral spins. This follows from the fact that for integral s@inQ,... are symmetric
andsS, ... are antisymmetric; and the opposite for half-integral spins. This construction
generalizes Bacry’s picture in the way sought by Broyles. In this construction we do not
go outside th€2S+ 1) x (2S+ 1)-dimensional physical spin-space. The construction is
natural and complete without further embetgliin contrast to the ‘physically incoherent’
examples discussed in Appendix D of [1]. In these derivations [1,2,9,11], there is still a
choice to be made. In our construction, the choice of phag8(f@y gave the normal con-
nection. Should we include the non-trivial representations of the homotopy (loop) group?
Without the assumptions of Bacry and of Berry and Robbins, we can make no statement
about the spin—statistics connection. The discussion of the properties of extended systems
under interchange by Balachandranal [10] also suffers from the need to choose the
trivial representation of the homotopy group [15].

A recent attempt to obtain the spin—statist@onnection from arguments of continuity
and differentiability of the wave function has been presented by Murray Peshkin [16].
Peshkin has required that the wave function on the (non-contractible) loogXgrf) to
(—x, —Y,0) should be continuous. Itis precisely this assumption that all the loops including
the non-contractible ones should have the wave function return to its original value that was
made by Berry and Robbins; they therefore beg the question.

5. Counterexampleto non-dynamical derivations of the spin—statistics connection

To remove the ambiguity between the normal and the abnormal spin—statistics connection,
we must go beyond the kinematical transport of the spins, or paths which interchange
the two particles. As a demonstration of this necessity, consider two spin-0 creation and
annihilation operators which anticommute:

{a,a'}, ={b,b'}, =1 and {ab}, ={a',b'}, =0. (15)
Now construct a state of two spinless fermions
f(P)a'b’|0).

The continuous transformation which inteemges these particles can be accomplished
according to Bacry or Berry and Robbins by the trivial rotatihfl e- (—1)- for 8 =m, and
presents no barrier to the abnormal spin—statistics connection. Similarly we can construct
spinor bosons.

We need more than just the choice of the spins to deduce commutation or anticommuta-
tion. This is illustrated by the Schwinger aatiprinciple [17] which defines a fundamental
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bracket for thaps. (Note that we are assuming hermitian fields, so the uglia a linear
combination of thays appearing here.) The Schwinger action principle requires

(LAUT’ LIJS) = (Ail) rs

whereA is the numerical matrix in the kinetic Lagrangian (for restrictions originating in
second class constraints, see [18]). It follows from the necessary symmetry or antisymme-
try of A that the commutator bracket is required for tensor fields, and the anticommutator
for spinor fields. The dynamics defined by the (kinetic part of the) Lagrangisia;
specifies the commutation properties and thereby the statistics of the field by the symmetry-
type ofA. This structure of the kinetic Lagrangian establishes, not by fiat but by derivation,
that only the trivial representation of the homotopy group is realized.

6. Conclusions

In our simple non-relativistic proof, we trace the spin—statistics connection to the symme-
try (antisymmetry) of the scalar product of two tensors (spinors). The quadratic kinetic
Lagrangian density must define the exega type for the complete Lagrangian.

No purely kinematic derivation of the spin—statistics connection can be carried through
without assuming the trivial representation of the homotopy group as our counterexample
of scalar fermions shows. No such assumption is required if the kinematics is imposed
by the action principle and the symmetry of the scalar product for tensor fields and its
antisymmetry for spinor fields.

Finally, to the invocation to ‘consider two isolated identical particles’, our response ulti-
mately must be ‘No, we will not!. To do so is to abandon the formal structure of quantum
mechanics based on the action principle [19-21]; and the powerful machinery of second-
guantization [22] for treating the many-body problem in quantum mechanics. Without this
formal foundation of quantum theory, what is left is a world only superficially and at first
glance simpler, but in fact aitbarily complicated by the absence of any constraining — we
prefer to think in terms of ‘guiding’ — principle.

For the specific problem of identical particle exchange, we maintain that the attempts to
represent the exchange operation as the end-point of a continuous physical transformation
fails for reasons even more fundamental than the phase ambiguity already discussed at
length. These attempts fail because (in Wald of many-body quantum mechanics) the
requisite operators do not exist. There is no physical operator which affects electrons 1
and 2 but not 3. So it is impossible to transport, and thereby permute, 1 and 2 and leave
3 untouched. The rotation operathr, = J; + J> does not exist in isolation ak. These
attempts fail because any physical transgartemust be generated by the total conjugate
operator including all identical particles symmetrically, and not just any subset.

So what then about exchange as the end result of an actual physical transportation? Ex-
change is similar to but essentially differérdm other discrete transformations like space,
time, and charge-reversal: similar in being discrete, differentin being a proper transforma-
tion which leads to the temptation to embed it in a continuous ‘transport’. But different
from all other transformations in one essential way: it deals with identical particles a pair
at a time, in a piecemeal transformation of thentcal particle state vectors which is in-
trinsically inaccessible to any transformatigenerated by the dynamical variables of the
canonical quantum mechanics of identical particles.
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The paradox would not arise if we were to exercise perfect semantic precision. The
words ‘exchange’ and even ‘permute’ give rise to the vision of classically and manu-
ally moving pieces on a chessboard, a physicibaable transformation. A better word
would be ‘relabel’, which is an arithmetic but not a physical act, inevitably an alias-
transformation, but (in this one case) notadibi-transformation.
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