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ABSTRACT

N

v The fundamental theorem on the connection of spin and statistics
L is deduced from the basic symmetry between emission and absorption

- processes in quantum field theory. The new theorem which prescribes the
physical connection of Bose fields with integral spin and Fermi fields
with half-integral spin, is valid for all field theories; and it contains
Pauli’s theorem as a special case.
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I. INTRODUCTION

It is one of the most remarkable featurcs of elementary particle physics

that all known particles obey either Bose or Fermi statistics and that there

is a fundamental connection between the spins of particles and the type of
L statistics that they obey, the integral spin particles like the photon obeying
Bose statistics and the balf-integral spin particles obeying Fermi statistics.
T Our knowlcdge about the multitude of new particles like the mesons and
baryons that have been discovered during the recent past strengthens this
spin-statistics relation. It would indeed be satisfying to be able to deduce
this relation f-om the basic assumptions of quantum theory. In the present
paper we state and prove a fundamental thcorem within a very gemeral
quantum-theory formulation, to the effect that all integral spin particls

must satisfy Bose statistics and half-integrz] spin particles should obey Fermi
statistics. ' '

, There have been previous works on this topic by several writers, notably
W. Pauli (1940, 1955). Pauli’s work presupposes relativistic field theory:
it is not applicable to a non-relativistic theory like the second quantized
non-relativistic field which is so useful in the stedy of many-body systems.
It would be good to be able to obtain the spin-statistics connection without
recourse ta the imposition of relativistic invariance, since the spin-statistics

connection is of paramount importance in many cases where relativity seems
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to play no discernible role, like in many-body physics. Even within the
framework of relativistic local ficld theorics Pauli had to make the purely
technical assumption that the fields belong to finite-dimensional representa-
tions of the Lorentz group. While the clectron, the neutrino, and the
photon are well described by such fields it is by no means clear that this is
necessarily true of the subnuclear particles. Pauli’s work has been refined
and extended to general field theory in recent vyears (see, for example,
Schweber, 1961), but these extensions also suffer from the limitations men-
tioned -above.

In the present investigation we show that tke principle of symmetry
between emission and absorptior processes characteristic of quantum
theories already leads to the spin-statistics relation in all cases. In particular
1t implies that the second-quantized Schrodinger field describes boeons of
integral spin or fermions of half-integral spin.

II. PRELIMINARY MOTIONS

() Symmetry between emission and absorption processes: The S-principle:
—Our expcrience with the interactions of tke photon and tke election tell
us that a quantum-mechanical process which involves the emission of a
particle must of necessity imply the existence of a related process of absorp-
tion of the antiparticle. Thus the interaction responsible for the cmission
of a photon implies an interaction of the same strength responsible for the
absorption of the photon. The nuclear beta decay interaction, in which a
positron is emitted entails an interaction with the same coupling constart,
the nuclear K capture, in which an electron is absorbed. We shall refer
to this property of symmetry between particle emission and antiparticle
absorption processes as the S-principle of quantum mechanics. 4

It is to be noted that relativistic finite-componcnt fields contain both
positive and negative frequency parts so that particle absorption ard anti-
particle emission are described by the same field operator. Tke use of a
local (finite-component) relativistic field to describe the systcm automatically
imposes the S-principle.

The S-principle is by no means restricted to rclativistic fields: cven in
non-relativistic theories we expect it to hold good. Tke imposition of tke
S-principle is equivalent to the validity of the Substltutlon Law and of

Crossing Symmetry,
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We shall insist that the S-principle remain valid in our quantum theory
but we shall othcrwise leave the nature of the field sufficiently general. We
show below that any quantized ficld satisfying the S-principle must have the
correct spin-statistics relation. For the purpose of this paper we shall
confine our attention to Lagrangian field theories.

(i) Lagrangian field theories.—Without loss of generality we can con-
struct a Lagrangian appropriate to first order equations of motion for the
quantized field ¥ (x). Then the Lagrangian density may be written in the
form

1_
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where H is a function of ¢, y7 and grad ¢, grad 4 only. The quantity
Iy is a numerical matrix. In a relativistic theory I’ will be one of a set
of four vector matrices I'*, but no such restrictions arc imposed in the
general case. Howcver, rotational invariance demands that ¢, 'gf trans-
form as a scalar under three-dimensional rotations.

The Lagrangian density (1) would lead to satisfactory equations of
motion whether  ard ¢7 satisfy commutationr or anti-commutation rela-
tions. In fact, both th¢ commutation relations wrd the equations of motion
can be derived from the Weiss-Schwinger Action Principle:

i 3y (x) = [fr (), 3A] (2)
A=[cdxL ). (3)

For Bose fields we take the field variations &) to commute with the
field operators and wec obtain

r (x) = [ [hr (%), T O)] st 8ht () 8 (x0 — yO)aty C))
implying
8 (x0 — »0) [ (x), 5T ()] = (T Vs 8 (x — ) 5)

provided I is non-singular. Similarly for Fermi fields we take the field varia-
tions & to anticommute with the field operators and we obtain:

Sr () = [ {r (), Y5t O} Tist 8 (3)) 8 (x0 — )Yy (6)
implying
8 (x0 — 3% {r (%), ¥sTO)} = (T Dys 8 (x —y). . (7

By considering variations which vanish at end __points we can get equations
of motion from (2),
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III. THEe CONNECTION BETWEEN SPIN AND STATISTICS

Let us now turn to the dlscussmn of the S-principle and the spin-statistics
connection for quantum field theory in various cases:

(i) Relativistic finite component fields.—Let ¢ (x) be a ficld which trans-
forms as a finite-dimensional representation of the homogeneous Lorentz
group and which satisfies a covariant wave equation. It then follows that
J (x) should contain both positive and negative frequency solutions, to be
associated with annihilation and creation operators for particles and anti-
particles respectively. The existence of an equal number of the two kirds
of solutions can be deduced from the fact that covariant wave equations
retain their form not only under the usual (real) homogeneous Lorentz
transformations but also under Complex Lorentz transformations. For
finite dimensional representations of the Lorintz gioup these complex
Lorentz transformations are implemented by finite matiices which can in
particular be defined for the ‘strong reflection’ transformation:

X —> —X.

The strong reflection transformation can be obtained as a real clement of
the complex Lorentz group which corresponds to rotation through = in the
1-2 plane and Lorentz rotation through i» in the 3-0 plane. But under such
a transformation a ‘““plane wave’’ solution labelled by the momenium %
will be taken into another planz wave solution labclled by the momentum
— k. This establishes our contention that for a covariant cquation, (not
necessarily of the first degree in either the derivatives or the fields but con-
sisting entirely of fields which furnish finite dimensional represcntations of
the Lorentz group), for every solution we can find a partner which has its

four-momentum reversed.

It follows that the S-principle is automatically satisfied by any quantized
relativistic field which furnishes a finite dimensional representation of the
Lorentz group. We now wish to demonstrate that all these fields satisfy
the correct spin-statistics relation. This is the result of Pauli, bat we shall
derive it in a somewhat simpler fashion.

For a covariant relativistic field I" is the time-component of a matrix
“four-vector’® I'*. For the Dirac spinor the matrices I'* are the same as
the o*: where o° =1; o= By and there exists a representation (the
“Majorana’ representatlon) in which all the a* are real and symmetric,

while the ““scalar”” matrix B is antlsymmetrlc In this representation the
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spinor fields may bechosen 1o te real, let vs do co. It follows that for any multi-
spinor which transforms as the product of an odd number of Dirac spinors,
the matrix four-vector I'* would be symmetric and the matrix scalar be anti-
symmetric; and for any multispinor which transforms as the product of
an even number of Dirac spinors, the matrix four-vector I'* would be anti-
symmetric and the matrix scalar would bc symmetric (Johnson and Sudar-
shan, 1961). This is consistent with the known symmetry properties of the
matrices in the wave equations for spin 0, 1, 1.

For real fields equations (5) and (7) require that I' be, respectively,
antisymmetric and symmetric for Bose and Fermi fields. But I is anti-
symmetric for integrel spin fields and symmctric for half-integral spin fields.
This establishes the familiar rclation between spin and statistics.

(i) Relativistic infinite component fields.—If ¢ (x) is an infinite com-
ponent field which satisfied a covariant wave equation, it does not follow
that it contains both positive and negative frequencies. The proof of the
existence of both signs of the frequencies does not hold in the case of inflnite
dimensional representations. It is possible that if k is an allowed four-
momentum — k is not an allowed four-momentum; the time-like solutions
of the Majorana equations provide one such example.

In the case of infinit2 component relativistic wave equations the
S-principle is not automatically satisfied. But we now require that it be
satisfied by demanding that frec field equations satisfied by the field ¢ (x)
contain a solution #' (x) with thc momentum — k if it contains a solution
u (x) with the momentum k. We further demand that the interchange of
the components u’ (x) and u (x) should leave the Lagrangian unaltercd except
for a sign change. The interchangs of u’(x) and u(x) with opposite fre-
quencies should be associated with a change in sign of the free field terms
in the Lagrangian with first-oidcr time derivatives. Such a rcquircment is

automatically satisfied for the case of the finite componcnt relativistic wave
equations.

As the precise expression of the S-principle we demand: The ficld
must be decomposable into two parts

$ (%) =X (x) X (x) @)

such that for every solution with momentum % in X theie exists a solution
with momentum — k& in X’; and the action must remain unchanged when
¥ (x) and X'(— x) are interchanged.
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This S-principle is automatically valid for finite component relativistic
fields. For example for the Dirac ficld (in the Dirac representation of the

gamma matrices) we hav:
£ T
L =5(3 ¥ -2 4)+H

so that with the choice
X(x) =4&); ¥ @) =iyg™(x)

the conditions for the validity of the S-principle are fulfilled. Similarly
for the scalar field in the Duffin-Kemmer-Petiau form we havs

L@ =542 -2 )+H(x>

ot
With the choice

= .\%Z‘(w}qg +iwt ¢9)

= (g =i
where
(wE2g) (x) = 20)2 [ ke (m? + k) [ K@V § (3) § (x0—)°) &'y
We could satisfy the S-principle. "

Returning to infinite components fields, since the system is rotationally
invariant X will furnish a representation, reducible in general, of the rotation
group. So will X', The Lagranglan (1) can be written in terms of X and

X" in the form

L(x) =3 {x"(®) 7 — %" &) x @} +H). )
The fundamental matrix  that appears in (9) -in such that L (x) is an invarignt
with tespect to rotations in space. By a suitablc choice of representation
7 can therefore be reduced to a block-diagonal form, each block c9rrfaspond-
ing to an irreducible representation of the rotation group. Within each
block 1 would be a multiple of ths identity for tensor fields and an antisym-

metric matrix for spinor fields. This is an elementary property of the -
variant bilinear form for the representations of the rotation group. Hence

we . conclude:
7T = 4+ : tensor fields
—n : spinor fields | (10)
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as a consequence of rotation invariance. The imposition of the S-principle
now implies that the Lagrangian (9) can be written in the form:

L(x) =L {xT(x)nx(x) — %" (x)n x(xs
— X" (%) 9x’ (X) -+ xT(x) 9x" (X)} 4 H (x). an
This leads to the commutation rclations
3 (nsn X7 (), X0 O] — s [xa ), X's ()]) & (x0 — 3"
= 8;s8 (x — y) (12)

provided we consider Bose fields. But this relation is inconsistent if % is
antisymmetric: consistency demands that for commutation relations we
must have, according to (10), tensor ficlds.

In a similar fashion for Fermi fields we deduce the anticommutation
relations

1 (”Isn {x'r (%), xn ()’)} — s {xn (M) X'r (3)}) 3 (x0 — yo)
= dpsd (X — ) \ (13)

which demands, for consistency, that » be antisymmetric. According to
(10) we must then have quantization by anticommutators only for spinor
fields.

We have thus deduced for infinite component fields also the normal
spin-statistics relation. Integral spin (tensor) fields obey Bose statistics
and half integral spin (spinor) fields obey Fermi statistics. It is interesting
that essentially only rotational invariance and the antisymmetry of the kinetic
terms in the Lagrangian have been used in deducing the result. To have
a consistent Lagrangian density we must have the normal connection bet-
ween spin and statistics: integral spin for Bose fields and half-integral spin
for Ferm fields.

In the recent literature statements have appearecd to the effect that the
normal spin-statistics connection may not or cannot be realized. Scrutiny
of the ‘““‘quantization” in these cases shows that the symmetry betwecn emis-
sion and absorption processes embodied in the S-principle is not rzalized
in thsse pathological treatments.

(iii) Non-relativistic quantized Schrodinger fields.—We now show that
proper quantization of the Schrodinger equation to get a non-relativistic
second-quantized field also leads to the physical spin-statistics connection.
This is a very important result because it has been believed that this connec-
tion could be obtained only in a relativistic theory. The argument in this

~
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case is very similar to the casc of the relativistic infinite component fields
(where again Pauli’s method fails but where we were ablc to establish the
result, on the basis of the S-principle).

For the second quantized Schiodinger fizld with spin, the S-principle
is not automatically satisfied. We demand the symmetry between emission
and absorption, so that the fizld contains positive and negative frequency
solutions in pairs by requiring that the field ¢ (x) be decomposable in the
form

P (x) =X (x) X' (). - 14

Such that for every solution with momentum £ in X (x) there exists a solution
with mcmentum —k ip X'(x): and that the action rcmain unchanged
under the intsrchange of X (x) and X’ (— x). The Lagrangian density should
then be of the form

L) =37 () — 4" () Lx () — X7 (x) & ()
+ 170 & ()} + HQ). (15)

The fundamental matrix { is such that x'* {y is an invariant with respect to
rotations. Again, { can be reduced to block-diagonal form, each block
corresponding to irreducible representations of the rotation group. Within
each such block we would have

(T= 4 ¢ : tensor fields
—{ : spinor fields. (16)

From this point onwards the d:rivation is identical with that of the previous
section. We conclude that integral spin (tensor) fields must satisfy Bose
statistics and half-integral spin (spinor) fizlds must satisfy Fermi statistics.

(iv) The fundamental theorem.—We are now able to assert the following
theorem: “‘In all rotationally invariant quantum field theories which main-
tain the symmetry between emission and absorptcn processes, Bose fields
must have integral spin and Fermi fields must have half-integral spin.”

IV. DISCcUSSION

In the preceding discussion we have confined attention to the study of
more conventional quantum field theories and obtained the jundamental
theorem on the connection between spin and statistics from the general prin-
ciples of quantum theory including the symmetry between emission and
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absorption (the S-principle). This theorem goes beyond the work of Pauli
and its refincments in that it applies equally well to all quantum field theories
in which ““spin” is defined: namely all rotationally invatiant quantum ficld
theories. No special mention is made of fields with only time-like or light-
like states, since such a qualification was unnecessary. It can be shown
that the theorem holds for thcories with space-like states also; in particular
for quantum theory of tachyon (fastcr-than-light) fields. In a paper in
preparation I have formulated the quantum theory of the infinite-component
Majorana ficlds where the ficld is quantizcd uniformly according to Bose

statistics for the integral spin case and according to Fermi statistics for the
half-integral spin casc.

It is very satisfying to have the technmical restrictions implicit in the
statement of Pauli’s theorcm eliminated. Since the spin-statistics connection
was true even for non-relativistic fields for which Pauli’s theorem did not
apply, it was only to be anticipated that when the theorem was properly
deduced these artificial restrictions would be removed. In this paper this
important task has been accomplished.

It is remarkable that there is a deep connection between the symmctry
between cmission and absorption which is characteristic of quantum field
theory and the ‘“‘statistics” obeyed by the field. We have stated this con-
nection in terms of the S-principle within the Lagrangian formulations of
quantum field theory, but it is possible to transcribe it into a requirement
on the transition amplitude (the °“S-matrix™) under “‘crossing”. This
transcription may make our fundamental theorem appezl to a wider audience,
but in my opinion such a formulation cbscures the undcrlying physical

principles. \

In passing we may also note that while the four-momentum of a particle-
state of a quantized field depends in an essential manner on its interactions,
the spin (or rather, the distinction between integral spin and half-integral
spin) of the particle states is independent of the interactions: it is an intrinsic
property of the field. The statistics depends only ¢n this intrinsic property

" of the field and no requirement is imposed on the sign of the energy density

or any such quantity which depends on the interaction structure.
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