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Abstract

Relation of the density matrix obeying von Neumann equation and the wave function
obeying Schridinger equation is discussed in connection with the superposition principle
of quantum states. The definition of the ray-addition law is given and its relation to the
addition law of vectors in Hilbert space of states and the role of a constant phase factor
of the wave function is elucidated. The superposition law of density matrices, Wigner
functions, and tomographic probabilities describing quantum states in the probability
representation of quantum mechanics is studied. Examples of spin-1/2 and Schrodinger-
cat states of the harmonic oscillator are discussed. The connection of the addition law

with the entanglement problem is considered.

1 Introduction

Pure state of a quantum system is described by a wave function obeying the linear Schrodinger
evolution equation [1] or by a vector in Hilbert space of states [2]. For the description of mixed
states, the notion of density matrix was introduced by von Neumann [3] (see also [4]). This
density matrix for a pure state is equal to the product of the wave function and its complex
conjugate (at different argument). The replacement of the wave function by the density matrix
can be considered as nonlinear (quadratic) change of variables and due to such nonlinearity a
constant phase factor of the wave function disappears in the density-matrix representation of
pure quantum state. The density matrix obeys to the linear von Neumann evolution equation

(quantum Liouville equation). It is a common statement that the constant phase factor of a



wave function is irrelevant for physical applications. This statement is reformulated by saying
that the quantum state is described by a ray and not by a vector in Hilbert space. A set of
rays has no obvious linear structure in contradistinction to Hilbert space.

The wish of making the description of quantum states more similar to the classical-mechanics
description has led to introducing the notion of quasidistributions in the phase space by means
of Wigner functions [5]. Also the Husimi—Kano function [6, 7| was introduced and this function
takes only nonnegative values. In connection with quantum optics, a quasidistribution function
with singularities was introduced in [8], which is also called P-distribution function [9].

The quasidistributions discussed are not the joint-probability distributions of position and
momentum. Due to the uncertainty relation, the existence of such joint-probability distribu-
tion is forbidden in quantum mechanics since such dynamical variables cannot be measured
simultaneously.

Recently, in connection with the tomographic procedure of measuring quantum states [10-
12] the probability representation of quantum mechanics was suggested [13], in which the quan-
tum state is described by a positive probabilty distributiion of the position, which depends, in
addition, on parameters of the phase-space reference frame, in which the position is considered.
Since the probability-distribution function depends only on the position and is independent of
the conjugated variable (momentum), the uncertainty relation is consistent with the existence
of such probability density. Both the quasidistributions and tomographic probabilities have
the common property of being determined by the density matrix and therefore they do not
depend on a constant phase factor of the vector in Hilbert space of pure quantum state, i.e.,
they depend on the ray.

On the other hand, the essence of quantum mechanics is the superposition principle of pure
quantum states [2]. The constant phase-factors of the Hilbert-space vectors play an essential
role when one makes the addition of two or more vectors. For example, the relative phase of
the two vectors is important in superposing them giving different kinds of the Serhédinger cats,
either of the type of even and odd coherent states [14] or of the type of cats created in the Kerr
medium [15].

The problem, we want to discuss in this paper, is how the superposition of quantum states
is described in the formalism of the density operator or of the Wigner functions or other
quasidistributions.

In particular, this problem has to be discussed in connection with the tomographic-probability
representation of the quantum state. The tomographic probability is nothing else as the linear
integral transform of the density matrix. But the superposition of two pure quantum states
means a rule of combining two tomographic probabilities, i.e., the specific addition law of two

probabilities in the set of all probabilities.



The aim of our paper is to give the definition of adding the density operators for the
superposition of both pure and impure states. We also elucidate the superposition of two
tomographic probabilities using their addition rule corresponding to the interference of quantum
states. From this viewpoint, we want to study the relation between two linear equations,
namely, the Schrédinger equation for the wave function and von Neumann equation for the
density operator. As our analysis shows, the Schrodinger and von Neumann descriptions of
pure states are nonequivalent. The density matrices contain the same information as the wave
functions only if one formulates the addition law of the pure density matrices describing the
superposition of quantum states. In this sense, the constant phase factor of the wave function
is essential. The both descriptions become equivalent if the addition law of the pure density
matrices (rays) is given. The usual addition law of solutions of the linear Schrédinger equation
for wave functions yields the wave function corresponding to pure superposition state. The usual
addition law of pure solutions of the linear von Neumann equation for a density matrix yields
the density matrix corresponding to impure quantum states. We would like to demonstrate that
there exists another one-parametric addition law of pure solutions of the linear von Neumann
equation which yields the density matrix of pure state. In this paper, we consider the addition
law in different representations of the density matrix including the Wigner function and the
tomographic probability.

The paper is organized as follows.

In Sec. 2, we formulate the superposition principle in terms of vectors in Hilbert space of
states. In Sec. 3, we discuss the properties of rays. An example of the ray-description of spin
state is given in Sec. 4. In Sec. 5, we review the properties of density matrices. In Sec. 6, we
consider the Wigner function of the quantum state. A review of the state description in terms
of tomographic probabilities for continuous variable (position) is done in Seec. 7 and for discrete
variable (spin), in Sec. 8. The superposition rule for density matrices (called “p-additional
law”) in the coordinate representation is formulated in Sec. 9 and the superposition of pure
states in terms of the Wigner function is considered in Sec. 10. In Sec. 11, the p-addition
law of tomographic probabilities is given. In Sec. 12, we study the relation between the linear
Schrodinger and von Neumann equations in connection with the superposition principle for
pure quantum states. In Sec. 13, the formula for the ¢-addition of two nonorthogonal projector
operators is derived and the superposition principle in terms of rays is discussed. The example
of even and odd Schrédinger cat states is studied in Sec. 14 and of 1/2-spin states, in Sec. 15.

The main results of our study are summarized in Sec. 15.



2 State Vectors

In the conventional quantum mechanics, pure state is described by a vector | ¢) in Hilbert

space. The eigenvector | ) of the position operator ¢
qlg)=alq) (1)
is used to determine the wave function )(q) of the state | ¢) in the coordinate representation
wia) = (g ¥). (2)
The superposition principle states that, for given quantum states | 41) and | ¢), the state
| ) = c1 | 1) + 2 | ) (3)

is also realized. In (3), the complex numbers ¢; and c¢; are considered as given,

¢ = |eile? o = |ca]e®. (4)

If the states ) and | 1p2) are normalized and orthogonal, the state | ) is also normalized if

leaf* +leaf* = 1. (5)
For the generic situation, the normalized superposition state | 1) is given by the formula
]71*‘):—“?1)4‘—1@52) (6)
where the normalization factor is
Niy = leil* +leal® + eacs {2 | ¥n) + ciean | ). (7)
For the wave function 1/(q) of the generic superposition state, one has the addition law

$(g) = §—‘2 i (g) + N—mwz( q). (8)

3 Rays

The expectation values of physical observables are bilinear in state vectors. In view of this,

the expectation values are insensitive to a change of the phase factor of the pure-state vector
| ) —|9) =€ | 9). (9)

It is a common statement that a state in quantum mechanics is described by a ray in Hilbert

space. The ray can be associated with a representative vector in Hilbert space, which we denote
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with | 9),. The ray-representative vector | ¥), is common for all the vectors given by Eq. (9).

Let us choose the ray-representative vector | ¥), using the convention that the number
(0 ] 1/))1‘ - Iwr(o) (10)

is a real nonnegative one.
It implies that, for given wave function 1)(q) of the state | 7)), the ray-representative vector
is described by the wave function %,.(q) given by the formula

ary
0% (1)

The choice of the ray-representative vector | ¥), due to Eq. (10) is not translationally invari-

la) =gy

ant. One could use other choices, for example, considering the state’s wave function in the

momentum representation.

4 Two-Dimensional Hilbert Space

As another example, we consider the rays for spin state of spin j = 1/2.

The generic normalized spin state is described by the vector | ¢) in two-dimensional Hilbert

=) G Ae. -G o

We used base vectors | 7, m) with spin projection m = +1/2. In (12), the complex numbers

space

a = |a| e*", b= |b] e

satisfy the normalization condition
jaf? + Jbf? = 1. (13)

We determine the ray-representative vector

9= (o )+ (b= (ol ve). (14)

—tPa

So one has the relation of the vector (12) with the ray-representative vector

| ¢) = e | ). (15)

5 Density Matrix
For pure state | 1), the density operator reads
Py = Y)Y | (16)
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and the density matrix in the coordinate representation is

pe(a,d) = (q| py | ¢) = V(@Y*(d)- (17)

For given density operator py, the state vector can be obtained up to arbitrary phase factor.
It implies that the ray-representative vector | 1),, which is insensitive to the phase factor, can
be determined by the density operator. In fact, using (11) one has the wave function of the

ray-representative vector
4,0

/pe(0,0)

Since the set of states | g) is complete, i.e.,

flq)(ql dg=1, (19)

one has the invariant expression for the ray-reptresentative vector in terms of the density

operator of pure state

), = [ |y LLelO (20)

JO15610)

The positive densiy operator py of pure state satisfies the relations determining projector op-
erator

Ph=Pyy By=By Trhy=1. (21)
The density matrix of pure state has rank equal unity and the unique nonzero eigenvalue equals

to unity.
The density operator p of impure state is characterized by the impurity parameter

po =Trp? < 1 (22)

and it has rank larger than unity. If g9 = 1 the state is pure.

One can introduce other parameters
pe=Tr 5%,  £=0,1,2,3,... (23)

For impure state, one has
po < g < pp < ---<1.

For discrete spin observable, relation (14) determining the ray-representative vector can be

rewritten in the form ’ 5o Lisd)
- jsm | py | 3,3

(G, m | ¢)y = —m—0m—mxu—, (24)
Vi | by | 3,3)

where

5 . ~-:i:l
2= 55 m=ztz.



In invariant form, one has the ray-representative vector | ), in terms of the density operator

of pure state py =| 9) (¥ |, namely,

1 2 . <j=m|16"‘l" |.?!J)
| ¥} = 5= . g ————, (25)
25 +1 m=—j \/(.71.? | Py |J:.7>

Formula (25) is valid also in the case of arbitrary spin j. This formula for spin states is analogous

to formula (20) for the position-observable case.

6 Wigner Function

The Wigner quasidistribution function is introduced in terms of the density matrix as

W(q,p) = fp (q + g , q= %) g du, (26)

where the Planck constant is taken as h — 1.

For pure state, the Wigner funtion Wy (q,p) is expressed in terms of the wave function

Wala,p) = [ (a+5) v (a—5) e ™ du. (27)

The density matrix of pure state is determined by the inverse of Eq. (26) as

) 1 q—l_q! ip(g—q’
pw(q,q):%f%( 5 ,P)e’“ 7) dp. (28)

But the wave function v(g) is determined by the Wigner function Wy, (g, p) up to a phase factor.
The wave function ¥, (gq) corresponding to the ray-representative vector | 1), can be obtained

explicitly in terms of the Wigner function Wy(q, p) in the form

1 /Ww (E ; p) e dp
5 2 . (29)
Vor
\// We(0,p) dp

For impure state, the parameter y; (23) is expressed in terms of the Wigner function

’f,[),.((}') -

iy = Trﬁﬂa
2749 7= [ W (1, p )W (a2, 2) - W Gk, Phsa)
k42
X exp |21 Z PnConnn| dqy -+ dgryo dpy -+ dpgys - (30)
n,m=1



where the (k + 2)x (k -+ 2)-matrix ¢y, reads

( 0 0 0 0o -1 1 \
1 0 0 0 —1
—1 1 0 0 0
Conne —
g i 1 0 0
\o 0 0 .. -1 1 0/

7 Tomographic Probability for Pure State

Pure state | 1)) can be described by the tomographic-probability distribution wy (X, p, v) of
the position X measured in an ensemble of the different reference frames in the phase space

labeled by the real parameters p and v due to the relation
X =puqg+uvp. (31)

The parameters of the linear canonical transform (31) 2 and v can be considered as a combi-

nation of rotation and scaling of the initial reference frame in the phase space

w= e cost, v=e"sind. (32)

The tomographic probability wy (X, s, v) is related to the wave function 4(g) by the relation [16,
17]

2

(33)

1 i o iXg
wy (X, p, v) = 2l |/¢(G) exp (ﬁ T - T) dq

For the generic impure state with the Wigner funcion W(q, p), the tomographic probability

w(X, i, v) is given by the relation [12]
w(X, pu,v) = ﬁ /W(q,p) (X — g —vp) dq dp. (34)
The inverse of this relation is [12]
Wi(g,p) = %r- /'w(X,,u,, v) exp [i(X — pg — vp)| dX dp dv. (35)

For normalized pure and impure states,

dq dj
/ W(g,p) =L~ 1 (36)
and the tomographic probability is normalized for any p and v
/UJ(X”u,, o) @ = 1. (37)
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The function w(X, p, ) is nonnegative
w(X, u,v) >0 (38)

for any reference frame in the phase space with parameters p and v.

This function is homogeneous function [18]

wAX, A\, Av) = —w(X, pu,v). (39)

Ir\I

Since the probability distribution w(X, i, ) determines the Wigner function W (g, p), it can be
used for a complete description of quantum states.

The density matrix is also determined in terms of the tomographic probability

1 p ; q+
p(a.4) = 5 [w¥inq—q) exp [ (Y—u” 2“’)] du dY . (40)

Due to this formula, the tomographic probability wy (X, s, ) can be used to obtain the ray-

representative vector for pure state | ¢),. In view of Eqgs. (18), (40), one has

1 f’md,(}’ I, q) exp [ (Y - _Q_)] dp dY

Ur(q) = (41)
V2 ;
" \// wy (Y, 1,0) e du dY
For pure state, one has the equality
l ' -
5 ] we(X, 1, v) we (Y, =1, =) €O dpy du dX dY = 1, (42)

which follows from the corresponding property of the Wigner function Wy (q, p) of pure state

dq dp (43)

fWE(f )

8 Tomographic Probabilities for Spin State

The tomographic probability was introduced also for spin states [19, 20]. For given density

matrix of spin j-state

D= Gm| gD 4mYy,  mm=—j—j+1,...5-1,7, (44)

Prmm!

the tomographic probability w(m, a, B) is given by the formula

J J
wima,f)= 3. 3, DEL, e Pl s (45)

my=—3 me=—=7



where we use the matrix elements of the rotation-group representation
i _ imay (g g
Dignz'mg =€ dgu)lvn-), (ﬁ) e’ E (46)

with

: ; 1/2 s Ty — T
- (.’] + W!rl)l(j — 'fn;])I ﬁ : ﬁ .ol —mg, my 4+
dramaB) = | GTrmlG —ma)]  \ 2 sin g Pyl T (cos ).
(47)

In (45) and (46), o, 3, and 7 are the Euler angles and in (47) P{*" is the Jacobi polynomial.
Due to the structure of (45), the tomographic probability w(m, «, 3) does not depend on the

angle . In fact, this probability is the function of the parameters o and 8 on the sphere 52,
being also the function of a random spin projection m. The inverse relation of the density

matrix in terms of the tomographic probability has the form [20]

: 2 s i )
pfi%m,‘g = (_1)'”2 Z Z (233 + 1)2 Z [(_l)””"’l (Tnl} Y, ﬁ) Dl{f:?ﬁ)q (Cl', ﬁ}’:")
Ja=0 ma=—j3 my=—j"
a4 a 5 P " ‘,' IUJ _
7 7 33)(J, Jr ja\ ¢ L (48)
my —m; 0 my —m, mg) 8™

where
2m T ) ) 2w
[dw=["da [Fsingap [ dv, (49)
0 0 0
and we used 3j-symbols according to [21]. Using (24) one can express the ray-representative
vector | ¢), of a pure spin state | 1) in terms of the tomographic probability.
The example of the density matrix of pure spin state is the Hermitian matrix with two angle
parameters

s <, 0<y<2m,

which determine the point on the sphere S*
cos? f e cos B sin @
Py =\ _; : : :
e™" cosfsinf sin? ¢

(50)

The ray-representative vector corresponding to this density matrix for 0 < < 7/2 reads

O o)

>~ sin

and the tomographic probability w(m, a, 3) for this density matrix is

1 X gl s ;
w (—, a, /3) = cos® E cos? ) + sin® p sin 0 + cos ﬁ sin—ﬁ cos(a + 7y) sin 26 (52)
2 2 2 2 2
and
( : [3) 1 (1 ] 53
w(—= =l—-w(= !
v{-5 w 2,(1,[) (53)
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9 Superposition Principle in Terms of Density Matrix

1) and | v),) with density matrices py, (g, ¢') and

Given two orthonormal pure states
Pv,(q,¢), let us consider their superposition (3). We address the question: how the addition
law for the density matrices can be formulated in order to take into account the superposition
principle, which is easily expressed in terms of the usual addition law of state vectors in Hilbert
space?

To get the answer, we calculate the density matrix of the superposed state given by Eq. (3).
One has

po(a,d) = le1Ppu (0, @) + le2*pyy (a0, &) + creshn (@3 () + cieafi (@)(d) . (54)

In order to express the density matrix in terms of only density matrices py, and py,, we ex-
press the wave functions ¥, (q) and 2(q) in terms of the wave functions of the ray-representative

vectors | 1) and | 4;). Using Eq. (11) one obtains

06(0,4) = le1Ppu, (0, @) + |ea*pya(a, @) + [erche (@) 93, (¢) + e (55)
where the phase ¢ is the relative phase of the vectors | ;) and | ¢fs),

ip {0 1¢1) (0] o)l |
IO (O ldn) (56)

On the other hand, the functions ¢y,(q) and .(¢') are expressed in terms of density

matrices by (18). Thus, we have

v i L4:(4,0) i, (', 0)

2pus(0,d) + |crche — +cc| . (57)
\/Pu'n (Ur U) P (U} O)

pu(q,q) = le1|*puy(a,d) + |ca

The phase ¢ is not contained in the density matrices py, (¢, q") and py,(q, q').

Thus, we formulate the p-addition law of two pure density matrices given by Eqs. (55),
which corresponds to the superposition of quantum states using additional parameter. We
derive the one-parametric p-addition law, which provides the density matrix of pure state as
result of “summing” the density matrices of two pure states.

One should point out that the density matrix
P(a,d) = lerl*pyu (0, ') + e’ pua(a, ) (58)

is the density matrix of impure state.

The @-addition law can be called purification of density matrix (58), which is obtained by

the standard mixture of two pure density matrices.
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10 Purification of Wigner Function

We discuss the purification of the density matrix obtained by the superposition of two pure
states in terms of the Wigner function. Given two Wigner functions Wy, (¢,p) and Wy, (q,p)

satisfying the condition

dq dp .
/ng,g(q:p) 2“ == ]" ("jg)
Let us have the Wigner function
Wf((f!p) = |CII2W¢1(QJP) + |C2|2W¢2(Q$p) 3 (60)

where the complex numbers ¢; and ¢, satisfy the normalization condition (5). One can check

that for the generic case the purity g’ of the state (60)

1g d
[woen LR = <1, (61)

The quasidistribution (60) corresponds to the mixture of two pure states that provides impure
state. Employing the result of the previous section, we perform the purification of the Wigner

function applying the following @-addition law. We construct the Wigner function using (29)
We(2,P) = ler|*Wa, (0, P) + lea* We, (4, p) + 2 Re {er5e™ Waa(g, p)} , (62)
where
1 —1/2
W12(Q:p) = 5; [ Wv.bl(o‘?’l) W’W(OJPTJ) dpl dp’lj]

q-+u/2 q—u/2
X fd'u, dpy dpy Wy, (" 5 / ; pl) Wy, (% ) PQ)

con{i(043) (s~ 2]

Formulas (62) and (63) give the p-addition law of Wigner functions that corresponds to the

purification of the impure Wigner function (60).

11 Purification of Tomographic Probabilities

In this section, we address the problem of the purification of tomographic probabilities.
If one has two pure states with tomographic probabilities wy, (X, 1, v) and wy, (X, u,v),

correspondingly, the tomographic probability

IUI(X, H, V) = |CI!21U¢1 (X I, U) + [62[2“"1."3 (X= i, U) (64)
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can be constructed. One can check that the tomographic probability w'(X,u,v) gives the

impurity parameter
/ W (X, 5, 1) W (Y, —pt, =) €O dX dY dp dy = < 1. (65)

This means that the sum rule for the probabilities given by (64) gives the mixed-states’ tomo-
graphic probability.

We address the question of the state purification in terms of tomographic probabilities which
means that we formulate the superposition of quantum states by the special law of adding the

probabilities. This @-addition law of probabilities can be formulated using Eq. (41). One has

W (X, pyv) = |ea[Pwy, (X, 1, v) + |lea 2wy, (X, i, v) + 2Re {CICQ*ﬂéw?Ulg(X,H} u)} 3 (66)

where
1 " YiY2) —1/2
wia( X, p,v) = T270) U wy, (Y1, 111,0) wy, (Y, i12,0) €772 duy dps dYy d}’g]
; Hadqy a2z B9 2 X
x_/GXP{”" [Yl— 5 i B) +§_U(fh _‘]'2) —?(01—92)”
Xwy, (Y1, 101, G1) Wy, (Yo, fi2, @2) dpey dpip dYy dYs dgy dgs - (67)

The @-addition law (66), (67) corresponds to the superposition of pure quantum states described

in terms of tomographic probabilities.

12 Linear Quantum Evolution Equations and Superpo-
sition Principle

Basic equations of quantum mechanics in arbitrary representation are the Schrodinger evo-

lution equation for the wave function ¢
iw=Hy; h=1 (68)
and the von Neumann evolution equation for the density matrix p
p+i[H,pl=0, (69)

where H is the Hamiltonian of the system.
Both equations are linear. Due to linearity of Eq. (68), the superposition of two solutions

with complex coefficients
P =y + Caiha (70)

is again a solution of Eq. (68).
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This mathematical property corresponds to the interference picture known for the superpo-
sition of two pure quantum states.
On the other hand, due to linearity of Eq. (69), the linear combination of two density

matrices p; and py, which are solutions of the equation, is also a solution of Eq. (69)
p=pp1t+pepz;  prtpa=1. (71)

The important point is that the density matrix and the wave function are related each other.
Due to this, the superposition (70) of wave functions implies a combination of the density
matrices of pure states py, and py,, which must be a solution of Eq. (69). This combinaion for

orthogonal pure states is given by the one-parameter addition rule
pr2p = le1*py, + lcal?pys + €% cicipia + €7 cleapar, (72)
where the matrices po; and pyp are given by the ray-representative vectors
p21 = Paridy,, P12 = Y1, (73)

The term |c1|2py, + |c2|?pu, satisfies the evolution equation (69). The phase-dependent interfer-
ence term, which itself is not density matrix, also satisfies (69). The sum of the two terms (71)
provides the combination of solutions of the evolution eqution (69), which does not coincide
with the rule (72), (73). We call the linear combination (71), which is a solution of (69), the
mixture of the density-matrix solutions.

We call linear combination (72) the superposition of two density matrices. Thus, we ob-
serve on the example of the quantum linear evolution equation an interesting mathematical
phenomenon. There exist two different addition rules for the solutions of the same equation,
which provide a new solution.

One addition is a standard addition of two solutions, which provides a mixture of two solu-
tions. Another addition is a one-parameter y-addition, which involves extra interference term
dependent on the external relative phase of vectors in Hilbert space. The Hilbert-space struc-
ture is intrinsically present in the density-matrix formalism and in the evolution equation (69).
In fact, one can consider eigenvectors of the density operator as a basis of Hilbert space. The
superposition of these vectors provides the g-addition rule for the density operators, i.e., obtain-
ing the new solutions by means of the g-addition of two initial solutions. Nevertheless, it is not
clear for a given linear mathematical equation, which is not associated with the density-matrix
formalism of quantum mechanics, whether this linear equation possesses only standard linear
combination of solutions (mixture) or nontrivial parameter-dependent superposition similar to

the interference term of quantum density matrix in Eq. (72).

14



13 Addition Law for Rays

In this section, we formulate the addition law for non-orthogonal rays. Given two rays
| ¥), and | 92),, which are represented by normalized wave functions y,(g) and )2,(g) in the

coordinate representation. One has for ray-representative vectors in Hilbert space of states

|9 = [da |ye(@, | oa) = [da | aar(a), (74)
and for non-orthogonal rays a complex number
Wr | e = [ 63,(2) ¥1:(a) dg (75)

is given. We want to formulate an analog of the superposition law of two vectors | 74) and
| ¥2) in Hilbert space in terms of rays. This means that for given complex numbers ¢; and c;
with the condition

lea|® + |eaf? = 1,
we have to obtain the expression for the wave function ,(q) corresponding to the ray of the

normalized superposition vector | )
|9) = lea [ ¥n) +ca | 92)] N5

The normalization constant N2 depends on the relative phase of the vectors | %) and | ).

The p-additional law of the two rays 1,(q) and v, (q) yields the wave function
e 43, (0) + lea*3,(0) + 2Re cich € 4, (0) 2 (0)]
1+ 2Recics e (1 | Yy),

C1 f;iwd}lr(q) + CQ'!/JQ,.((})
[Cl (A ’qblr (0) “+ Ca 1,(!2,. (U) : (76)

For ¢ = 0, the functions #,,(q) and v, (q) take nonnegative real values:

Yir(0) = (0 ¥1)r,  92(0) = (O | ¥h2) . (77)

d)f(Q) - [

In invariant form, the addition law for two ray-representative vectors reads
: 3 1/2
_ [lealP€0 [ 41)2 + lea|*C0 | 9h2)7 + 2 Recach € (0 | 4u)r (0 | o) 4
1 +2Rec ce® (Yo | Y1),

c1e | 1) + ca | ), ]
h [Cl e (0| Y1)y +c2(0 | o), | (78)

One can see that the normalization constant Ny, [denominator in the first factor in (78)] for

| 9)r

the p-additional law of two non-orthogonal rays depends on the angle parameter ¢. Since the

projector operators are expressed in terms of rays
}31 :l d)l)r ("1{)1 |r; }32 :l 1!"2)? (’41)2 ]r; pﬁp ___I d”)r (!/) I'r: (79)
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the p-addition law (78) is equivalent to the ¢-addition law of two projectors P, and P;. The
projectors coincide with the density operators of the pure states. In view of this property, the
p-addition law of projectors for orthogonal states (}31 P = 0) can be presented in the form of
Eq. (57).

Now we present the @-addition law corresponding to Eq. (78) in invariant form. The pro-

jector P, reads

-

_ el Pt |cal* Py + (cicyePRoPa + hic) [ (Puhy) T (BoF0) | - (80)
s & [clngech’ﬂ (Plpnpz) T, C.(,.] [ (;3 )'D ( )}—1/2 ;

—~

In Eq. (80), the operator
P =] 0){0| (81)

with matrix elements in the coordinate representation
(a| Pold)=0(q)d(d) (82)

is used; the use of the operator (81) is connected with our convention to choose the ray-

representative vector due to the relation
r Fahes Pt 1/2 .
00 = [T (BR)] " (83)

For orthogonal states (ﬁ‘l A’z = O);, one obtains

= |r_:1|2f51 + |02|2f’2 + (clcge"""}’f‘lﬁ,ﬁz + 11.0.) [Tr (f’l F’U) T (}32}30)} _1'/2. (84)

For j-spin states, the w-additional law of projectors (80) holds by the replacement of the

operator P, with the projector

P;=14,3) G:i | - (85)
Thus, for the j-spin case, one has
P _ |61[2131 + 102[2132 5 (rlréﬁi‘”ﬁl |da 3,7 | Py +h. C) {TI' (ﬁlﬁ) Tr (Azﬁj)rl/z
’ 1+ [ClczelePI 13,3 G, | ot cxche=Tr By | 4,5) (4,5 | Pl] [Tl”( 1%)’1}(1623)]_

One can check that, for arbitrary projectors P, and P, the Hermitian operator ISP given by

(80) [or by (86) for the spin case] satisfies the relations

2o H m. B2 _ -
PQ!J—P‘P! l‘IPgQ—l.
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14 Example of Even and Odd Coherent States

In this section, we consider an example of even and odd Schrédinger cats (even and odd
coherent states) as a result of the purification of a mixture of two coherent states.
The coherent state | ) of the harmonic oscillator (i = m = w = 1) is the normalized eigen-

function of the annihilation operator a (see [22])
ila)=ala), (87)

where «a is a complex number.

There exist the superpositions of the coherent states

1
|a+)=\/2—(1+28_2‘ﬂ|2) (| a)+ | —a)) (88)

and i
o e ] =l (39)

Also one has the mixture of two coherent states with density operators
5 A
P=5(a{al+]=a){-al). (90)

Within the framework developed, the even (88) and odd (89) coherent states can be considered
as the result of the purification of impure state (90). In view of the fact that coherent states

| @) and | —a) are non-orthogonal, in order to obtain the density operators of pure states

| ax) (@x |= pra, (91)
one has to apply formula (80) where
D 5 D e~ l
Pl—}pﬂ:'la}(al! P‘J_’P—n:|—0>(—0’|, Cl:C‘z:ﬁ’

with the angle ¢ to be taken equal zero for even coherent state and « for odd coherent state.

In fact, in this case in formula (80)
- = 1 ey as oy
BB [T (BiRy) T (PoR)] ™ =l 0y =a | . 92)

Taking into account that
Tr | a) (—a |= (@ | —a) = e, (93)
one can reduce expression (80) to the form
. 1
Pia=m o} (a|+|-a)(—a|x|a)(-a|L]|-a){x]], (94)
which in turn coincides with the form of the density operators of the even and odd coherent
states. Thus, we derive the density matrices of even and odd Schrédinger cats by the purification

of the density matrix (90).
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15 Example of Spin States

The generic pure state of 1/2-spin particle has the density matrix py (50). The p-addition

law of two non-orthogonal pure states with density matrices

cos? 0, 5 €2 cos 0 5 sin b, o
P12 =\ _i. . : . 2 (95)
e~2 cos o sin by 2 sin® 6y o
can be obtained by using formula (80) where
ﬁl‘—’Pm; ﬁz—'ﬂa,f::z,
and the projector
(1)
" \o o)
One has
Tr (B Ry) = cos®6y;  Tr (PPy) = cos® 6, (96)
and -
Tr (PR B,) o
= cos 0 cos Oy + sin ¢, sin 0 . (97)

\/TT (plﬁ{]) Tr (ﬁ’zﬁl)
Thus, for the superposition state, in the case
lal? + | =1,
we obtain the density matrix py of the form (50) with parameters ¢ and v given by the relations

lc1]? cos? 01 + |c2|? cos? Oz + (cicse™ + cieae™) cos 0 cos B,

2
cos“ f = . . 98
1 + (c1c3e™ + cjeae™) cos (0 — 62) (98]
and
. . . il
cosflsinfle” = [1 + (cla}e“" +c r;ge““") cos (6, — ()2)}
X [|c1 |? cos 0 sin 0 € + |ca|? cos 0 sin 6 €72
+e1c3€™ cos ) sin Oy 2 + ¢} cpe™ sin 6 cos O, em] : (99)

16 Entanglement and Purification of Product of Density
Matrices

The density operator of a composite system AB with subsystems A and B may be chosen
pure or impure. For a pure density operator pag, one can get the density operator p4 and pg

by partial trace operation
pa="Trp(pap);  pB="Tra(pan).
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It is not necessary that A and B have the same dimensionality. Unless p4p is a direct product
of pure states of A and B, a pure pap yields impure p4 and pg. But they will have the same

rank n and the same nonnegative eigenvalues which sum up to unity. The density operator

Pap = PA® pB 7# pAB
is impure. Thus, the whole is greater than the parts: there is additional information in psp.
These are the “entanglement” terms [1].

We purify the product p/yp in the same way that we used before for the mixture of two
density operators p; and p,. Here we have n such pure states mixed together and need (n — 1)
phase angles ¢; = 0, 2, . .. p,. The diagonal form of pyz has only n nonzero diagonal elements
Xi, j=1,2,...,n. Weneed to introduce the off-diagonal elements \/,\j—)\k e'?i=¢x) in the (4, k)
location. Note that while we have n(n — 1)/2 off-diagonal terms, there are only (n — 1) phases
5

The purification of the density matrix p/yp we call as the g-multiplication law of the density
matrices p4 and pp.

While purification is dependent on the phase angle, the form of the entanglement is con-

structed and the phase angles have to be obtained from other considerations.

17 Conclusions

The quantum mechanics can be formulated using for the notion of states’ vectors in Hilbert
states, density operators, and different types of quasidistributions.

The special type of representations uses tomographic probabilities. The superposition of
states and the mixture of states are two different types of adding the solutions of the evolution
equations for density matrices of the states. As it is shown in this work, to describe the
pure-state superposition within the framework of the density-matrix formalism (in terms of
tomographic probabilities), the one-parametric g-addition rule of the states can be formulated.
Employing this rule, one can work within the framework only of probabilities and take into
account all the quantum interference effects.

The main result of our paper is the formulation of the p-addition law for density operators
of pure quantum states, which yields the rule of purification of the impure mixture of quantum
states. This p-addition law connects the Schrodinger and von Neumann descriptions of pure
quantum states and provides a rule of the pure-state superposition in terms of density operators.

Another result of our paper consists in formulation of the purification rule of product of two
density matrices that describes the phenomenon of entanglement.

We consider the superposition of two pure states which is described by one parameter in

terms of the p-addition law of two density matrices. If one considers a superposition of three (or
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more) pure states, the number of independent angle parameters increases correspondingly. The
purification of the mixture of two impure states can be done in view of the rule of purification

of the mixture of several pure states using the corresponding number of the angle parameters.
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