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Equivalence of fractional quantum Hall and resonating-valence-bond states on a square lattice
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We show that a fractional quantum Hall state is equivalent to one particular resonating-valence-
bond (RVB) state, the “flux phase” on a square lattice. The fictitious magnetic flux is dynamically
generated in the RVB state. The fractional quantum Hall wave function for the flux phase is explic-

itly shown to be a singlet.

It was proposed by Kalmeyer and Laughlin! that the
frustrated Heisenberg antiferromagnet in two dimen-
sions, such as a triangular lattice, possessed a liquidlike
ground state well characterized by the fractional quan-
tum Hall (FQH) state for bosons at half filling. This es-
tablishes the connection between the FQH and
resonating-valence-band (RVB) states.>3 There is a
growing amount of theoretical and experimental evidence
that the notion of a ground state similar to the FQH state
existing in high-T, superconductors must be taken seri-
ously.

Kalmeyer and Laughlin considered the quantum anti-
ferromagnetic Heisenberg model (QAFM) on a triangular
lattice. The model was first mapped into a hard-core bo-
son lattice gas by the Holstein-Primakoff transfromation.
However, the kinetic energy term for the bosons has a
wrong sign which makes the boson energy bands disperse
down as one moves away from the center of the Brillouin
zone. This problem was remedied by introducing a ficti-
tious magnetic field. The magnitude of the fictitious mag-
netic field corresponds to one flux quantum per spin of
the original QAFM or one flux quantum for 1/2 boson.
In terms of the Heisenberg model, one is merely perform-
ing a unitary transformation in the spin space by an
operator U =2]],c;0%, where the Laughlin sublattice
L may be viewed as a square lattice with twice the lattice
constant in each direction. The system is a bosonic ana-
log of the two-dimensional electron gas with short-range
interactions in a strong magnetic field. If the ground
state is liquidlike, the approximate wave function is well
described by the m =2 FQH wave function for N =N, /2
bosons (N is the number of the lattice sites):!

1 N
VB (zy,...,zy)=TI(z;—z)Vexp | =5 Sz 1> |, (D
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where z; =x; +iy; is the complex lattice coordinate of the
ith particle and [, is the magnetic length given by
4712=v"3a?, a being the lattice constant. In this paper,
we shall show that the FQH wave function may also be a
useful variational wave function for the QAFM on a
square lattice. In fact, a similar wave function has been
proposed by Mele* in a continuum representation.

A fiercely debated question is whether or not each indi-
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vidual Cu-O layer in high T, materials is antiferromag-
netically ordered at T=0. Some numerical simulations®
appear to indicate ordering at 7=0, but disordered
RVB-type states seem energetically competitive. We take
it as self-evident that an RVB-like state with no Néel or-
der is an interesting and crucial starting point in the con-
sideration of the Hubbard model with holes and relative-
ly large U. Nevertheless, one expects that the intrinsic
connection between the FQH fluid and the RVB spin
liquid may exist on a square lattice. In the present in-
stance the fictitious magnetic flux is spontaneously gen-
erated due to dynamical effect of the RVB. This is best
seen in the so-called “flux phase” of Affleck and Marston®
or the “s +id” phase of Kotliar.” The flux phase is ob-
tained by performing a mean-field theory of the QAFM,®

H= —J(}‘,)X,zj,.j +const , 2)
iJj

with X}Lj=20ci’;cj0. This Hamiltonian, written in terms
of electron operators, is subject to the constraint of one
particle per site, Eac;{,c,-0=l. There is a hidden local
SU(2) symmetry® in this Hamiltonian which plays an im-
portant role in the RVB. Here we are merely interested
in the U(1) part of the SU(2) group,’ namely the invari-
ance of the Hagniltonian under the local gauge transfor-
mation c,-(,—>el ‘¢;»- The simplest mean-field theory cor-
responds to taking the mean value of the “order parame-
ter” X, ={X;i+, ) and x,= ()(,-’,-J”y ). The relative
phase between Y, and Y, is of most importance. The
choice of y, =y, leads to the extended s-wave state as
done in Ref. 9.1°V Another choice, ¥, =iY,, gives rise to
the flux phase as done in Refs. 5 and 6. The flux phase is
energetically favorable from both mean-field and numeri-
cal calculations.!! The excitation spectrum of the flux
phase has a gap everywhere except at four isolated Fermi
points:

E, =xJx,(cos’k, +cos?/k,)'/* . (3)

This single-particle excitation spectrum is not gauge in-
variant and because of that constraint only particle-hole
excitations, which are gauge invariant, are permitted.
Although the order parameter x;; per se is not gauge
invariant, the phase of the elementary plaquette variable
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P(i,j,k,l)=(X,~ijka1X1.') @)

is gauge invariant and observable. The local U(1) gauge
invariance can be represented manifestly by a vector po-
tential living on the link joining two neighboring sites,

Zm

Xy =x,jlexp f ds- A(s) )

where ¢o=hc/e* is the quantum of flux and e* is the
fictitious charge. The elementary plaquette variable
P(i,j,k,I) has a negative sign in the flux phase corre-
sponding to flux 7 through the plaquette due to the vec-
tor potential A, and P(i,j,k,l) has a positive sign in the
extended s-wave phase. Since both the mean-field theory
and numerical calculations indicate that the flux phase is
energetically stable, we conclude that half a flux quantum
per plaquette is spontaneously generated in the flux
phase. Thus, our effective Hamiltonian can be written as

Heff-"‘—JZXU(C,'TTC;'T+ciTlcfl)+Hi"‘ ’ ©
{ij)

where x;; is given by (5) and Hjy, is the residual interac-
tion term. The constraint is, of course, to be implement-
ed. This effective Hamiltonian without H;  describes a
tight-binding model for two species of particles (up and
down spin) with a strong uniform “magnetic” field corre-

\II(ZIT’ e ZNZ Y e e ’le)z‘PT\I’l=

I1G;
i’j

i<j

where [, is the magnetic length on the square lattice
given by 7l3=a? The constraint, however, introduces
strong correlations between up-spin and down-spin parti-
cles. A straightforward way to impose the local con-
straint is by the Gutzwiller projection P; which prohibits
two particles with opposite spin from occupying the same
site:

WGS:PG\P=H,'(1_”:'T”NN’ .

In order to carry out the Gutzwiller Erojection explicitly,
we adopt the procedure of Shastry,'® which corresponds
to a transformation of the repulsive Gutzwiller projector
between up-spin electrons and down-spins electrons into
an attractive projector between up-spin electrons and
down-spin holes. Specifically, we make a unitary trans-
formation U, followed by another transformation P,
NO
U= H(c,,,,—l—c,,l) (8)

n=1
The effect of U on down-spin electrons is
Ue, Ul=cl ,
p 9)
Uc,, JU'=c,, .

This is just a particle-hole transformation for down-spin
electrons only. The effect of P on down-spin particles is
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sponding to one-half flux quantum per square. The com-
plete spectrum of this model with “rational field”” was ob-
tained by Hofstadter.!? In particular, for our case, the ra-
tio of flux through a lattice cell to one flux quantum,
a=1, there are two subbands whose dispersions are given
precxsely by those of our flux phase [Eq. (3)]. If one uses
the periodic boundary conditions, a complete set of
single-particle wave functions can be obtained, from
which one may construct a many-body trial wave func-
tion. However, the eigenstates of the model with the
periodic boundary condition involve the ¢ functions and
it is rather difficult to construct a relatively simple Jas-
trow wave function.!*> While work on this problem is in
progress, we shall, for the time being, appeal to the FQH
wave function approach. The reason for adopting the
FQH wave function approach is the physical precedent of
its success in describing the FQH effect, as emphasized by
Kalmeyer and Laughlin.! We believe that this approxi-
mation is valid and it gives qualitatively correct physical
results. The philosophy of what we are doing here is the
same as that of Laughlin.'*

Thus, if the two species of particles were independent
of each other (without the constraint), the ground-state
(GS) wave function of such a system would be approxi-
mated by a product of two m=1 FQH wave functions for
N fermions,'*

2 2‘21T| H(Zk_zl)lexp 2 2‘%&‘2 M
01—1 k1 01=1
I§<1
[
Pc, P~ '=(—1)’c,, and Pc} P '=(—1)’, ,

where (—1)P=1 if n is on the even sublattice and — 1 if n
is on the odd sublattice. After the transformations, the
local constraint becomes

CACat=Cn1Cn1 » (10)

which is equivalent to say that wherever there is an up-
spin electron, there is also a down-spin hole. We recog-
nize that the particle-hole transformation U is reminis-
cent of the SU(2) gauge symmetry.® Because the
particle-hole transformation changes the sign of c,lc i
term in (6), the transformation P provides a Marshali’
factor to restore the invariance of the effective Hamiltoni-
an (6). Thus the effect of the Gutzwiller projection is sim-
ply to set z? ~z », in the product wave function (7),
where z,‘,’, and zh | are coordinates of up-spin particle and
down-spin hole, respectively. Therefore our variational
wave function can be written as

»ZN )

WoslZips oo oszZytszygs -

=(—l)5H(Z,~—-zj)2exp , (D
l'.’
i<j

2 2 |zk‘2

0 k=1

where (z; —z;)? should be understood as
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[1(zi—z)*=T1(zf —zf Nzt —z})8(zf,z]) . (12)
ij Lj

i<j i<j
and 8(zf,z!")=1 if zP=z}, and equal to zero otherwise.
In Eq. (11) we have introduced an additional phase factor
in front of the wave function, (zj =n; +im;, measured in
the magnetic length)

N
(—1)®=exp imyn;tm;+tnm; |, (13)
j

which is required for the wave function to be a spin sing-
let, which we shall explicitly prove shortly. We note
some important features of the wave function (11) in the
following.

(1) The wave function (11) is obviously symmetric in
the orbital coordinates, in fact it cannot be symmetrized
further. Thus it must be a spin singlet with total spin
S=0, for it must be maximally antisymmetric in spin
variables. This can be explicitly shown as follows: In the
spin representation, the wave function reads

Wss{z: )88, ~ - Spylt--- 1) (14

where S, ‘—‘c,f Tc,:r 1» etc., are the Anderson pseudospin!®

lower operations which are isomorphic to the Pauli spin
operators, and |1 -+ 1) is a ferromagnetic state. Since
we have no net magnetization, i.e., Si, =3 S;=0, it
suffices to show that

S| ¥{o;} )Ezsnﬂ\l’{ai} )=0.

Here S}, is the total spin raising operator. Applying S5,
on the wave function (14) and after some straightforward
manipulations using the commutation relations of the
spin operators, we find it sufficient to show

SWas(zy, o525 .0 ,2y)=0, (15)

i

where the sum over z; runs over the entire lattice. To es-
tablish this last identity, we appeal to an identity derived
from a general formula for the & functions,'®

S (—1)rtmtmexpl —a{ L(E—n)?

+Ln—mP+iEm—inn]}=0, (16)

where £ and 7 are arbitrary real variables. By taking the
derivative with respect to £ or 7 successively at £=0 and
n=0, it follows that, for any non-negative integer k,

S (=prtmEemzkexp(—1Liz|H)=0. (17
(n,m)€E lattice

Equation (15) follows immediately from Eq. (11) and Eq.
(17) by expansion in powers of z;. This proof requires
that the summmations in (15) be extended to infinity and
hence the wave function (11) is manifestly a singlet in the
thermodynamical limit. For a finite-size system with N,
sites, we cannot conclude that the total spin is strictly
zero. It seems plausible to us that the expectation value
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of S2 in such a finite system is of order unity rather than
of order N, but we have no conclusive proof as yet.

The proof given above is identical to that for the
Kalmeyer-Laughlin (KL) state on a triangular lattice,?
since the KL wave function is identical to the present one
if one views the triangular lattice as the square lattice
with all diagonal bonds in one direction. Hence, we have
explicitly demonstrated that their wave function is a sing-
let as well.

(2) The energy per bond of our wave function is actual-
ly equal to that of the KL wave function on the triangu-
lar lattice. This is true because one can regard the tri-
angular lattice as the square lattice with all diagonal
bonds in one direction. The value of (S, S, ;) obtained
by KL is 0.32. We therefore conclude that the energy per
bond of our wave function is 0.16, which is too high com-
pared to that of the best estimate of Liang, Doucot, and
Anderson.’ The energy can probably be improved upon
using the Hofstadter states, rather than using the
Landau-level states.!* We wish to emphasize that the
wave function constructed here is not the ground state of
the nearest-neighbor Heisenberg model. But one can im-
agine modifying the Hamiltonian in such a way that our
wave function becomes its exact ground state. Hopefully,
the modified Hamiltonian and the original one belong to
the same universality class and hence they have similar
correlation properties. In essence, what we have written
down here is an explicit RVB wave function which
behaves like a FQH state and is manifestly a spin singlet.

(3) Our wave function on the square lattice looks simi-
lar to the Kalmeyer-Laughlin state (1). As a matter of
fact, one can also obtain the state (1) from our fermion-
based mean-field state by Gutzwiller projection, instead
of using the hard-core boson representation. The essen-
tial physics for both wave functions on the square lattice
and triangular lattice is the same, namely they are both
Gutzwiller projected Slater determinant. The projection
plays an essential role. The mechanism for the spin-
liquid state is independent of lattice type.

Some subtlety remains here. The magnetic flux needed
for our construction of the FQH wave function arises
from dynamical effect, and they are in effect generated
spontaneously in the variational treatment. It is not obvi-
ous that the wave function (11) is real, and the translation
symmetry by one lattice spacing is spontaneously broken
in the spin-liquid state, namely the size of the unit cell is
doubled.

Since we have one-half flux quantum per square, it is
possible to construct a ‘““magnetic” superlattice with basis
vectors b; =2a, and b,=a, such that the “magnetic” flux
through the unit cell built in b, and b, is exactly one flux
quantum. It is well known that the “magnetic” transla-
tion operators defined by

; *
T(b;)=exp é(p-i—eTA)-bj , j=12, (18)

satisfy the ‘“non-Abelian” relation

T"(b,)T™(b,)=(—1)""T(nb,+mb,) . (19)
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The phase factor (—1)"" that appears here ensures the
correct group multiplication, which is obviously related
to the phase factor in our wave function. The exact phys-
ical interpretation of this phase factor is not yet clear to
us at the moment.

In conclusion, we have shown that the KL quantum
Hall wave-function approach can be extended to the
square lattice, and we have constructed a wave function
for the flux RVB state on the square lattice. Further-
more, the remarkable phase of the wave function explicit-
ly constructed here (intuited by Laughlin) is shown in this
work to be precisely that which makes the FQH wave
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function a spin singlet and hence acceptable as an RVB
wave function.
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