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A high-molecular-weight outer membrane protein of
Xanthomonas oryzae pv. oryzae exhibits similarity to
non-fimbrial adhesins of animal pathogenic bacteria and
is required for optimum virulence
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Summary

Transposon insertions in a novel 3.798 kb open read-
ing frame (ORF) of the rice pathogen, Xanthomonas
oryzae pv. oryzae (Xoo) cause virulence deficiency
and altered colony/lawn morphology. This ORF
encodes a protein, XadA, of 1265 amino acids that
exhibits significant similarity to non-fimbrial adhesins
of animal pathogenic bacteria such as Yersinia YadA
and Moraxella UspA1. An interesting feature is that
the YadA similarity region is repeated six times within
the XadA sequence and encompasses almost the
entire length of the protein. Anti-XadA antibodies
identified a 110 kDa outer membrane protein that was
sensitive to protease treatment of whole cells. XadA
expression is induced in minimal medium. Homology
modelling suggests that XadA adopts a pB-helix
conformation-like pertactin, a non-fimbrial adhesin of
Bordetella pertussis. This work is the first character-
ization of a non-fimbrial adhesin-like molecule in a
plant pathogenic bacterium. It extends our knowledge
about the repertoire of homologous virulence factors
that are deployed by animal and plant pathogenic
bacteria to include functions potentially involved in
adhesion.

Introduction

Attachment to host tissues is essential for successful
infection by microbial pathogens. Certain microbial sur-
face proteins play important roles during this process and
are commonly known as adhesins. Based on their size
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and structure, Gram-negative bacterial adhesins have
been classified as two types: fimbrial and non-fimbrial
(Hultgren et al., 1993). Recently, there has been a lot of
interest in non-fimbrial adhesins because of their wide
occurrence, crucial role in host cell attachment and inter-
esting mode of transportation to the cell surface. Exam-
ples of non-fimbrial adhesins are the Hia (Haemophilus
influenzae adhesin) and Hsf (Haemophilus surface fibrils)
of Haemophilus influenzae, YadA (Yersinia adhesin A)
of Yersinia sp., pertactin of Bordetella pertussis and the
UspA1 (ubiquitous surface protein) of Moraxella catarrha-
lis (Skurnik et al., 1994; Everest et al., 1996; St Geme
and Cutter, 1996; Cope et al., 1999). Several non-fimbrial
adhesins are autotransporters, which are translocated
across the bacterial inner membrane by the Sec machin-
ery but cross the outer membrane by self-transportation
(Henderson and Nataro, 2001). Genome sequencing
projects have revealed the wide occurrence of non-
fimbrial adhesins in symbiotic, animal as well as plant
pathogenic and free-living bacteria (Hoiczyk et al., 2000).
However, molecular characterization has only been
reported in animal pathogenic bacteria. The genome
sequence of Xyllela fastidiosa, a causal agent of citrus
variegated chlorosis, has revealed the genes for three
non-fimbrial adhesin-like molecules in this bacterium
(Simpson et al., 2000). Dispersal of this pathogen occurs
through an insect vector, and it has been suggested that
these molecules might be involved in attachment to insect
cells (Lambais et al., 2000). In the recently sequenced
genomes of the plant pathogens, Ralstonia solanacearum
(affects a wide range of plants), Xanthomonas campestris
pv. campestris (Xcc; pathogen of plants such as mustard
and Arabidopsis) and Xanthomonas axonopodis pv. citri
(Xac; pathogen of citrus plants), proteins that are similar
to non-fimbrial adhesin-like molecules have been identi-
fied, but their role in virulence has yet to be defined
(Salanoubat et al., 2002; da Silva et al., 2002).
Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-
negative bacterium that causes bacterial leaf blight, a
serious disease in rice. Xoo gains entry into rice leaves
either through wounds or natural openings called hydath-
odes that are concentrated at the edges of the leaves. The
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hydathodes lead into the xylem vessels inside which Xoo
multiplies. Some previously described genes that are
required for virulence of Xoo are: gumG and gumM
involved in extracellular polysaccharide (EPS) biosynthe-
sis (Dharmapuri and Sonti, 1999; Rajeshwari and Sonti,
2000); rpfC, which is involved in the regulation of EPS
biosynthesis (Tang etal, 1996); rpfF involved in iron
metabolism (Chatterjee and Sonti, 2002); and hrp and avr,
which encode components of a type Ill protein secretion
system, its effectors and regulators (Kamdar et al., 1993;
Bai etal, 2000; Yang etal., 2000; Zhu etal., 2000).
Besides these, certain amino acid auxotrophs of Xoo have
also been shown to be virulence deficient (Yamasaki
etal, 1964; Goel etal, 2001). A virulence-deficient
mutant of Xoo that is unable to secrete xylanase was
reported by Ray et al. (2000). A genomic clone, pSR1,
restored both xylanase and virulence proficiency to this
mutant. Insertional mutagenesis of a 12 kb region of pSR1
revealed that the genes involved were homologues of
xpsF and xpsD, which encode components of the type Il
protein secretion system (TTPS) in Xcc. In this study, we
show that pSR1 also contains a novel open reading frame
(ORF) of 3.798 kb that encodes XadA (Xanthomonas
adhesin-like protein A), which shares similarity with sev-
eral non-fimbrial adhesins of animal pathogenic bacteria.
XadA is shown to be an outer membrane protein that is
differentially expressed and is required for optimal viru-

Table 1. Plasmid and strain list.

lence and normal colony/lawn morphology of Xoo. Homol-
ogy modelling suggests that XadA might adopt a B-helix
configuration. This is the first demonstration that a non-
fimbrial adhesin-like molecule promotes the virulence of
a plant pathogenic bacterium.

Results

XadA sequence features and similarity with non-fimbrial
adhesins of animal pathogenic bacteria

A 9.0 kb EcoRI fragment from pSR1 was subcloned into
the cosmid vector pUFR034 to generate pSR3 (Table 1).
A 7609 bp region of pSR3 was sequenced, and four
potential ORFs (Fig. 1) were identified in this region.
ORF1 is 3798 bp long, extending from 1196 bp to
4993 bp. Three putative promoters were identified
upstream of ORF1 (between 907 and 1195 bp), and the
most probable one (based on similarity to the consensus
promoter sequence) is from 907 to 934 bp. Upstream to
the probable promoter, a stretch of 14 pyrimidine bases
is present from 845 to 858 bp. There are two inverted
repeat regions in this ORF: one is from 1770 to 1791 bp
(ACGTGGCGCAGCTGCGCCACGT) and the other is
from 2121 to 2139 bp (CCGGCGCTACCAGCGCCGQG).
The significance, if any, of the stretch of pyrimidine bases
and the inverted repeat sequences remains to be
established.

Strain/plasmid Relevant characteristics Reference/source
Xoo strains
BXO1 Laboratory wild type; Indian isolate Laboratory collection
BX043 rif-2; Rf" derivative of BXO1 Laboratory collection
BX0836 xadA1::Tn5gusA40 rif-2 This work
BX0837 xadA2::Tn5gusA40 rif-2 This work
BX0838 xadA4::Tn5Tet rif-2 This work
BX0839 xadA5::Tn5Tet rif-2 This work
BX0840 xadA6::Tn5Tet rif-2 This work
BX0O841 xadA3::Tn10 rif-2 This work
BX0845 zxx-110:Tn10 rif-2 This work
BX0O846 zxx-110::Tn 10 rif-2; XadA* derivative of BXO836 This work
BX0847 zxx-110:Tn10 rif-2; XadA* derivative of BXO837 This work
BX0848 xadA1:Tn5gusA40 zxx-110:Tn 10 rif-2 This work
BX0849 xadA2::Tn5gusA40 zxx-110:Tn10 rif-2 This work
BX0884 prt1::TnbTet rif-2 This work
Plasmids
pUFR034 IncW Nm"™ Mob* mob (P) lacZ alpha Par* cos (8.7kb) DeFeyter et al. (1990)
pRK600 pRK2013 npt::Tng; Cm" Laboratory collection
pBluescript (KS) Ap' Stratagene
pXop1 pBluescript + 777 bp PCR amplified fragment from xadA gene This study
pGEX-2T Ap' Promega; Smith and Johnson (1988)
pXop2 PGEX-2T + =777 bp EcoRI and BamHI digest from pXop1 This study
pSR1 pUFRO034 + a 30 kb insert from the BXO1 genome Ray et al. (2000)
pSR3 pUFR034 + 9 kb EcoRI fragment of the insert from pSR1 This study
pSR10 pSR1:zxx-110:Tn10 This study

rif indicates a mutation that confers rifampicin resistance. zxx-170::Tn 10 insertion is located on Xoo DNA cloned in pSR1 outside the region
encoding the type two protein secretion system or any other known virulence factor. prt1::Tn5 indicates an insertion in the ORF for the putative

serine protease pseudogene. Ap' indicates resistance to ampicillin.
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Fig. 1. Schematic of the arrangement of ORFs in a 7.609 kb genomic region of Xoo. ‘M’ and ' represent the beginning and end of the ORFs,
respectively, whereas arrows represent the direction of transcription. xadA insertions affect virulence and colony morphology. The prt1 insertion
does not affect either virulence or colony/lawn morphology. ORFs 4 and 3 extend from or into adjacent regions, respectively, and only partial

sequences are available.

ORF1 encodes a protein of 1265 amino acids desig-
nated as XadA. It is rich in alanine (22.3%), glycine
(15.3%), serine (10.1%), valine (9.6%) and threonine
(8.1%), whereas it lacks cysteine. Either a TAVG or a
similar sequence is present 23 times in this sequence. A
nine-amino-acid region (TDAVNVAQL) is repeated four
times in XadA, with little variation. There are longer repeat
sequences in the protein as shown in Fig. 2A. A novel
feature is the presence of repeats of alanine at an interval
of seven amino acids almost throughout the sequence
of the protein. A cluster of 10 charged amino acids is
present towards the C-terminal (1179-1193) region. The
N-terminal region of XadA shows the presence of an
unusually long putative signal peptide of 66 amino acids.
The presence of a long signal peptide has been found in
several, but not all, autotransporters (Henderson et al.,
1998). The C-terminal ends with a tryptophan, which is
part of a motif made up of five, alternatively arranged,
hydrophobic amino acids found in autotransporters and
many other outer membrane proteins such as siderophore
receptors, porins, etc. (Struyve et al., 1991; Henderson
etal., 1998).

A BLAST search (Altschul etal., 1997) with XadA
sequence identified homology to several non-fimbrial
adhesins of animal pathogenic bacteria, such as YadA of
Yersinia sp. and UspA1 of M. catarrhalis. An interesting
feature is that the homology to YadA is repeated six times
within the XadA sequence (Fig. 2B). Similarly, the homol-
ogy to UspA1 is repeated multiple times within the XadA
sequence (data not shown). In addition, XadA was found
to be homologous to several uncharacterized ORFs
present in other animal pathogenic bacteria and the
closely related phytopathogenic bacteria, Xanthomonas
campestris pv. pelargonii (causal agent of bacterial blight
in geranium) and X. fastidiosa, Xac and Xcc (data not
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shown). Interestingly, all these related protein sequences
contain multiple copies of TDAVNVAQL or a similar motif.

Genes linked to xadA: a Xoo serine protease gene may
be a pseudogene

Three other ORFs besides xadA were identified in the
7609 bp region (Fig.1). ORF2 extends from 5214 to
5966 bp and is homologous to serine proteases from a
number of bacteria, e.g. a serine protease from Xcc (32%
identity and 49% similarity in a stretch of 205 amino
acids). The homology to serine proteases extends beyond
ORF2 (from 5214 to 7049 bp) but is interrupted by non-
sense and frameshift (-1) mutations immediately after
5963 bp and 6503 bp respectively. The sequence of this
region was reconfirmed by polymerase chain reaction
(PCR) amplification from genomic DNA and resequenc-
ing. It is therefore possible that ORF2 represents a
pseudogene. It is pertinent to note that Xoo is deficient
for extracellular protease activity (Ray etal, 2000),
whereas Xcc is proficient (Tang et al., 1987). Only partial
sequences are available for ORF3 and ORF4. ORF3 is
homologous to XpsE, a component of the type Il protein
secretion system of Xcc (Dums et al., 1991), and ORF4
is homologous to phosphoribosylformylglycinamidine syn-
thetase, an enzyme involved in purine biosynthesis (data
not shown).

XadA is required for optimal virulence

To study the effect of xadA mutations on Xoo virulence,
several xadA:Tn5 or Tn10 (Fig.1) insertions were
obtained on the pSR1 clone by transposon mutagenesis
and marker exchanged into the wild-type background. The
virulence phenotype of all xadA mutants (BXO#s 836,
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1 MNOIYRKVWNKSLGVWAVASELSSGDSPGAVASASFIDRRHRLALTAATATATLGGAGFAT
61 PLPANAQSVEVGRGASAPASKATATIGANSHASATGAVATGADSSASGVNSSAIGRPTNAI
121 GENALAIGHNSFVRQSGENGVAPGANAGVSGANSRTYEDDVVSIGSGNGRGGPATRRITN
181 VTAGVNATDAVNVAQLRHVADVAENTAQFFKASPGEESVGAYVEGDSALAAGEGANAVGT
241 ATTALGTCGANAVAENATAVGTNALASGONSAAFGHNAQANGPASVAVGGAAVNEDGEPLI
301 TNGGVPVTTGATSAGVGGTAVGASAKADGFAASSFGVGAYAAGAQASAFGAVANAAGDYA
361 TAVGTQTRASGTSSTAVGGPVDLIPGLGLFVQTQASGEASTALGAGATIASGTYATAVGTL
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661 ALGGFSQSSGRLSSALGYSAVASSVDSTAVGVAAQATGVSAVAIGEISKATGEESVAVGG
721 GAFSGWIPTQASGKGAAAFGAGAWATADYTTAIGRDSYADGVNATAVGQSADALADNTLA
781 LGGGSRAKAVGASVIGVDASATGINSTGVGRQVNVIGENAVSVGYNSYVRQSAVNGVALG
841 ANAGATGADSVALGSGSSTYDADTVSVGSGNGRGGPATRRIVNVGAGAVASASTDAINGG
901 OLFESLSNAASFLGGGAATIGAQGVFVAPTYLIQGASYNNVGAALTALDSKVTELDARSGG
961 TPANTAARTASLRTATVPAMAATAVSAVSSNVASTAIDATAGVQGTPTAAVVGSITPAAL
1021 STVVGTAAVANNVTGTAIGGSAYAHGANDTATIGSNARVNADGSTAVGANTQIAAVATNAV
1081 AMGDGAQVTAASGTAIGQGARATAQGAVALGOGSVADRANTVSVGSVGGERQVANVAAGT
1141 LATDAVNEGOLDNGVAAANSYTDSRYNAMADSFESYQGDIEDRLRROQNRRLDRQGAMSSA
1201 MLNMSASVAGIASPNRIGAGVGFQONGESALSVGYQRAISPRATVTVGGALSSGDSSIGVG
1261 AGFGW
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Fig. 2. A. XadA sequence features. Amino acid regions exhibiting similarity to each other have been shown in the same colour. Towards the C-
terminal end, amino acids forming a charge cluster have been indicated in bold letters. Alternate hydrophobic amino acids at the C-terminal end
of the protein are indicated in bold, underlined letters. A indicates alanine repeated at an interval of seven amino acids.

B. Regions of homology between Xoo XadA and Yersinia YadA. The filled box represents XadA (1-1265 amino acids), and the vertical lines on
it represent every 100 amino acids within this sequence. The open boxes represent regions of XadA that exhibit homology to YadA. Numbers
inside the open boxes represent the percentage identity and similarity respectively. Numbers below these boxes indicate homologous regions of
YadA.

837, 838, 839, 840, 841) was similar to the wild-type strain
(BX0O43) after wound inoculation on rice leaves at higher
concentrations of inoculum (10-10° cfu ml-"). At =10°
cfu ml-', all xadA mutants exhibited a virulence deficiency
(data are shown for BXO#s 836 and 837; Fig. 3A). As
complementation of xadA mutant strains for virulence was

difficult, given the instability of pSR3 in planta (data not
shown), XadA* recombinants (BXO#s 846 and 847) were
obtained by replacing xadA- alleles in BXO836 and
BX0837 with the xadA* allele using the linked zxx-Tn710
insertion (see Experimental procedures). These XadA*
recombinants and a Xoo strain (BXO845; XadA+) carrying

© 2002 Blackwell Publishing Ltd, Molecular Microbiology, 46, 637—647
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Fig. 3. xadA mutations affect Xoo virulence. Virulence assays were
conducted by inoculating 40- to 50-day-old rice plants of the suscep-
tible cultivar Taichung Native-1 (TN-1) through either wounding (A) or
epiphytic (B) infection. Lesion lengths (A) or efficiency of infection (B)
(see Experimental procedures) were used as a measure of virulence.
BX043, the wild type strain; BXO836 and BXO837 are XadA™;

BX0846 and BXO847 are XadA* recombinants obtained from

BX0836 and BXO837 respectively; BXO845, zxx-110::Tn 10 (XadA*).

zxx-Tn10 exhibited a wild-type virulence phenotype. This
indicates that mutations in the xadA gene cause a viru-
lence deficiency after wound inoculation at low doses of
inoculum.

A virulence deficiency of xadA mutants was also
observed after epiphytic inoculation. In this mode of inoc-
ulation, the cells in a bacterial inoculum (=108 cfu ml-")
are deposited on rice leaf surfaces without wounding, and
the pathogen gains entry into rice leaves through the
hydathodal openings. Under these conditions of infection,
it was observed that lesions develop in =30% of the leaves
inoculated with BXO43 (Fig. 3B). The infection efficiency
for BXO836 and BXO837 was =5%, 15 days after infec-
tion (Fig.3B). The XadA* recombinants (BXO846 and

© 2002 Blackwell Publishing Ltd, Molecular Microbiology, 46, 637—647

A non-fimbrial adhesin-like molecule in a rice pathogen 641

BX0847) and the XadA* strain (BXO845) carrying the
zxx-110:Tn10 were as efficient at epiphytic infection as
the wild-type strain. This indicates that the xadA gene
promotes epiphytic infection of rice leaves. A Tn5 insertion
in ORF2 (prt1::Tn5; Fig. 1) did not affect the virulence of
Xoo after either wound inoculation or epiphytic infection
(data not shown). This indicates that the virulence defi-
ciency of xadA insertion mutants is not the result of a polar
effect on downstream genes.

The xadA mutants exhibit a conditional alteration in
colony/lawn morphology

The xadA mutants form extracellular polysaccharide
positive (EPS*) colonies/lawns like the wild-type (BXO43)
strain upon growing on either complex or minimal medium
at 28°C. However, after 7 days of growth in minimal
medium, a gradual change occurs in the morphology of
the lawns and colonies formed by all the xadA mutants
(BXO#s 836, 837, 838, 839). The EPS* regions start
becoming EPS- (Fig. 4; shown only for BXO837). In seven
more days, the entire bacterial lawn/colony becomes
EPS-. Introduction of the pSR3 clone restores the wild-
type pattern of EPS production in these mutants (data not
shown). The xadA mutants remain EPS* even after pro-
longed incubation in rich medium. Upon restreaking, the
bacteria from the EPS- regions form colonies that are
EPS* in rich and minimal medium but slowly become
EPS- only in minimal medium. This suggests that the
change in colony morphology does not result from an
additional mutation. No such change in bacterial colony/
lawn morphology was observed for either BXO43 or other
XadA* strains (BXO#s 846, 847, 843, 844). A Tn5 inser-

EPS* EPS

BX043

BX0837

Fig. 4. Extracellular polysaccharide (EPS)-deficient phenotype of
xadA mutant. BXO43, wild type strain; BXO837, XadA~ mutant. Pho-
tographs showing the presence of both EPS-proficient (EPS*) and
-deficient (EPS™) regions in a 10-day-old minimal medium-grown
culture of BXO837. No EPS™ region is observed in a culture of the
BX0O43 strain.
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tion in ORF2 (prt1::Tn5; Fig. 1) did not affect the EPS
phenotype, suggesting that the conditional EPS defi-
ciency associated with xadA insertions is not caused by
a polar effect on downstream genes.

XadA is an outer membrane protein, and its expression is
regulated by growth conditions

The conditional change in colony phenotype of the xadA
mutants described above indicated differential expression
of XadA. To study XadA expression, Xoo strains were
grown in either rich or minimal media, and whole-cell
lysates were analysed in Western blots using anti-XadA
antibodies. Western analysis identified a prominent
~110 kDa band (expected size of XadA based on
sequence) in the BXO43 strain grown in minimal medium
(Fig. 5). In BXO#s 836 and 837, this band was replaced
by =78 kDa and =27 kDa bands respectively (the latter
band is very faint in Fig.5 and was visible only upon
longer staining). The altered bands in the above mutants
were of the expected sizes for the truncated XadA protein,
given the Tn5gusA40 insertions at 782 (after the 2345th
bp) and 278 codons (after the 832nd bp) in the xadA gene
respectively. The xadA mutant alleles were converted to
xadA+ by allelic exchange using the linked zxx-110::Tn10
marker (see Experimental procedures). The 110 kDa pro-
tein reappeared in the xadA* recombinant strains (BXO#s
846 and 847), and the altered bands were present in
recombinants that remained xadA- (BXO# 848 and 849;
Table 1; Fig. 5), suggesting that this protein is encoded by
the xadA gene. Neither the 110 kDa nor the altered bands
were present in the Xoo strains grown in rich medium,
indicating that the XadA protein is expressed only in min-
imal medium-grown cells. Coomassie brilliant blue (CBB)

kba 1.2 3 4567891011

_ |

Fig. 5. Differential expression of XadA protein. Western blot analysis
of the cell lysates of minimal and rich media-grown Xoo strains were
done using anti-XadA antibodies. Lanes 1-7, strains grown in minimal
medium; lanes 8-11, strains grown in rich medium; lanes 1 and 8,
BX043 (XadA*); lanes 2 and 9, BXO836 (XadA"); lanes 5 and 11,
BX0837 (XadA~); lanes 4 and 10, BXO846 (XadA®); lane 3, BXO848
(XadA"); lane 6, BXO849 (XadA~); lane 7, BXO847 (XadA®). In lanes
1, 4 and 7, an =110 kDa band is present. In lanes 2 and 3, an

~78 kDa band is present and, in lanes 5 and 6, an =27 kDa band
(visible clearly only after prolonged staining) is present.

kDa

— 97

Fig. 6. Localization of XadA to the outer membrane of Xoo.

A. Outer membrane preparations of minimal medium-grown Xoo cells
were separated by SDS-PAGE and subjected to Western blot analysis
using anti-XadA antibody as described in Experimental procedures.
Lane 1 (BX043; XadA*); lane 2 (BX0O836; XadA~) and lane 3
(BX0O846; XadA* recombinant in BXO836 background).

B. Trypsin digestion of physiologically intact BXO43 cells was per-
formed. Whole-cell lysates were separated by SDS-PAGE and sub-
jected to Western analysis using anti-XadA antibodies. Lane 1,
trypsin treated; lane 2, trypsin untreated.

staining was done on a second gel run under the same
conditions to indicate that an equal amount of protein was
loaded in all lanes (data not shown). Even in a CBB-
stained gel, the =110 kDa protein was detected only in
lysates from minimal medium-grown wild-type cells but
not from rich medium-grown cells. This 110 kDa protein
was missing in the xadA mutants (data not shown).
Outer and inner membrane fractions were purified from
minimal medium-grown BX043, BX0O836 and BX0846.
Lipopolysaccharide (LPS) and succinate dehydrogenase
were taken as markers for outer and inner membranes,
respectively, as described by Goel et al. (2002). LPS was
localized only to the outer membrane fraction, and succi-
nate dehydrogenase activity was detected only in the
inner membrane fraction (data not shown), indicating that
separation of the membranes was achieved. Western blot
analysis using anti-XadA antibodies detected the pres-
ence of the =110 kDa band only in the outer membrane
fractions of BXO43 and BXO846 (Fig. 6A) but not in either
inner membrane or extracellular fractions (data not
shown). The =78 kDa truncated protein that was detected
in the whole-cell lysate of BXO836 was present in neither
the outer membrane fraction nor the inner membrane
fraction (data not shown). This indicates that XadA is an
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outer membrane protein and that the C-terminal end is
required for outer membrane localization/docking. As
expected, the 110 kDa band was not detected in the outer
membrane fractions isolated from BX0O43 and BX0846
cells grown in rich medium (data not shown). As protease
treatment of physiologically intact cells is a suitable tool
for testing the surface exposure of bacterial outer mem-
brane proteins (Lattemann et al., 2000), minimal medium-
grown Xoo cells were subjected to trypsin treatment
before Western blot analysis. Trypsin treatment of the
BXO043 strain resulted in the disappearance of the
110 kDa band and the appearance of a smaller band
(=90 kDa; Fig. 6B), suggesting that only a portion of the
XadA protein is sensitive to protease treatment. Trypsin
treatment of detergent-solubilized cells and Western blot
analysis with XadA antibody yielded a low-molecular-
weight band of =20 kDa (data not shown), indicating that
the 90 kDa band is not simply resistant to trypsin.

Modelling of the three-dimensional structure of XadA

The predicted structure of XadA was generated using the
SWISS-HOMOLOGY modeller program. Co-ordinates were
obtained for the C-terminal part of XadA (from 650 to 1206
amino acids), and the structure was simulated and opti-
mized on INSIGHTII. The three-dimensional model sug-
gests a parallel B-helix-type structure (Fig.7A and B),
similar to that found in virulence factors such as the non-
fimbrial adhesin pertactin P.69 of B. pertussis (Emsley
et al., 1996) and pectate lyase C of Erwinia chrysanthemi
(Yoder et al., 1993). In the modelled structure, a total of
19 rungs are formed, which are made up of both three
B-strands and two B-strands comprising 22 and 14 resi-
dues per rung respectively. The total length of the B-helix
is about 120.20 A. Like other B-helix proteins, the B-
strands are mostly amphipathic in nature with their hydro-
philic amino acids facing away from and the hydrophobic
amino acids facing towards the core. There are two
loop regions protruding out from the helices (894-918
amino acids and 1004—-1018 amino acids). Analysis of the
XadA sequence using the B-helix predicting program,
BETAWRAP (Bradley et al., 2001), suggested the presence
of B-helix folds throughout the protein. The best wrap
region predicted (790-924 amino acids) lies in the mod-
elled region with a raw score of —20.99, substantiating the
results of homology modelling. These results are signifi-
cant because it has been reported that many predicted [3-
helix-forming proteins are virulence factors of microbial
pathogens (Bradley et al.,, 2001). Using the AMPHI algo-
rithm (Jahnig, 1990), four potential amphipathic -strands,
which can form a membrane-spanning region, were
detected at the C-terminal end (1198-1265 amino acids)
of XadA.
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Fig. 7. Three-dimensional structure for the 650—-1206 amino acid
region of XadA.

A. Ribbon diagram of the simulated three-dimensional structure of
XadA indicating parallel B-sheets arranged as a hanger-like B-helical
conformation.

B. Ribbon diagram of the see-through structure of the above part of
XadA.

Discussion

In this report, we have described a high-molecular-weight,
outer membrane protein of X. oryzae pv. oryzae that is
homologous to non-fimbrial adhesins of animal patho-
genic bacteria and is required for optimum virulence. It is
possible that XadA is involved in attaching to the surfaces
lining the hydathodal openings and xylem vessels. As it is
difficult to perform adhesion assays on these surfaces,
because of their inaccessibility, we have performed
assays for attachment to rice leaf surfaces and callus
cultures. In preliminary experiments (data not shown), we
have not found a difference between wild type and xadA
mutants in their ability to attach to these surfaces. It is
possible that additional functions, besides XadA, might
be involved in the attachment of Xoo to these particular
surfaces. Alternatively, XadA might have another role in
promoting Xoo virulence. Pectate lyases of E. chrysan-
themi and other bacteria (Bradley et al., 2001) adopt an
B-helical structure, and it could be that XadA acts like a
pectate lyase or has a similar polysaccharide-degrading
activity. We consider this to be less likely because XadA
exhibits no sequence similarity with known pectate lyases.
Also, unlike the B-helical pectate lyase family members,
which are secreted proteins, the outer membrane local-
ization of XadA is more consistent with its role as an
adhesin.
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The xadA mutants are more affected for virulence after
epiphytic infection than after wound inoculation. This indi-
cates that XadA has an important function in Xoo viru-
lence somewhere along the path that takes it from the leaf
surface, through the hydathodes, into the xylem vessels.
The XadA protein also has a moderate, yet significant,
effect on virulence after wound infection. One possibility
is that other virulence factors might have overlapping
functions with XadA in promoting growth within xylem
vessels. It is pertinent in this regard to note that many
animal pathogenic bacteria have been reported to have
multiple adhesins (Henderson and Nataro, 2001). Also,
the genome sequences of the plant pathogens X.
fastidiosa, R. solanacearum, Xcc and Xac have been
reported to encode multiple adhesin-like functions
(Simpson et al., 2000; Salanoubat et al., 2002; da Silva
etal., 2002).

The XadA protein appears to be expressed in minimal
medium but not in rich medium. This correlates well with
the conditional EPS-deficient phenotype of xadA mutants.
This pattern of expression is interesting because xylem is
considered to be mainly a conduit for transport of water
and minerals. Therefore, rice xylem sap is likely to be
more akin to minimal medium than to rich medium. Con-
sistent with this, our preliminary observations (data not
shown) suggest that XadA is indeed being expressed
during in planta growth. However, the mechanism by
which XadA expression is regulated by the composition of
the growth medium has yet to be understood.

Hoiczyk et al. (2000) have proposed a ‘lollipop’-shaped
structure for YadA, based on data from electron micros-
copy and amino acid sequence analysis. The N-terminal
region forms the head domain, which is responsible for
host cell contact and contains several degenerate 14-
residue repeats. Secondary structure prediction suggests
that this repeat region consists primarily of B-strands. This
is followed by a neck region, which is highly conserved
and is often present as multiple repeats in non-fimbrial
adhesins from several proteobacteria. The stalk of the
lollipop is postulated to be formed by an elongated coiled-
coil domain that is composed of a different class of degen-
erate repeats. The C-terminal region acts as an outer
membrane anchor domain and is composed of four
amphipathic transmembrane B-strands. XadA exhibits
homology to the N-terminal head region of YadA. The
TAVG-like repeats that are present throughout XadA are
homologous to consensus sequences in the degenerate
14-residue repeats from the head region of YadA (data not
shown). The TDAVNVAQL sequence, which is part of the
neck region of YadA, is repeated four times in XadA, but
the coiled-coil domain was not detected. As in YadA, the
C-terminal region of XadA is composed of four transmem-
brane amphipathic B-strands that might serve as a mem-
brane anchor. Based on the sequence relationships

with YadA and the homology modelling, we postulate
that XadA is composed of an elongated B-helix with a
C-terminal membrane anchor. This elongated structure
might be an adaptation to the presence of EPS, which
may otherwise form a barrier for interacting with the host
tissue. The multiple repeat motifs in XadA might serve, in
an as yet undetermined manner, to elaborate this elon-
gated [B-helix structure. This kind of phenomenon has
been reported in H. influenzae (St Geme et al., 1996), in
which the Hsf adhesin of typeable strains (EPS") is larger
than the Hia from non-typeable strains (EPS-) because of
repetition of the Hia homologous region three times in Hsf.
Structural analysis with electron microscopy, crystallogra-
phy, etc. along with site-specific mutagenesis of the xadA
gene are planned to understand the structure—function
relationship of XadA and to test some of the predictions
made in this study.

Recent reports have provided the interesting obser-
vation that several virulence functions are conserved
among Gram-negative bacterial pathogens, irrespective
of whether they infect animal or plant cells. These con-
served virulence functions are either transport systems
that are involved in the secretion of virulence factors
across the bacterial cell surface or particular effector mol-
ecules (Hardt and Galan, 1997; Staskawicz et al., 2001).
One particular bacterium, Pseudomonas aeruginosa, has
been shown to be capable of infecting both animals and
plants using the same virulence factors (Rahme et al.,
2000). This study extends our knowledge about the rep-
ertoire of homologous virulence factors that are deployed
by animal and plant pathogenic bacteria to include func-
tions potentially involved in adhesion. Future studies will
be aimed at understanding the exact role of XadA in Xoo
virulence.

Experimental procedures
Bacterial strains, plasmids and growth conditions

The strain and plasmid list is shown in Table 1. Media and
growth conditions for Escherichia coli and Xoo have been
described previously (Ray et al., 2000). Antibiotics used in
this study were: cephalexin (Cp) 20 pg ml-'; kanamycin (Km)
50 ug mi~" for E. coli and 25 ug ml-! for Xoo; spectinomycin
(Sp) 50 ug mi-'; tetracycline (Tc) 10 ug mi=! for E. coli and
5 ug mi~! for Xoo.

Virulence assays

Wound inoculations were performed on 40- to 50-day-old
plants of highly susceptible rice cultivar Taichung Native-1
(TN-1) as described previously (Ray et al., 2000). Symptoms
were scored by measuring lesion lengths at 7 and 10 days
after inoculation (DAI). In each experiment, 15 leaves were
inoculated, and the values are presented as mean lesion
lengths and standard deviations. Similar results were
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obtained in independent experiments. For epiphytic infec-
tions, 40- to 50-day-old TN-1 rice plants were kept inside the
greenhouse within a humidity chamber (made up of Plexiglas
sheets) for 24 h before infection. Inoculations were done by
dipping the tips of rice leaves (to a distance of =4 cm from
the leaf tip) in a bacterial suspension carrying 108 cfu mi-" for
5-10 s. Plants were kept in the humidity chamber for an
additional week. Subsequently, the plants were transferred to
a greenhouse bench, and the frequency of lesion formation
was determined 15 DAL In each experiment, 20 leaves were
inoculated, and the mean and standard deviations of data
from three experiments are presented.

Bacterial conjugations, transposon mutagenesis and
marker exchange

Matings between E. coli strains and E. coli (donor) with Xoo
(recipient) were carried out as described previously (Ray
et al., 2000). The pSR1 clone was mutagenized in vivo with
Tn5gusA40 (Wilson et al., 1995) and in vitro using an EZ::TN
<TET-1> insertion kit (Epicentre Tech). Transposon insertions
obtained in the xadA and prt (protease) genes were marker
exchanged (Ray et al., 2000) into the BXO43 background,
and the mutants were analysed by Southern hybridization. To
obtain XadA* recombinants, the pSR10 plasmid (Table 1;
Ray et al., 2000), carrying a zxx-110::Tn10 insertion linked
to xadA*, was mobilized into BXO836 and BX0O837 by con-
jugation. Tc' recombinants that were either XadA* (BX0O846
and BX0847; Tc' Sp®, Km?®) or XadA~ (BXO848 and BX0O849;
Tc', Sp', Km®) were obtained by growing the transconjugants
in rich medium containing Tc for more than 30 generations
and screening on medium supplemented with appropriate
antibiotics.

Plasmid isolation, DNA sequencing and
sequence analysis

Plasmid DNA was isolated by the alkaline lysis method
(Sambrook et al., 1989) and restriction digested where nec-
essary. Sequencing was performed using transposon-
specific primers and primer walking. Sequencing reactions,
electrophoresis and sequence data analyses were performed
using the ABI Prism 3700 automated DNA sequencer
(Perkin-Elmer Biosystems). Homology searches were
done using the BLAST algorithm (Altschul etal., 1997)
through the National Center for Biotechnology Information
(http://www.ncbi.nim.nih.gov/blast). SIGNALP (Nielsen et al.,
1997) and sAP (statistical analysis of proteins; Brendel et al.,
1992) programs at the http://www.expasy.ch site were used
to detect putative signal peptide and repeat regions. Putative
promoters were identified using the search launcher at Baylor
College of Medicine (http://dot.imgen.bcm.tmc.tmc.edu), and
ORFs were identified using FRAMEPLOT (Ishikawa and Hotta,
1999; http://www.nih.go.jp/~jun/cgi-bin/frameplot.pl).

Raising of polyclonal antibodies to XadA fusion protein

A 777 bp region of the xadA gene was PCR amplified using
the following primers (forward primer: GCGGATCCACTGC
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CGGCGTCAATGCCACCGAT; reverse primer: GCGAATTC
TTCGCCCGGCGCATACGCGAAGTA) to yield a protein of
259 amino acids from the N-terminal region of XadA (from
182 to 440 amino acids; accession no. AF288222). The PCR
product was cloned in pBSKS vector (Stratagene) using
EcoRl and BamHI restriction sites to obtain pXop1, and
subcloned in pGEX-2T (Amersham Pharmacia Biotech) to
obtain pXop2. The fused protein was purified using
glutathione-coated agarose beads (Smith and Johnson,
1988) and used for raising polyclonal antibodies in rabbit by
standard protocols (Sambrook et al, 1989). The antiserum
could detect XadA protein in wild-type Xoo samples at a
dilution of 1:2000.

Outer membrane localization of XadA

The outer and inner membrane fractions were isolated from
the saturated cultures of wild-type, xadA mutant and xadA*
recombinant strains of Xoo by the method of Ray etal.
(1994). Cultures were grown in 100 ml of minimal medium,
and cells were pelleted and resuspended in buffer containing
5 mM Tris-Cl (pH 8.0), 0.375 M sucrose, 1 mM EDTA and
30 ug ml~" lysozyme. The cells were lysed by sonication
and centrifuged at 5000 r.p.m. for 10 min to pellet unlysed
cells and cell debris. The supernatant was centrifuged at
90 000 r.p.m. for 2 h in a table-top ultracentrifuge. The pellets
were resuspended in Triton X-100 buffer containing 10 mM
Tris-Cl (pH 8.0), 1% Triton X-100 and 5 mM MgCl, and incu-
bated for 30 min at room temperature. The sample was
centrifuged at 70 000 r.p.m. for 30 min. The supernatant
was retained as the inner membrane fraction. The pellet was
resuspended in buffer containing 50 mM Tris-Cl (pH 8.0),
10 mM EDTA and 1% Triton X-100 and incubated at room
temperature for 30 min. The sample was centrifuged at
10 000 r.p.m. for 1 h, and the supernatant was taken as the
outer membrane fraction. Both fractions were solubilized in
1x SDS-PAGE sample buffer (Sambrook et al., 1989), heated
for 5 min at 100°C and separated on 10% acrylamide gels.
The samples were transferred to polyvinylidene difluoride
(PVDF) membranes by semi-dry method, and Western blot
analysis (Sambrook et al., 1989) was done using anti-XadA
antibodies. The secondary antibody was goat anti-rabbit
IgG conjugated to alkaline phosphatase. Detection was per-
formed using chromogenic substrates as described by
Sambrook et al. (1989).

For the preparation of whole-cell lysates, 1 ml of saturated
culture of wild-type, xadA mutant and xadA" recombinant
strains of PS- or minimal medium-grown Xoo cells was pel-
leted. The pellets were solubilized in 1x SDS-PAGE sample
buffer, separated by electrophoresis on 10% acrylamide gels
and transferred to PVDF membranes for Western blot
analysis using XadA-specific antibodies. Whole-cell trypsin
treatment was carried out as described by Lattemann et al.
(2000). Cells were grown in minimal media for 48 h at 28°C,
pelleted and resuspended in phosphate-buffered saline
(PBS) to a concentration of =1 x 108 cfu mI~'. The cells were
incubated at 37°C for 10 min with trypsin (50 ug ml-') before
washing twice in PBS to remove trypsin. The whole-cell
lysates were then obtained and subjected to Western blot
analysis as described above.
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Molecular modelling of XadA

The model of XadA was generated by homology modelling
on SWISS-MODEL protein modelling server (SWISS-MODEL
version 36.0002; Peitsch, 1996; Guex and Peitsch, 1997).
The co-ordinates from 651 to 1204 residues were obtained
from the swiss-MODEL server and used to build the three-
dimensional structure. The structure was corrected using
INSIGHTII, and minimization was done on this structure using
the DISCOVER module on an Onyx workstation at 300 K
(Silicon Graphics). After adding hydrogens, charge potentials
were assigned, fixed and accepted; hydrogens were un-
charged. The 100 steepest iterations and 50 iterations for
conjugate were used to minimize the structure. The AMPHI
algorithm (Jahnig, 1990) was used to detect amphipathic
B-strands in protein sequences. The BETAWRAP program
(http://theory.lcs.mit.edu/betawrap; Bradley et al., 2001) was
used for B-helix prediction.
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