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Abstract. Belavin, Zamlodochikov and Polyakov have recently proposed a class of
conformally invariant field theories in two dimension with exactly determined rational critical
indices. We establish a tentative identification of a subset of these theories in terms of the O(n)
model and the g-state Potts model in 2-dimensions for appropriate n and g.
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Conformal invariance has proved to be a fruitful concept, both in relativistic field
theory and in statistical mechanics. In the context of relativistic field theory, this
invariance is a direct consequence of a traceless energy momentum tensor. In the
context of statistical mechanics, Polyakov (1970) proposed that the correlation
functions at the critical point possess conformal invariance over and above the usual
scale invariance. The origin of this invariance is not entirely clear (Wolsky and Green
1974). Rather stringent consequences follow when conformal invariance is imposed on
the Wilson-Kadanoff operator algebra (Wilson 1969; Kadanoff (1969). For instance,
the functional form of the three-point function is severely constrained, and appears to
be in conformity with known exact results (Fisher 1979).

In a recent work Belavin et al (1984) (8zp) have considered the consequences of
conformal invariance in two dimensions (1-space, 1-time). A remarkable result of their
investigation is that an infinite class of field theories exist for which the scale (or
anomalous) dimensions of all the operators are known exactly! This implies that all the
critical indices possible for these models are known. However, the identification of this
abstract class of field theories with known models remains an open problem. We
address ourselves to this very problem in the present work. zp have remarked that one
of the field theories considered by them has precisely the set of scaling indices of the 2-d
Ising model. In this work, we consider two classes of well-studied models in statistical
mechanics, the O (n) model and g-state Potts model, for which the predominant critical
indices have been calculated recently (Nienhuis 1982, 1983; den Nijs 1979; Nienhuis et
al 1980; Pearson 1980; den Nijs 1983; Black and Emery 1981; Nienhuis 1982; Wu 1982)

*The results of this work were reported in the conference on “Structural Similarities in Exactly Solved
Models” at L T.P. Santa Barbara, August 1984,
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in the form of explicit functions of n and q. We find that it is possible to identify, at least
tentatively, an infinite subset of the field theories proposed by Bzp with appropriate
O(n)and g-state Potts models. At a deeper level, the aim of a microscopic theory should
be to take the suggested models in statistical mechanics, to identify the appropriate
quantum field theory in 1-space dimension*, and to explicitly check whether the
algebraic structure proposed by pzp (highlighted below) follows. At the present stage,
we believe that it is important to identify phenomenologically, the possible models, by
actually comparing the critical indices of Bzp with the conjectured values for the O (n)
and g-state Potts models.

Let usfirst consider the field theories proposed by szp. These authors suggest that the
complete:set of operators for a Wilson-Kadanoff operator expansion can be regarded

as
{Ai}‘_: =tlj [¢n]’ ' 1)

where [¢,] is a (infinite) set called a conformal class. Each conformal class consists of
an ancestor field ¢, (z,2Z) where z = x° + ix!, 7 = x° — ix!, and the descendants thereof.
The ancestor field is characterized by a simple transformation law under the conformal
transformation z — y = y(z), y being analytic in z, such that

d A AV (7 A,
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Here _A,, and A, are the partial scale dimensions such that the net scale dimension of ¢, is
A, + A,. In order to obtain the descendants, consider the energy-momentum tensor
T*" (z) with the properties 9, T** (x) = 0 and 7% = 0. Define

T'(x) = Too (x) =Ty (x)+2i Ty, (x), v
T (x) = Too (x)— Ty (x) = 2i Ty, (x). @A)

It is well known that T (z) may be regarded as the generators of the conformal group
(Ferrara et al 1973). The ladder operators L, are defined as

Ln (Z) = §T(y) (y_z)n+1 dys
L, (2) =§T (5) (5 — 2" * dj, ).

for integer n, where the contours encircle zand z respectively. The descendants of ¢, are
defined as

¢'['—m1, ..... -myll-m,,...., —Fip ] (z, Z) = L—me*mzL—mNz—'Tu e z"mM¢" (Z’ E) (5)

The scale dimension of the descendant is A +A, + Zm; + Zmy;. The ladder operators
with m > 0 annihilate ¢, and we have an eigenvalue like equation

LO ¢'n = An ¢n' (6)

The algebra of L,’s can be derived from that of T*"s and would appear to be model-
dependent. However a remarkably universal algebra is found

L0 L (@) = (=)L (0455 (58 = 1) (7a)

*The standard route for this is through the commutation relation between the transfer matrix and a
quantum Hamiltonian. .
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[Ln (Z): zn (Z_)] = 0: (7b)

with tt_xe “central charge” C as the only model-dependent constant. The algebra of L, is
essenpally the same as in (7a). In model field theories, C has its origins in the Schwinéer
term in C}xrrent commutators. The algebra in (7) is known in the context of dual models
as the Vlras.oro algebra (Virasoro 1973; for reviews of dual models, see Jacob 1974).

Tl_me special models remarked upon by szp arise when the constant C takes on
p'artlcular values such that the conformal classes [ ¢, ] contain less fields than usual. The
situation arises if the descendants of ¢, in a certain generation themselves possess the
conformal transformation property of the ancestors equation (2), albeit with different
scale indices. All the possible scale indices have been computed exactly for these cases.
The resulting expressions due to V Kac are summarized below. With p integer, define

6
=1+ )
Let
A(n,m) =[(pm —(p+ 1)n)* =1/4p(p+1) = A(p—n,p+1—m) ©)

with 1 €n < p—1, 1 <m < p. The scale dimensions of the ancestor fields ¢, ., are
found to be

dypm = A (n,m)+ A (n, m), (10)

and the “Lorentz spin” of the field is A (n,m)— A (n,m). A is defined as in (9) but with
different values n and m in general. Clearly operators with dimensions d,, , + r exist for
arbitrary integer r. .

We consider next the problem of identification of the models in terms of the O (n) and
g-Potts models. For the latter models there exist recent calculations for the thermal and
magnetic field “eigenvalues” yr and y, which match the exact solutions, wherever
known, and also the series data. In terms of y, and y,, all the usual thermodynamic
exponents follow on using scaling and hyperscaling. For completeness we note the
results (d = spatial dimension)

v=1/ypa= 2—d/yp B = @d=yg)ysy = Qyy—4d)/yr

5 =yu/d—yuhn=d+2-2yx (11)
The scale dimensions of the spin (or order parameter) and energy operators are related
to y, and y, through

dg = d[Spin] =d— Yy

d; = d[Energy] =d—Jyr- (12)
For the particular case O (1) (or 2-Potts), the problem reduces to the Ising case where

the scale dimensions of other operators are known (Kadanoff 1966) in addition to dg
and d, but in the general case there is no other information available, as far as we are

aware.
The result for the O (n) model (Nienhuis 1982, 1983) may be stated as follows. Let

1<t<2andn= —2co0s (27/t), then

y,=4—2t,
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For the g-Potts model (den Nijs 1979; Nienhuis et al 1980; Pearson 1980; Black and
Emery 1981; Nienhuis 1982; Wu 1982; den Nijs 1983) let 0 <u<1 and
2 cos-1Y/4 |

2

= —CO0S
/8

, then
Yr=3(-u)/Q2-u),

=g (-4 G=uy2-u) (14

The branch — 1 < u < 0gives rise to the same value of g and is believed to be relevant in
the context of the tricritical point for the g-state Potts lattice gas (den Nijs 1979;
Nienhuis et al 1980; Pearson 1980; Black and Emery 1981; Nienhuis 1982; Wu 1982; den
Nijs 1983). In both cases we may eliminate the parameter (r or u) and find two
parametric relations between d and d;; (on using (12)). Thus for the O (n) case

8(2+dE)ds—dE(4—dE)=0 (15)
and for the g-Potts case
4(2~dg) (1 +dy)~ (dg+2) (dg+4) = 0. (16)

We now consider the indices equation (10). It is not known a priori, as to which values
of nand m correspond to the energy operator or the spin operator. We therefore scan all
values of n and mfor a fixed p (subjecttol <K n<p—-1,1<m< p)and try to satisfy the
two parametric relations (15) and (16) separately. We set A (n,m) = A (n,m) in the
following, which implies that all the operators possess Lorentz spin zero. (We have also
examined the case A # A and comment on this later). Firstly let us discard the values
A(1,1) = 0 leading to d s = 0 = d; (the gaussian model) which always satisfies (15) and
(16). :

O (n) model

The two cases p even or odd are distinct
(a) p-even: Equation (15) is satisfied provided

dg=2A(3,1)=2(p+2)/p,
ds=2A(p/2,p/2) = (p*—4)/(8p (p +1)). (17)

This implies t = 2 (p+1)/p (> 2)and n = 2 cos (n/p + 1). The resultant ¢ is outside the
range 1 € ¢ <2 and also d, > 2 50 that v < 0. These values of d therefore do not
correspond to any sensible model and we discard this case.

(b) p-odd: Equation (15) is satisfied provided

dp=2A(1,3)=2(p-1)/(p+1),
ds=2A(p/2=1/2,p/2+1/2) =} (p—1) (p+3)/p (p+ 1). (18)

This implies t = 2p/(p+ 1)and n = 2 cos (n/p). Thecasep = 3 corresponds to the Ising
model and has already been remarked upon by Bzp.

g-Potts model
(a) p-even: Equation (16) is satisfied provided
dg=2A(1,2) = (p—-2)/[2(p+1)],
ds=2A(p/2,p/2) = (P ~)/p(p+1). ' (19)
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This implies thatu = — 2/pandg = 4 cos? (r/p). As noted above u < 0 corresponds to
the g-state Potts model with dilution.
(b) p-odd: Equation (16) is satisfied provided

d; =201 = (p+3)/2p
s=2A(p/2-1/2,p[2+ 1/2)=%(p-1(+3)/pp+1) (20)

This corresponds tou = 2/(p + l)andg =4 cos? (n/p+1). Thecasep = 5 corresponds
to g = 3 and has been noted already by Dotsenko according to BZP.

In addition to the indices listed above, we have also found other cases numerically.
We checked all the nontrivial solutions for p < 30 for both the O (n) and the g-Potts
models on a computer. The other cases do not fall into any obvious systematic classand
hence we cannot say very much about these. We allowed for the possibility that A # A
in (10) and considered all possible pairs A (n',m’) such that their difference (i.e. the
Lorentz spin) is either an integer or a half integer. For the O (n) model we find the
following solutions (1) p =38; dg=2A(4,4),d;=A 5,4)+A34H =0 p= 27;
dy=2A(13,14), dg= 2A (13,15) (n=2cos Qn/7) () p=30;, ds= 2A (15, 15),
d,=2A(11,10) (n= 2 cos (171/45)). For the g-Potts model we find (1) p=3;

¢=2A(12), dg= A(L3)+A(LY) (g=4) Q) p= 4; dg=2A22), dg= A3,1)
+A(1,1) (g = 4cos?[2n/5]) B)p=14 d; = 2A (1,1), dg = A4 +A(LLD (g=0)
(4) p=20; dg=2A(8,8), d,=2A(7,8) (g=2) (5) p=21; dg= 2A (10,11), dg
=208, (g=4 cos? (9n/42)). Let us remark that the case (1) for O (n) model and the
case (3) for the Potts model correspond to the polymer and resistor network models,
which are not covered by (18) and (19)*. '

In conclusion we would like to make the following remarks (i) For an infinite set of
values of C corresponding to odd p, we have found that amongst the set of scaie
dimensions possible for the field theory, there are two pairs which lie on the parametric
families for the O (n)and g-Potts models. (ii) The dimension for the order parameter is
the same for the O (n) model and the g-Potts model which correspond to a given p. If we
accept that the pzp list of critical indices is complete, then it follows that the O (n) model
with n = 2cos(n/p) and the g-Potts model with g = 4cos? (n/p+1) (for p odd)
possesses a common set of critical indices. This tempts us to conjecture that these
models are isomorphic, with a common operator representing the order parameter and
an appropriate identification of other operators. (iii) There are presumably other
operators apart from energy and spin in the theory corresponding to the indices found
by Bzp. (iv) For the case of even p, the g-Potts lattice gas family appears to give a
realization to the field theory. (V) The values of g for which we find a correspondence
areq =4 cos? (n/2r) for integer r. This sets of ¢’s is a subset of Beraha numbers (Beraha
et al 1975; Tuette 1974) g = 4 cos? (n/r). The Beraha numbers are believed to be the
limit points of the real roots of the chromatic polynomial in the n-colouring problem.
We find this coincidence intriguing. We are studying the field theoretic formulation for
the O (n) and g-Potts models with the inverse problem in mind, viz to compute the
central charge given to n and 4, and hope to present the results soon.

After the completion of our work we became aware of two recent references relating
to our work. Friedan et al (1984) have found results similar to those of Bzp by

*For p = 15, the critical indices dg = 3 and dg= 21/160 can also be attained by taking dp = AN
+A(7,9),dg = 2A (7,8) instead of dg=2A(1) and dg = 2A(7,8) as given by equation (20).
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considering the constraints imposed by unitari'ty.‘ _They have remarked on the
correspondence between the exponents of the tricritical Potts model agd the Kac
formula for p=4 and 6. Dotsenko and Fateev (1984)* have c0n51d.ered the
identification between the exponents of the O (n) and g-Potts rpodel§ for nonmtegra! n
and g, with the Kac formula, also using the conjectures in Nienhuis (1982); den Nijs
1979 and Nienhuis et al (1980).
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