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We show that a continuous set of degenerate critical soft modes strongly enhances the first-order character
of a fluctuation-induced first-order transition in the pyrochlore dipolar Heisenberg antiferromagnet. Such a
degeneracy seems essential to explain the strong first-order transition recently observed in Gd2Sn2O7. We
present some evidence from Monte Carlo simulations and a perturbative renormalization group expansion.
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I. INTRODUCTION

In this paper we study phase transitions in Heisenberg
magnets on the pyrochlore lattice, which consists of corner
sharing tetrahedra.1,2 The motivation is partly theoretical, to
understand the behavior of highly frustrated systems when
there is a degeneracy, or near degeneracy, between different
ordered states. There is also experimental motivation since
experiments on Gd2Sn2O7 and Gd2Ti2O7 have shown a rich
behavior,3,4 including multiple field transitions5,6 which we
would like to understand.

For the family of rare earth pyrochlore systems it is well
known3 that dipole-dipole interactions are important, since
the angular momentum is large �S=7/2 for Gd�. If one adds
nearest neighbor exchange to dipole-dipole interactions, the
Fourier transform of the total interaction J�q� is virtually
independent7 of q �and takes its minimum value� along the
�1,1,1� directions of the reciprocal space.3,8 This means that
the magnetic ordering wave vector could, potentially, lie any-
where along these lines.

It turns out that the phases at the endpoints, q=0 �de-
noted, following Ref. 10, by A� and q= �� ,� ,�� �denoted by
� or B� are particularly important. The ordering expected at
q=0 �A type� has been discussed by several authors3,5,8,10

and is shown in Fig. 1. A possible ordering at q=� �B type�
has been proposed in Ref. 10.

Although one would imagine that Gd2Sn2O7 and
Gd2Ti2O7 should be quite similar, since the crystal structures
are the same �apart from a very small difference in the lattice
constant�, it is found that Gd2Sn2O7 has a strong first-order
transition,4 while Gd2Ti2O7 has a second-order transition.12

Furthermore, Gd2Ti2O7 orders at q=�12,13 while Gd2Sn2O7
appears more compatible with the A phase.14 While the small
change in lattice parameter between Gd2Sn2O7 and
Gd2Ti2O7 could change somewhat the exchange constants, it
seems remarkable that the nature of the ordering changes so
dramatically. We would like to understand such a delicate
dependence of ordering on exchange constants.

The first-order nature of the transition observed in
Gd2Sn2O7 is at variance with mean-field theory which
predicts10 a second-order transition. In order to clarify the
order of the transition, and to see whether it is affected by
longer range exchange interactions which lift the degeneracy

of J�q�, we have performed Monte Carlo simulations of the
classical dipolar Heisenberg model on the pyrochlore lattice.
These show that the apparent order of the transition is indeed
very sensitive to the exchange constants.

We have supplemented the numerics by a perturbative
renormalization group �RG� analysis. It is known that
“fluctuation-induced first-order transitions” occur when there
is no stable fixed point in a perturbative RG calculation. This
frequently occurs when the number of components of the
order parameter n is larger than 4.15–18 In general, such tran-
sitions are expected to be only weakly first order. Another
microscopic scenario for a first-order transition is the pro-
posal of Brazovskii19 that the existence of a continuous set of
degenerate soft modes could change the order of the transi-
tion. It was later shown that the RG analysis of models with
soft modes along special directions lacks stable fixed points
and the models are indeed likely to undergo first-order
transitions.20,21 This scenario is, for instance, relevant to the
description of the liquid crystal transition where the degen-
eracy naturally comes from the isotropy of the liquid.20 It is
also particularly relevant in frustrated magnets where frustra-

FIG. 1. The A state �q=0� of the pyrochlore lattice stabilized at
low temperatures by the dipole-dipole interactions �Refs. 3, 5, 8,
and 10�. Since the ordering is at q=0, all tetrahedra have the same
spin configuration as the one shown. In the figure, all the spins lie
onto the �xy� plane and form pairs of antiparallel spins that are
parallel to the opposite edge of the tetrahedron they belong to.
There are equivalent �xz� and �yz� states. The magnetic order is
therefore characterized by a n=3-component order parameter, �
with �xy� corresponding to �= �1,0 ,0� at T=0.
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tion may, precisely, provide a large number of quasidegener-
ate soft modes, though with different geometrical structures.
We shall consider a similar RG analysis, applicable for the
symmetry of the dipolar pyrochlores which have lines of
degeneracy, in this paper.

In this work, we study the order of the transition of the
classical Heisenberg model on the pyrochlore lattice with
long-range dipole-dipole interactions and exchange interac-
tions. We show, by means of Monte Carlo simulations, that
the transition is strongly first order when a continuous set of
soft modes is present in J�q�, and becomes weakly first order
when that degeneracy is removed by including further neigh-
bor interactions �Sec. II�. In Sec. III, we present a Landau-
Ginzburg-Wilson simplified model and a perturbative renor-
malization group analysis of the transition that predicts a
first-order transition, in agreement with the numerical results
in Sec. II. We summarize our conclusions in Sec. IV.

II. MONTE CARLO SIMULATIONS

We present in this section some results of Monte Carlo
simulations, using the parallel tempering approach,22 on the
Heisenberg model with dipolar and exchange interactions on
the pyrochlore lattice.

The classical Heisenberg Hamiltonian is

H = �
�i,j�

JijSi · S j + �g�B�2�
�i,j�

�Si · S j

rij
3 − 3

�rij · Si��rij · S j�
rij

5 � ,

�1�

where Si is a classical spin vector of length S=7/2 �for Gd3+�
on site i, and Jij is the Heisenberg exchange between the
neighbors; we will consider the first �J�, second �J2�, and
third neighbor �J3� couplings.10

The number of spins is N=16L3 �L�4� and periodic
boundary conditions are applied. The factor of 16 arises be-
cause the pyrochlore lattice consists of a fcc lattice of tetra-
hedra, each tetrahedron has four spins, and there are four
sites of the fcc lattice in the conventional cubic cell. To in-
corporate the B phase with periodic boundary conditions, we
need L to be even, so most of our results are for L=2 and 4.
Often the long-range dipolar interactions are cut off beyond a
couple of neighbors23 to speed up the simulations. However,
here we have kept a large number of neighbors �practically
infinite� in order to reproduce accurately the structure of the
degenerate states. If the dipole-dipole interaction is cut off,
ripples appear in the degenerate lines of soft modes.3,10,11 We
constructed periodic repetitions of the Monte Carlo clusters
and included the contributions of many blocks in performing
the dipolar sums. Because there is no cutoff in the dipole
interactions, the simulation becomes slow for large sizes, so
we are limited to L�4 �N�1024�.

We investigate ordering at q=0 �called A, see Fig. 1�, and
at q=� �called B, see Ref. 10�. With A ordering, the order
parameter has n=3 components and with B ordering it has
n=4 components, as detailed in Sec. III. The n-component
order parameters are given by

� = ��1,…,�n� , �2�

�� =
1

N
�
i=1

N

Si · ei
���, �3�

where ei
��� is the unit vector of spin i assuming the system is

fully ordered in component � of ordering type A with the
�xy� state �resp. �xz� , �yz�	 corresponding to �= �1,0 ,0�
�resp. �= �0,1 ,0� ,�= �0,0 ,1�; see, e.g., the arrows in Fig. 1	
or B. In the course of the simulation of a finite system, the
spin configuration can fluctuate between different, equivalent
ordered states. We therefore compute the invariant quantities

m�2� = �
�=1

n

���
2�; m�4� =
��

�=1

n

��
2�2� . �4�

It is convenient to also compute the dimensionless Binder
ratio

g =
1

2
��n + 2� − n

m�4�

�m�2��2 , �5�

for both A and B orderings, which has the property that it
tends to 0 at high temperature and to 1 in an ordered state.
�Remember that n=3 for A-type ordering and n=4 for
B-type ordering.�

Firstly we consider the dipolar model with only nearest
neighbor interactions. Results for the order parameters are
shown in Fig. 2. The parameter J is taken to be the same as
in Gd2Ti2O7, i.e., from the high temperature susceptibility
J=0.4 K, and the dipole-dipole interactions are fixed by the
inter ion distances.3,4 The order parameter associated with
the A state jumps rapidly at T�0.7 K, indicating a strong
first-order transition at that temperature, whereas that of the
B state goes to zero at the same temperature. These results

FIG. 2. �Color online�. Order parameter squared ��N� for the A
phase, shown in Fig. 1, and the B phase, for J2=J3=0 as function of
temperature T in a Monte Carlo simulation of the dipolar pyro-
chlore Heisenberg antiferromagnet. We see a large jump in the order
parameter for the largest system size L=4 signaling the onset of a
strong first-order transition. The number of spins is given by N
=16L3.
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give a much lower value of the transition temperature TN
than the mean-field theory value of 5.3 K, though it is a bit
smaller than the experimental value of 1 K.

The Binder ratio shown in Fig. 3 is also strongly discon-
tinuous. In the vicinity of Tc the Binder ratio gets negative,
as expected for a first-order phase transition.24 Given the
results of Figs. 2 and 3, we conclude that the transition is
strongly first order for J2=J3=0. The very small preference
for the B phase9–11 indicated by the small minimum of J�q�
at q=�, which would be relevant at a second-order transi-
tion, is unimportant here because the transition is so strongly
first order.

We now include further neighbor interactions J2 and J3
that lift the degeneracy of the dipolar model and select other
states, as studied in detail in Ref. 10. The lowest part of the
spectrum of J�q� is shown in Fig. 4 for q along the �1, 1, 1�
direction. We see that spectrum is almost precisely degener-
ate for J2=J3=0 but that q=0 is preferred if J2 and J3 are
negative, while q=� is preferred if J2 and J3 are positive.
For simplicity we restrict ourselves to J2=J3 and study how

the character of the transition is modified relative to the case
J2=J3=0.

For J2=J3�0, we find the same A state as for J2=J3=0,
but the transition temperature shifts to higher temperatures;
see Figs. 5 and 6. This is expected from Fig. 4 since, with
J2=J3�0, J�q� acquires a well-defined minimum at q=0
which gets deeper with increasing J2 and J3.

Even with couplings as small as J2=J3=−0.061J, the or-
der parameter and the Binder ratio, shown in Fig. 6, vary in
a much more gradual way than for the degenerate case J2
=J3=0. Although only finite-size scaling on a bigger range
of sizes could say whether the transition is first or second
order, it is clear that removing the degeneracy makes the
transition less first-order compared with the degenerate case.
These results are consistent with earlier simulations on
model without dipole-dipole interactions �where larger clus-

FIG. 3. �Color online�. Binder ratio for the A phase for different
system sizes L for J2=J3=0.

FIG. 4. The lowest part of the spectrum of J�q� �from Ref. 10�.
One sees that the degeneracy of the critical soft modes is lifted by
second and third neighbor couplings. A positive �resp. negative�
J2=J3 favors q=� �resp. q=0�.

FIG. 5. �Color online�. Order parameters squared ��N� for J2

=J3=−0.061J. A transition occurs to the A phase �q=0� which is
more gradual than for the degenerate case with J2=J3=0 shown in
Fig. 2.

FIG. 6. �Color online�. The Binder ratio for the A and B phases
for different system sizes L for J2=J3=−0.061J.
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ters could be considered� which pointed out a continuous25

or weakly first-order26 transition for the pyrochlore lattice
with J3�0.

Next we consider J2=J3�0 which, from Fig. 4, is ex-
pected to favor the B-like states �q=��, and indeed this is
the case as shown by Figs. 7 and 8. The minimum of J�q� at
q=� shown in Fig. 4 is independent of J2 and J3 which
implies that the mean-field transition temperature is also in-
dependent of J2 and J3. Although we do not have enough
system sizes to attempt a serious estimate of TN using finite-
size scaling, it seems that the transition temperature is indeed
quite similar to that for J2=J3=0

As was also found for J2=J3�0, the transition is much
more gradual than for the degenerate case, showing that re-
moving the degeneracy reduces the first-order character of
the transition. The sensitive dependence of both the order of

the transition and the nature of the ordered phase on J2 and
J3 points to the possible relevance of these terms in explain-
ing the difference between Gd2Sn2O7 and Gd2Ti2O7.

While the data for J2=J3=0 clearly indicate a strong first-
order transition, our results for J2 and J3 nonzero �with either
sign� are not conclusive as to the order of the transition. The
smooth behavior of the Binder ratios shown in Figs. 6 and 8
is typical for a second-order transition. However, we cannot
rule out the possibility of a weak first-order transition where
the correlation length at the critical point, 	c, is large. In this
case, if L�	c the behavior will look like that of a second-
order transition. Only for sizes where L�	c can one see a
crossover to behavior expected at a first-order transition.
Hence for J2 and J3 nonzero, where the degeneracy is re-
moved, the transition is either second order or weakly first
order. However, comparing Figs. 6 and 8 with the corre-
sponding figure for J2=J3=0, Fig. 3, we see that behavior for
J2 and J3 nonzero is very different from the strong first-order
behavior found in the degenerate case.

III. RG ANALYSIS OF THE (1,1,1) MODEL

We now study a Landau-Ginzburg-Wilson �LGW� model
by means of the renormalization group analysis. Although
the method is usually aimed to study second-order phase
transitions, the lack of stable fixed points is often considered
as an indication for a first-order kind of transition.

Given the degeneracies of the soft modes with q along the
four equivalent �1,1,1� directions when J2=J3=0 �see Fig. 4�,
the fluctuations of all these modes must be taken into ac-
count simultaneously. For this reason, we consider a model
with an infinite-component order parameter �extended to di-
mension d� and the fluctuations with wave vectors close to
these soft-mode directions. The quadratic part of the Hamil-
tonian is written

H�2� =� ddq

�2��d�
i=1

4

G0i
−1�q��iq�̄iq, �6�

G0i
−1�q� = �r + q�,i

2 + aq�,i
2m� , �7�

FIG. 7. �Color online�. Order parameters obtained by Monte
Carlo simulation for J2=J3=0.01J. The transition gives rise to the
B-like state �q=�� and is more gradual than for the case of J2

=J3=0 shown in Fig. 2.

FIG. 8. �Color online�. Binder ratio for the A and B phases for
different system sizes L for J2=J3=0.01J.

FIG. 9. Lines of minimum energy in reciprocal space, given by
the four equivalent �1,1,1� directions �the cube is drawn for conve-
nience�. The �lack of� dispersion along the �1,1,1� lines is shown in
Fig. 4.
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q�,i = q − �v̂i . q̂�q , �8�

where the v̂i are of norm 1 and represent the i=1, …, 4
�1,1,1� directions given in Fig. 9. We have eight fields, �iq

and �̄iq �i=1, …, 4�, with �̄iq=�−i,−q=�iq
* . If we ignore the

aq�,i
2m term, then, when r=0, all the modes with q�,i=0 be-

come simultaneously unstable. However, as in previous
works,20,21 we include the small dispersion along the �1,1,1�
lines, aq�,i

2m, to make the calculation well defined at interme-
diate stages. To study the degenerate case, it will be elimi-
nated at the end of the calculation by taking m→ +
.

The fourth-order invariants are similar to that introduced
to describe the nematic smectic-C transitions20 and are given
by

H�4� =� ddq1

�2��d

ddq2

�2��d

ddq3

�2��d

ddq4

�2��d�q1,q2,q3,q4
H4, �9�

where �q1,q2,q3,q4
ensures that the total momentum of the four

� is zero. For instance, we can cancel the momentum by
choosing pairs of momenta along the same �1,1,1� line, i.e.,
by combining �i,q1

with �−i,q2=−q1
, and similarly with q3 and

q4. That gives a fourth-order term up�i�̄i�i+p�̄i+p term,
where i=1, …, 4 and �i+ p� is meant for �i+ p−4� if �i+ p�
�4. Note that given the C4 symmetry, up does not depend
upon i, but only upon p=0, 1, 2. In addition, we could
choose the first two q’s along 1 and 3 for instance �see Fig.
9� and the other two along −2 and −4, which gives

�1�̄2�3�̄4. Another simplifying feature that we have adopted
consists of neglecting the wave vector dependence of the
coefficients up. Omitting to write the q1,2,3,4 wave vectors,
the only fourth-order invariants are given by

H4 = �
p=0

2

up�
i=1

4

�i�̄i�i+p�̄i+p +
1

2
u3��1�̄2�3�̄4 + �̄1�2�̄3�4� ,

�10�

where �̄i=�−i. We call H�2�+H�4� the �1,1,1� model. First, we
consider the Hartree correction19 to the gap r �self-energy�:

Gi
−1 � r + q�i

2 + �i�r� , �11�

�i�r� =
1

6
�3u0 + 2u1 + u2� � ddq

�2��dG0i�q� . �12�

In d=3, if we introduce momentum cutoffs, the new gap
r��a→0� is given by

r� = r + �� ln�1 +
2

r�
� , �13�

where � is a proportionality coefficient and  and � the
cutoffs. Due to the strong singularity of the right-hand side,
the gap does not vanish anymore. It suggests that the para-
magnetic phase remains locally stable below the transition,
together with other more stable phases. From the existence
of other phases �at least at the mean-field level�, the transi-
tion is expected to be first order.19

However, the cutoffs  and � enter explicitly the equa-
tion and a more controlled result can be obtained by the

renormalization group analysis by restricting the integration
to a shell of momentum  /b�q� with b�1.20,21 For this
we introduce new real order parameters �i=1, …, 4�,

�i = �i + i�̄i �̄i = �i − i�̄i, �14�

and the quadratic and quartic terms become

H = �
i=1

4

G0i
−1��i

2 + �̄i
2� + u0�

i=1

4

��i
2 + �̄i

2�2 + u1���1
2 + �̄1

2� + ��3
2

+ �̄3
2�	���2

2 + �̄2
2� + ��4

2 + �̄4
2�	 + u2���1

2 + �̄1
2���3

2 + �̄3
2�

+ ��2
2 + �̄2

2���4
2 + �̄4

2�	 + u3��1�2�3�4 + �̄1�̄2�̄3�̄4�

− u3��1�̄2�3�̄4 + �̄1�2�̄3�4� + u3��1�̄3 + �̄1�3���2�̄4

+ �̄2�4� . �15�

The derivation of the RG equations for the coupling con-
stants is then similar to that of Ref. 20 except that we have to
keep track of the field labels, given the anisotropy of G0i in
Eq. �15�. By integrating over a shell of momentum  /b
�q�, we find the recursion relations for the new coupling
constants

u0� = b��u0 − �40u0
2I0 + 4u1

2I0 + 2u2
2I0�	

u1� = b��u1 − �8u1
2I1 + u3

2I1 + 32u0u1I0 + 8u1u2I0�	

u2� = b��u2 − �8u1
2I0 + 8u2

2I2 + u3
2I2 + 32u0u2I0�	

u3� = b��u3 − �8u2u3I2 + 8u1u3I1�	

a� = b−2�m−1�a . �16�

where �=4−d and the integrals are defined by

Ip = �
/b

 ddq

�2��dG0i�q�G0i+p�q� . �17�

A. Degenerate (1,1,1) model „a\0…

The relation �16�, together with the divergences of the
integrals Ip for a→0 �at r=0, finite b� implies that a is a
dangerous irrelevant variable for m�1. I0 diverges indeed as
a�d−5�/2, and I1,2 as a�d−3�/2. To take into account these diver-
gences, we have to introduce rescaled constants ũi
=uia

�d−5�/2 �Refs. 20 and 21 and references therein�. With
a�5−d�/2I1,2→0, the recursion relations become �we introduce
I� lima→0a�5−d�/2I0�

ũ0� = bm�5−d−1/m��ũ0 − �40ũ0
2 + 4ũ1

2 + 2ũ2
2�I	 ,

ũ1� = bm�5−d−1/m��ũ1 − �32ũ0ũ1 + 8ũ1ũ2�I	 ,

ũ2� = bm�5−d−1/m��ũ2 − �8ũ1
2 + 32ũ0ũ2�I	 ,

ũ3� = bm�5−d−1/m�ũ3. �18�

All the fixed points are unstable for d�5−1/m �the upper
critical dimension is 5 for m→
� since ũ3�=bm�5−d−1/m�ũ3.
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Although strictly speaking new fixed points could occur at
order �2, the present calculation at order � is compatible with
the first-order transition observed in the Monte Carlo simu-
lations.

B. No degeneracy

We now remove the degeneracy, e.g., by including further
neighbor couplings in the microscopic Hamiltonian.

1. q=0

First of all we assume that the ordering is at q=0. It is
simplest to go back to the order parameter shown in Fig. 1,
realize that there are three components �i , i=1, 2, 3, and that
the symmetry is cubic. The Hamiltonian of this cubic model
is therefore given by

H = �
i=1

3

��r + q2��i
2 + u0�i

4	 + u1�
i,j

�i
2� j

2. �19�

There has been a controversy regarding whether the stable
fixed point of the cubic model is the Heisenberg or the cubic
fixed point. A recent six-loop expansion has shown that for
n�2.89, the stable fixed point is the cubic one.27 Depending
on the initial values for the coupling constants, the transition
could be either first order or continuous. However, to stabi-
lize the collinear states �with � either �1, 0, 0�, �0, 1, 0�, or
�0, 0, 1� and q=0�, the set of initial coupling constants leads
to a first-order transition.28

We have seen that a first-order transition is obtained both
in the degenerate case and also when there is a well-defined
minimum at q=0. Is, then, the degeneracy of soft modes
important or not? We note that, in the absence of degeneracy,
the transition may be only weakly first order. The problem
was studied some years ago in the context of the pyrochlore
FeF3. For this compound, the q=0 state found by neutron
scattering was characterized by a three-component order
parameter,25 similar to the one we have here. Monte Carlo
simulations have shown that the collinear structures with �
= �1,0 ,0�; �0, 1, 0�; �0, 0, 1� are preferred, but the transition
first appeared to be second order, with unusual critical
exponents25 contrary to the RG argument given above. We
can reconcile these results by suggesting that the transition
may be weakly first order, so that the correlation length
would exceed the size of the Monte Carlo cluster and the
transition would appear second order in the simulation. This
is also confirmed by a reexamination of the Monte Carlo
results, which suggested that the transition is more likely to
be indeed weakly first order.26

2. q=�

We now assume that the degeneracy is lifted in such a
way that one of the four � wave vectors is selected. Since �
and −� are related by a reciprocal lattice vector, we have to
take into account the fluctuations of four fields only, with q
close to any of the � wave vectors, �i , i=1, …, 4. The criti-
cal model is given by

H = �
i=1

4

��r + q2��i
2 + u0�i

4	 + u1�
i,j

�i
2� j

2 + u3�1�2�3�4.

�20�

This model is known to possess unstable fixed points at order
�2.18 Therefore the transition to the � phases is also expected
to be first order.

On the basis of the LGW models alone, we would con-
clude that the phase transitions in the dipolar pyrochlore are
all first order in character. Such a simple analysis does not
say whether the transition is strongly or weakly first order,
which is quite a relevant question when one comes to com-
pare with experiments. Nonetheless, the results presented in
this section are compatible with the Monte Carlo simulations
of Sec. II. The latter are important, precisely to say whether
the transitions are weakly or strongly first order.

IV. CONCLUSION

We have considered the dipolar Heisenberg model on a
pyrochlore lattice with nearest neighbor interactions and a
small amount of second and third neighbor interactions �J2
and J3�. For J2=J3=0 the system is highly degenerate �see
Fig. 4� and fluctuation effects pick out ordering at q=0 �A
type�. Monte Carlo simulations show that the transition is
very strongly first order in this case, in contrast to mean-field
theory which predicts a second-order transition. A first-order
transition is also predicted by a renormalization group analy-
sis. When the degeneracy is removed by including J2 and J3
the transition is more gradual, showing that the degeneracy is
necessary to get a strong first-order transition. Given the lim-
ited range of sizes in the Monte Carlo simulations, we cannot
say from the simulations whether the transition is second
order or weakly first order for J2=J3�0. However, accord-
ing to a renormalization group analysis for the nondegener-
ate case, both A and B type orderings have no stable fixed
points, indicating, presumably, a fluctuation-induced first-
order transition. Usually this type of transition is only
weakly first order, and this seems to be consistent with our
numerical data.

Because of the degeneracy for J2=J3=0, a small amount
of second and third neighbor coupling can also change the
nature of the ground state. We find that for J2=J3�0 the A
phase is retained but for J2=J3�0 we obtain a q=� �B type�
ordering. In future work we will study in more detail the
nature of this B-type phase, and also consider other possible
phases that occur when J2�J3. It is possible that anisotropic
interactions, suggested on the basis of high-temperature elec-
tron spin resonance �ESR�29 and by electron paramagnetic
resonance �EPR� on diluted samples,30,31 may be needed to
explain the experimentally observed phases in detail.

Our results provide a natural explanation for Gd2Sn2O7
having a strong first-order transition,4 while Gd2Ti2O7 has a
second-order transition12 �though a weak first-order transi-
tion is not ruled out experimentally�; namely, second and
third neighbor interactions are very weak in Gd2Sn2O7, but
they are stronger and positive for Gd2Ti2O7. In this respect,
ab initio calculations could give some estimate of the
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strength of the couplings. This picture is also consistent with
the observations that Gd2Ti2O7 orders12,13 at q=� while
Gd2Sn2O7 should be A type with equivalent sites and mo-
ments perpendicular to the local �1,1,1� directions.14

In the presence of a magnetic-field,5,10 Gd2Ti2O7 has a
rich phase diagram. For the future, it would also be interest-
ing to perform a study of field-induced transitions in
Gd2Sn2O7, since this starts off with a quite different state in
zero field. In addition to the multiple phase transitions ex-
pected on the basis of mean-field theory, the field reduces the
fluctuations and hence should reduce the strong first-order
character of the transition.
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