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Abstract

We review a recently developed formalism for computing thermoelectric coefficients in correlated

matter. The usual difficulties of such a calculation are circumvented by a careful generalization the

transport formalism to finite frequencies, from which one can extract the high frequency objects. The

technical parallel between the Hall constant and the Seebeck coefficient is explored and used to advantage.

For small clusters, exact diagonalization gives the full spectrum for the Hubbard and especially the t-J

model, a prototypical model for strong correlations, and this spectrum can be used to compute the exact

finite frequency transport coefficients and hence to benchmark various approximations.

An application of this formalism to the physically important case of sodium cobaltate NaxCoO2 is

made, and interesting predictions for new materials are highlighted.
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1 Introduction

1.1 The Challenge of Correlated Electron Systems.

Correlated electron systems[1, 2, 3, 4, 5, 6, 7] stand at the frontier of Condensed Matter physics, posing
conceptual as well as calculational hurdles that have seriously engaged the theoretical community in the last
few decades. Experimental results on several classes of new materials, have provided a great impetus to this
study, and often given direction to the theoretical endeavors. High Tc superconductors is a large class of
materials that are within the domain of correlated electron systems, but not the only ones. The study of
rare earth compounds provides another important class of systems, as do the newly discovered cobalt oxide
materials.

Correlated electron systems are characterized by a common feature, namely a narrow bandwidth of
electrons, which interact strongly on a scale of the order of electron volts at short distances. A dimensionless
coupling constant, namely the ratio of the interaction energy U(∼ a few eV) to the band width W( ∼ .1 or
1 eV) becomes large. This large parameter makes the validity of a perturbation theory in U/W unclear. In
weakly interacting systems, such as good metals, the analogous ratio is small, and leads to the Fermi Liquid
picture of weakly interacting quasiparticles, as formulated by Landau and others. In the case of correlated
matter, as in many other settings, the behaviour of perturbation theory has a strong dependence on spatial
dimensionality. In 1-dimension, the standard Fermi liquid theory breaks down due to a proliferation of low
energy excitations, i.e. an infrared breakdown. The most interesting case of 2-dimensions, i.e. electrons
moving in a plane, is the hardest problem yet, since special techniques that work in 1-d are not applicable
here, and yet the low dimensionality suggests enhanced quantum fluctuations. This case is of experimental
consequence, since many correlated materials are also layered, displaying a large asymmetry between their
transport properties along planes and across these planes.

The basic models that have been used to describe correlated electrons are the Hubbard and t-J models
described below, and the periodic Anderson and Kondo lattice models. More complex models with multiple
bands have been considered, but in this article we shall restrict our attention to the first two models, which
describe a very large class of systems where d-type electrons are involved. In physical terms the Hubbard
model H = H0 +H1 contains the hopping of electrons between sites denoted as H0 = −

∑

~η,~x t(~η) c
†
~x+~η,σc~xσ,

where t(~η) is the hopping matrix element for a range vector ~η 1, and an on-site Coulomb repulsion terms
H1 = U

∑

nj↑nj↓. This model neglects all other (smaller) terms in the full lattice Coulomb problem. It is
thus the simplest correlated electron model, characterized by the dimensionless coupling U/|t| and the filling
of electrons in the band denoted by n = N/Ns (where N and Ns are the total number of electrons and the
number of lattice sites), so that from the Pauli principle we are restricted to the range 0 ≤ n ≤ 2. The
so called “Mott Hubbard gap” arises in this model at half filling n = 1 as follows. At this filling, there is
a single electron per site on average, and so it is impossible to avoid paying an energy penalty of O(U) on
adding a particle, but it is quite cheap (independent of U) to remove a particle. Thus the cost of adding a
particle is quite different from removing a particle. This fundamental asymmetry characterizes an insulating
state in the most general possible terms. It does not invoke any kind of broken symmetry whatsoever. Such
an insulator is called the Mott Hubbard insulator. The standard example of this kind of an insulator is the
1-d Hubbard model at half filling.

Another important description of correlated electron systems is through the t-J model . This model
represents a much stronger version of correlations, with the prohibition of double occupancy, i.e. states with
nj↑nj↓ = 1. This constraint is enforced by the Gutzwiller projection operator

PG =
∏

j

(1 − nj↑nj↓), (1)

so that Ht−J = PGTPG + exchange. This situation corresponds to taking U → ∞ in the Hubbard model.

The added exchange term is written as J
∑

<i,j>
~Si.~Sj , and represents the tendency, arising from eliminating

1The band width on simple lattices is related to the hopping through W ∼ 2ν|t| where ν is the coordination number of the
lattice. The vector ~η is usually, but not always, specialized to be the set of nearest neighbour vectors on the lattice.
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Table 1: Common symbols used and their meaning

t(~η) Hopping matrix element for a distance ~η
< i, j > Nearest neighbour sites Ri, Rj
cj,σ Electron destruction operator at site Ri for spin σ

Ns, N, n Number of sites, electrons and density
v,Ω Volume per cell and total volume
qe, c Carrier charge and the velocity of light
U, J Interaction coupling constants in the Hubbard and t-J models
PG Gutzwiller projection operator removing doubly occupied sites

µ, ρ0(µ) Chemical potential and density of states per spin at that energy

K = H − µN̂ Grand canonical Hamiltonian
C(T ), T Specific heat and temperature T

ωc = ω + i0+ Frequency with small imaginary part
RH , R

∗
H Hall constant and high frequency Hall constant

S,L, Z Seebeck coefficient, Lorentz number and Figure of merit
Lij Onsager response coefficients

M1,M2 Response of charge and energy currents to external input power
N1, N2 Response of charge and energy densities to external input power
κ, κzc The nominal thermal conductivity(L22)

and zero current thermal conductivity
Ex, B Electric and magnetic fields
σα,β Electrical conductivity tensor

Ĵx, Ĵ
Q
x Charge and heat current operators along x axis

τXX Stress tensor or effective mass tensor
Φxx,Θxx Thermoelectric and thermal operators
ψ(~x), φ(~x) Luttinger’s gravitational field and electric potential
K(q), ρ(q) Heat and charge densities
DQ, Dc Heat and charge diffusion constants
χA,B Susceptibility of operators A,B
ǫn Energy levels of the Hamiltonian
~Sj Spin vector at site Rj

high energy states with double occupancy, of neighbouring spins to point in antiparallel directions2.

Given these simple looking models, the task is to compute physically measurable variables, such as the
thermodynamic response functions, as well as the dynamical response functions. One wants to understand
the nature of the order in the ground states that arise, and the dependence of these on various parameters of
the models. Various calculations suggest highly nontrivial magnetic and superconducting states to emerge
from these simple models. Among the dynamical aspects of the problems, transport variables such as the
resistivity, form the bulk of measurements carried out in laboratories; these are the table top experiments
of condensed matter physics. Here one applies an electrical and a thermal gradient along the sample (say
along the x axis), and in some instances a uniform magnetic field transverse to the electric field (along
the z axis). The measured objects are the electrical and thermal currents that are induced, and by taking
the ratio of currents to fields, one deduces the various conductivities σα,β = ∂Jα/∂Eβ, and from these the
resistivities (see Eq(3,13,14) below). They are relatively easy to measure, and reveal the characteristics of
a given material to a very large extent, e.g. whether it is a metal or an insulator, the carrier charge and
density etc. Next to resistivity, one of the most widely used measurements is that of the Hall constant RH
(defined below in Eq(3)), followed by the thermoelectric response functions such as the thermal conductivity

2By performing degenerate perturbation theory at large U one can obtain the t-J model and another small three body term
that is neglected here[8].
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κ (defined below in Eq(17)) , the Seebeck coefficient S and the Lorentz number L (defined below in (Eq(68))).
The materials community has also great interest in seeking the conditions for an enhanced Seebeck coefficient
and the figure of merit ZT Eq(68), since the overall efficiency of a device turns out to depend upon this
dimensionless number.

Unfortunately it is not a simple matter to compute these response functions. In particular these are much
harder than equal time correlations. One needs to know more than the ground state in order to determine
these, a handle on the excitations is required as well. Thus the question of transport in correlated matter, is
one of the hardest problems in condensed matter physics. The traditional methods and models of transport
such as the Drude Sommerfeld [9, 10] and Bloch Boltzmann[12, 13] theory have been used extensively to
estimate answers, even when the validity of the methods is rather ambiguous in these systems. The simplest
of these is the Drude-Sommerfeld model [9], using a free electron gas within a Boltzmann equation approach,
and thereby builds in the Fermi statistics into the classical Drude theory. The Bloch Boltzmann[12, 13, 14]
theory improves on this by focusing on carriers in the Bloch bands, and thus the carriers are characterized by
a band index as well as a wave-vector index, and relies principally on the concept of metals and insulators as
defined by band filling. This band filling concept is often denoted as the Bloch-Wilson[13, 14] classification
of metals and insulators. The Landau theory of Fermi liquids[15] further refines the theory and incorporates
the effect of Coulomb interactions via renormalized quasiparticles. Thus the physical picture behind the
current understanding of transport is one of almost free quasiparticles that diffuse through matter, suffering
multiple collisions either mutually or with the lattice and other excitations.

The above picture is not robust against strong correlations. Mott Hubbard interactions change the nature
of the carriers radically near half filling, i.e. a single electron per atom. The Mott insulating state[16] arises
as an exception to the Bloch-Wilson[13, 14] classification of metals and insulators. At half filling a Mott
Hubbard system is an insulator due to correlations, and would have been a metal without interactions. The
strongly correlated systems addressed in this article may be described as doped Mott insulators[6], i.e. states
obtained by adding or removing electrons from a Mott insulator. Here the definition of a quasiparticle has
been argued to be ambiguous[17, 6], thus making the standard approach questionable. The applicability of the
Fermi liquid concept has been questioned in strongly correlated matter, on the basis of several experimentally
anomalous results for the resistivity and the photoemission[7, 18].

In this article, we address this question from a fresh point of view, starting from the exact but usually
intractable linear response formulas, generally known as Kubo formulas, and finding easier but non trivial
versions of these. These new formulas approximate certain aspects of the problem that are possibly less
controversial, but treat the effects of correlations carefully. Our results may be classified as being comple-
mentary to the usual Bloch Boltzmann theory, and we present the formalism as well as its applications in
the context of the thermoelectric response functions. In short, our method enables us to compute a well
defined subset of the transport response functions, such as the Seebeck coefficient, the Hall constant and the
Lorentz number as well the thermoelectric figure of merit. This subset, described in greater detail below,
is characterized by the fact that they are independent of the relaxation times, within the simplest Bloch
Boltzmann theory.

1.2 Transport in Correlated Electron Systems

As explained above, a major problem is to understand transport phenomena in correlated matter. Traditional
approaches such as the Boltzmann equation have served long and distinguished tenures to explain transport
coefficients in terms of a few measurable objects (relaxation times, and effective masses etc). However these
methods run into severe problems in the most interesting and important problem of metals, with strong
Mott Hubbard correlations. These correlations give a Mott insulating state at commensurate (half) filling,
with localized spins interacting with each other, and away from half filling, one has metallic states that carry
the distinguishing marks and signatures of the parent Mott insulator.

The High Tc systems provide one outstanding set of materials that have dominated the community for
the last 20 years. These are widely believed to be strongly correlated, following Anderson’s original and
early identification of these as doped Mott insulators[17]. Another important material, sodium cobaltate
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NaxCoO2 has recently been popular in studies of thermoelectricity [19, 20], this is strongly correlated too,
but the underlying lattice is triangular rather than square. These two systems have in common the presence
of spin half entities, and have both been modeled in (rather extensive) literature by some variants of the t-J
model.

The qualitative reason for the difficulties of the Bloch Boltzmann equation approach in these correlated
models can be understood in several ways. One is to recognize from a variety of experiments in these systems,
that the wave function renormalization, or quasiparticle residue zk (defined as the jump of the ground state
occupation number at the Fermi surface in momentum space) is either zero, or if non zero, it is certainly
very small. Another simple and yet powerful point of view is to ask: what is the charge carrier in a Mott
Hubbard system near half filling. From the real space point of view, in order that a correlated electron can
hop to a nearby position, it must make sure that there is no particle of either spin at that site. This is unlike
the situation for an uncorrelated electron, which can always hop, regardless of the opposite spin occupancy
of the target site. Hence the motion of a correlated electron of either spin is accompanied by the “backflow”
of a vacancy. It is therefore clear that the carriers are best viewed as holes measured from half filling. Thus
at a filling of electrons n ≡ N/Ns (where N and Ns are the total number of electrons and the number of
lattice sites), the carriers are in fact δ = |1−n|, so that near half filling δ → 0, and one sees that the carriers
are frozen out. Thus the overall scale of several transport coefficients can be found almost by inspection; e.g.
the Hall number must vanish as we approach half filling, as must the inverse thermopower, defined below
in Eq(15). However, it is already clear that the Bloch Boltzmann approach cannot easily capture these
“obvious results”. The latter starts with the band structure derived quasiparticles, and as n → 1, has no
knowledge of the impending disaster, also known as the Mott insulating state! One can also view this issue
from the point of view of real space versus momentum space definition of holes: the correlated matter clearly
requires a real space picture to make physical sense (as opposed to computational ease), whereas the Bloch
Boltzmann approach takes a purely momentum space approach to particle and holes. In fact the “Bloch
Boltzmann holes” are vacancies in momentum space measured from a completely filled band, and have no
resemblance to the Mott Hubbard holes. Of course the above diatribe obscures a crucial point, the Mott
Hubbard real space holes view point is almost impossible to compute with, at least using techniques that
exist so far. On the other hand, the momentum space view is seductive because of the ease of computations
exploiting a well oiled machine, namely the perturbative many body framework. Hence it seems profitable
to explore methods and techniques that implement the Mott Hubbard correlations at the outset, and give
qualitatively correct answers. Our formalism, described below, was motivated by these considerations.

In this article, there will be little effort at an exhaustive literature survey. However, it is appropriate
to mention that the problems discussed here have been addressed by several authors recently. Mahan’s
articles[21] address issues in low carrier density thermoelectric materials, including superlattices. Dynamical
mean field theory, reviewed in[22], has been applied to the problem of thermoelectricity in[23]. A considerable
body of theoretical and experimental work on heavy Fermi systems and relevant models can be found in
the work[24]. In particular the review article[25] summarizes the work on the Falicov Kimball model as an
application of the dynamical mean field theory.

Our published papers contain more references to other approaches taken in literature. I would however,
like to mention that at a “mean field theory” level, the Mott Hubbard correlations can be built in, by various
slave Boson or slave Fermion approaches, with some success [6]. In essence, strong correlations force us to
deal with Gutzwiller projection Eq(1) of the Fermi operators

ĉjσ = PG cjσ PG, (2)

and a similar expression for the creation operators. The sandwich of the operators by PG makes sure that
the states considered have no double occupancy, PG annihilates those states. However, the operators ĉjσ
are no longer canonical Fermions, i.e. do not satisfy the usual anticommutation relations. One finds that
{ĉjσ, ĉ

†
lσ} 6= δj,l, but rather a non trivial term appears on the right hand side. One way to avoid dealing

with the ĉjσ operators is to represent the effects of the Gutzwiller projection, using auxiliary (“slave”) Fermi
or Bose operators to force the constraint of no double occupancy[6]. These slave fields consist of canonical
Fermions or Bosons, but with an added constraint at each site, and in order to deal with that constraint end
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up making Hartree type factorization of resulting expressions. The errors made by these factorizations are
hard to quantify, but do give some qualitative understanding of transport in many cases.

Since well controlled calculations are difficult to perform for the experimentally relevant case of 2-
dimensions with electrons having spin 1

2 , we are most often forced into numerical computations. The
formalism developed here provides some guidance towards effective computations. We expect that our
formalism is to be supplemented by a heavy dose of numerics, either exact diagonalization or some other
means.

1.3 Plan of the article.

In Sec.2, we motivate the high frequency approach through the example of the Hall constant. For the
triangular lattice sodium cobaltate, this leads to the interesting prediction of a T linear Hall constant, which
has been verified experimentally. In Sec.3 we obtain the finite frequency thermoelectric response functions,
by using a dynamical version of Luttinger’s gravitational field as a proxy for the thermal gradients. From
this formalism, novel sum rules for the thermal conductivity and new thermal and thermoelectric operators
emerge. We obtain useful formulas for the variables of common interest such as the Seebeck coefficient and the
figure of merit. In Sec.4 we present the result of applying these formulas numerically to sodium cobaltate, and
benchmark the high frequency approximation by comparing with the exact evaluation of Kubo’s formulas.
We show how our formalism gives a quantitatively accurate result for existing materials. It further leads to
interesting, and possibly important predictions for the Seebeck coefficient of as yet undiscovered materials.
In Sec.5 we present a simple diffusion relaxation model for coupled charge and heat currents in metals, where
the new operators play an explicit role, and their meaning is made physically clear. The model and some
novel response functions relating to an applied AC power source, are likely to be of interest in the context
of pulsed laser heating in materials.

2 Hall constant

The basic idea of this approach is well illustrated by the example of the Hall constant for correlated matter RH
defined in Eq(3). Here the initial paper of Shastry, Shraiman and Singh [26] pointed out that the dynamical

Hall constant is better suited for computation in correlated systems. Consider the simplest framework, the
Drude theory of electrons[9, 27], where we know that

σxx(ω) =
σxx(0)

(1 + iωτ)

σxy(ω) =
σxy(0)

(1 + iωτ)2

B RH ≡ ρxy(ω) =
σxy(ω)

σxx(ω) σyy(ω)
=

B

nqec
, (3)

where qe = −|e| is the electron charge, n the density of electrons and τ the relaxation time and B the uniform
magnetic field along the z axis. The relaxation time cancels out in computing the Hall resistivity at arbitrary
frequencies, and this cancellation gives us a clue. We might as well compute the two conductivities σαβ(ω)
at high frequencies, since here the notorious difficulties inherent in computing the DC values of these objects
vanish. The Drude theory therefore gives us an important insight, namely that the Hall resisitivity is less ω
dependent than the Hall conductivity. We explore and build on this central idea further in this article, using
exact diagonalization, dispersion relations and sum rules.

In order to perform the above suggested calculation, we need to take the Kubo formulae for the con-
ductivities3, and take the appropriate ratios to get the dynamical resistivity. Let us consider the electrical

3It is frustrating that despite several ambitious claims in literature, especially from the Mori formulation experts, there
is no practical and direct way of computing the dynamical resistivity that bypasses the intermediate stage of computing the
dynamical conductivities[28].
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conductivity σαβ(ω) of a general Fermionic system defined on a lattice. Let us define an energy dispersion

εk obtained by Fourier transforming the hopping matrix element t(~η) as εk = −
∑

~η exp−i~k.~η t(~η). The
electrical current operator is obtained using the continuity equation as

~̂
J = i qe

∑

~x,~η

t(~η) ~η c†~x+~η,σc~x,σ. (4)

The current operator Ĵα is dressed by a suitable Peierls[29] phase factor in the presence of the uniform
magnetic field B along the z axis. In the t-J model, the current is sandwiched by the Gutzwiller projector
Eq(1) as Ĵ → PGĴPG, and thereby allows transport only between singly occupied sites. We can use
perturbation theory to linear order in the external electric field to find a general expression for the dynamical
conductivity[10, 26]:

σαβ(ωc) =
i

~Nsvωc

[

〈ταβ〉 + ~

∑

n,m

pn − pm
ǫn − ǫm + ~ωc

〈n|Ĵα|m〉〈m|Ĵβ |n〉

]

, (5)

where pn ∝ e−βǫn is the probability of the state n, and the “stress tensor” (sometimes called the “effective
mass tensor”) is defined by

ταβ = q2e
∑

k,σ

d2ε(k)

dkαdkβ
c†σ(k)cσ(k), (6)

where v is the atomic volume, and ωc = ω + i0+. The Hall conductivity infact involves the antisymmetric
part of this tensor [26]. In the case of a t-J model the τ operators are also sandwiched by Gutzwiller
projection Eq(1). In order to compute say the transport conductivity ℜe σxx(ω) in the limit ω → 0, we
need to sum over terms such as

∑

n,m pn δ(ǫn − ǫm)〈n|Ĵα|m〉 〈m|Ĵβ |n〉. Such a computation is made very
difficult by the presence of the Dirac delta functions. These energy conserving delta functions lead to a
finite limit for σxx(0) in say a disordered metal. The limit is reached only in the thermodynamic limit by
a subtle limiting process, and corresponds to a dissipative resistivity. These delta functions are very hard
to deal with, if we are given a set of energy levels for a finite system. It is then necessary to broaden the
delta functions to a suitable function, say a Lorentzian with an appropriate width determined by the system
size and other parameters. In practice this task is quite formidable and only rarely has it been undertaken,
thereby motivating the search for alternate routes.

Following the hint contained in the Drude formulae, we can take the high frequency limits for the
conductivity and thereby obtain the Hall resistivity at high frequencies

R∗
H ≡ lim

ω→∞
RH(ω) =

−iNsv

B~

〈[Ĵx, Ĵy]〉

〈τxx〉2
. (7)

In deriving this formula, one is working in the non dissipative (reactive) regime. That is because the Kubo
formulas in Eq(5) are evaluated away from the ω → 0 limit, where the Dirac delta functions come into play.

The main article of faith is the claim that ρxy(ω) at large frequencies is related in a simple way to the
transport variable ρxy(0). Is this rationalizable? Further, what is meaning of high frequency, or how “high”
is “high enough”?

With regard to the magnitude of the frequency, the key point is to work with a projected Fermi system
rather than a bare one. For example in the case of the Hubbard model versus the t-J model, one sees that
the energy scale inequality requirement is

~ω ≫ {|t|, U}max (8)

~ω ≫ {|t|, J}max. (9)

Thus in case of the t-J model, one can be in the high frequency limit, and yet have a modest value of ω, in
contrast to the Hubbard model since usually U is large, O(ev′s). In case of the cobaltates, the energy scale
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that determines the high frequency limit is presumably the Hunds rule or crystal field energy, and hence
much lower. Thus the “high frequency limit” is expected to be close to the transport values, for models where
the high energy scale is projected out to give an effective low energy Hamiltonian with suitably projected
operators.

Subsequent studies show that this simple formula Eq(7) is a particularly useful one, we list some of its
merits:

1. It is exact in the limit of simple dynamics, as in the Bloch Boltzmann equation approach.

2. It can be computed in various ways, e.g. using exact diagonalization[30] and high T expansions[26, 31].

3. We have successfully removed the dissipational aspect of the Hall constant here and retained the (lower
Hubbard sub band physics) correlations aspect. This is done by going to high frequencies, and using
the Gutzwiller projected Fermi operators in defining the currents.

4. It is valid for the entire range of hopping processes, from hopping type incoherent transport at high
T, to coherent Fermi liquid type transport at low T in a band system.

We emphasize that this provides a very good description of the t-J model, where this asymptotic formula
requires ω to be larger than J, but should not be expected to be particularly useful for Hubbard model. In
the Hubbard model [32], the transport limit and the high frequency limit are on opposite sides of a crucial
energy scale U . More explicitly, a large ω ≫ U is implicit in this limit, and therefore deals with weakly
renormalized particles. We expect it to differ from the transport limit ω → 0 significantly in qualitative
terms, such as the signs of carriers and the Hall number.

It is worthwhile recording a dispersion relation for the Hall constant at this point. Since RH(ω) is analytic
in the upper half of the complex ω plane, and has a finite limit at infinite ω, we may write

RH(ω) = R∗
H −

∫ ∞

−∞

dν

π

ℑmRH(ν)

ω − ν + i0+
, (10)

therefore in the DC limit we get:

ℜeRH(0) = R∗
H +

2

π

∫ ∞

0

ℑmRH(ν)

ν
dν . (11)

This equation quantifies the difference between the experimentally measured DC-Hall coefficient and the
theoretically more accessible infinite frequency limit. The second term is an independently measurable
object, and initial measurements of this are now available in Ref.[33]. It would be very useful to make a
systematic study of this promising dispersion relation, both theoretically and experimentally. For the case
of the square lattice systems, the theoretical estimates of the difference are indicated in Fig.(1) for a couple
of densities. We plan to return to this rich topic in future studies.

As an illustration of the above formalism, we note that recent work on triangular lattice system NaxCoO2

provides a good example. Theoretically, the “exotic” prediction, namely that the Hall constant grows linearly
with temperature T on a triangular lattice, was first recognized in 1993 Ref[26]. This behaviour arises for
T ≥ TFermi. On the other hand, for low temperatures, it is expected to be less sensitive to T , as in
a Fermi liquid. This prediction arises in a simple way from Eq(7) treated within the high temperature
expansion[26, 31]. The numerator is dominated by the shortest closed loops of electron hopping that encircle
a flux, and these are of course triangles for the triangular lattice. This leads at high T (or small inverse
temperature β) to the numerator ∝ β whereas the denominator is always ∝ β2, and hence a T linear Hall
constant with a well defined coefficient

R∗
H = −

v

4|qe|

kBT

t

1 + δ

δ(1 − δ)
+ c1 +

c2
T

+ · · · . (12)
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This result (with suitable constants c1, c2) Ref[31], is for the experimentally relevant case of electron filling
so that δ = N

Ns
−1, and has a suitable counterpart for the case of hole filling. It is remarkable in two distinct

ways. Firstly, it shows that the sign of the Hall constant is not universal, as one might naively expect from
the Sommerfeld Drude theory formula RH = 1/nqec. Rather it depends upon the sign of the hopping as well.
This aspect was recognized in the important work of Holstein[34], within the context of hopping conduction
in doped semiconductors. The other remarkable feature is that the Hall resistivity increases linearly with
T , a result first found in [26, 31]4 . The final answer is therefore highly non universal, and depends upon
material parameters such as the magnitude and sign of the hopping, and also the nature of the doping
(holes versus electron). We reiterate that this asymptotic behaviour is obtained provided kBT ≥ |t| and as
such is experimentally observable only for narrow band systems. In general, from Eq(7) one expects a T
independent Hall constant for T sufficiently below a (usually large) characteristic Fermi temperature, as in
most metallic systems.

Interestingly enough, the case of NaxCoO2 with x ∼ 0.68, i.e. the so called Curie Weiss metallic phase,
seems to fulfill these conditions of narrow bandwidth. As Fig.(2) shows, the experiments show a large
and clear-cut region of linear T dependence[35], thereby fulfilling the basic theoretical prediction of Eq(12).
Recent work[36] attempts to reconcile many experimental results in this phase, including the Hall constant
coefficient of T , with the theoretical predictions. Many experiments such as the photoemission quasiparticle
velocities, the magnetic susceptibility and specific heat are understandable with |t|/kB ∼ 1000K (i.e. a bare
band width 9|t| ∼ 10−2 eV ). At x = .68, the Hall slope requires a smaller value |t|/kB ∼ 250K, but nearby
compositions seem to have a smaller slope translating to a larger value of |t|/kB that is more in line with the
other data. All these numbers are, in turn, much smaller than LDA estimates of the bandwidth 0.2 eV [37]
by an order of magnitude, and pose an interesting problem to the community. In this article, our interest
in the Hall constant of the cobaltates is mostly motivational and hence tangential; we will leave this topic
for further work. In the case of the cuprates, the work in Refs [26, 30] shows that R∗

H provides a useful
first principles estimate for the physical (DC) transport Hall constant RH(0) for correlated systems. Our
task in these notes is to carry this message to the computation of the thermal response functions, and so we
terminate our discussion of the interesting problem of the Hall constant.

3 Thermoelectric Response

We next address the main topic of this article, namely the thermal response functions. In light of the
previous discussion of the Hall constant, we searched for the analog of R∗

H . Therefore we needed the finite
(high) frequency limits of thermal response functions. To the author’s surprise, these limiting functions were
unavailable in literature, therefore leading to the basic calculation in[38]. We begin with a quick review of
the standard transport theory given in many texts[39, 40, 9, 27, 10]. We write down the set of linear response
equations following Onsager[39]

1

Ω
〈Ĵx〉 = L11Ex + L12(−∇xT/T ) (13)

1

Ω
〈ĴQx 〉 = L21Ex + L22(−∇xT/T ), (14)

where (−∇xT/T ) is regarded as the external driving thermal force[42, 39, 9]. The operator Ĵx is the total
charge current operator, and has been defined earlier in Eq(4). Further ĴQx is the heat current operator defined
as ĴQx = limqx→0

1
qx

[K,K(qx)], where K(qx) is the Fourier component of the Grand canonical Hamiltonian

density Eq(18), and limqx→0K(qx) = K. These variables are elaborated upon below in Eq(34,35) and

4Using a semiclassical theory of transport, Holstein estimated the Hall conductivity and Hall angle σxy/σxx, rather than the
Hall resistivity as in Eq(12). The neat prediction[26, 31] of a T linear behaviour Eq(12) emerges only for the Hall resistivity,
where many factors cancel out.

9



Ω = vNs is the total volume of the system. The parameter L11 is related to the DC conductivity σ(0) = L11
5,

the parameter L12 is related6 to the Seebeck coefficient

S =
L12

TL11
, (15)

also L21 is related to the Peltier coefficient

Π = L21/L11 = TS, (16)

the final equality in Eq(16) relating the Peltier and Thomson effects is the celebrated reciprocity due to
Thomson (Kelvin)[42] and Onsager[39]. It is most compactly written as L12 = L21. The Onsager constant
L22 is related to the (nominal) thermal conductivity κ = 1

T L22 for problems with immobile degrees of
freedom (spins, ions, etc). For metallic systems, however, the observed thermal conductivity κzc requires a
small correction (see Eq(17)). The usually observed thermal conductivity[27, 10, 29] uses the zero electrical

current condition 〈Ĵx〉 = 0, thereby inducing an electric field. The generated electric field is related by Eq(13)
to the applied thermal force, and using it in Eq(14) we find the zero current thermal conductivity[10, 27]

κzc =
1

TL11
(L22L11 − L12L21). (17)

These are equations in the static limit, and correspond to the most simple non equilibrium states with a
steady current flow.

3.1 Luttinger’s gravitational field analogy

In order to generalize the above transport theory to finite frequencies, we need to borrow a beautiful idea from
Luttinger Ref[40]. In order to derive the Kubo formulae Ref[43], he introduces the mechanical equivalent of
the thermal gradient, and we shall use it extensively. The fictitious mechanical field ψ(~x, t) is similar to a
gravitational field, coupling to the effective “mass density” meff (~x) = 1

c2K(~x) via

Ktot = K +
∑

x

K(~x)ψ(~x, t). (18)

Here K =
∑

xK(~x), and K(~x) = H(~x) − µn(~x) is the Grand canonical Hamiltonian7, H(~x), n(~x), µ are
the local canonical ensemble Hamiltonian, number density and chemical potential. Below, we will expand
K(~x) = 1

Ω

∑

exp−i~q.~x K(~q), with a similar expansion for the charge and other densities and currents. We
can compute the standard linear response to a space time dependent ψ(~x, t), and with the help of the ideas
initiated by Luttinger, deduce the dynamical thermal response functions required in Eq(37).

Firstly let us note that the local temperature δT (~x, t) can be defined in the long wavelength almost
static limit through small departures from equilibrium. The local energy fluctuation can be written as
〈K(~x, t)〉 = 〈K〉0 + C(T ) δT (~x, t), with C(T ) as the specific heat at the equilibrium temperature T (at

constant volume and µ), provided δT ( ~X, t) ≪ T . Hence we can invert to define the local temperature
through

δT (~x, t) =
δ〈K(~x, t)〉

C(T )
. (19)

The connection of ψ(~x, t) with local temperature δT (~x, t) emerges from a study of the generalized phe-
nomenological equations proposed by Luttinger[40]. He specializes to long wavelength ~q → 0 and static
ω → 0 limits where equilibrium is rigorously definable; we will extend this notion to arbitrary variations.

5Our definition includes the volume factor and this makes L11 identical to the (intensive) conductivity.
6Sometimes in literature [9, 27, 10], S is denoted by Q.
7The need of introducing the Grand canonical Hamiltonian K lies in the construction of the heat current operator ĴQ

x , where
the particle current must be subtracted from the energy current Eq(34).
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The phenomenological relations are generalizations of the Onsager formulation[39] as in Eq(13) and Eq(14),
and correspond to adding terms proportional to the gradient of the mechanical term ∝ ψ in Eq(18). Luttinger
writes

1

Ω
〈Ĵx〉 = L11Ex + L12(−∇xT/T ) + L̂12(−∇xψ(~x, t)) (20)

1

Ω
〈ĴQx 〉 = L21Ex + L22(−∇xT/T ) + L̂22(−∇xψ(~x, t)), (21)

where the two new response functions L̂12, L̂22 are functions of space and time which can be readily computed
from a linear response theory treatment of the mechanical perturbation in Eq(18). We will treat ψ as a small
perturbation and work to linear order here. Addition of the ψ term in these equations allows us to take a
different perspective8 In Eqs(20,21) we can view the driving term as ψ, with the temperature fluctuation
arising as a consequence of this driving, at least for long wavelengths and slow variations9.

In these Eqs(20,21), the idea is to determine the difficult unknowns L12, L22 in terms of the easier objects
L̂12, L̂22. Let us consider one particular example for simplicity, the others follow similarly. Since the theory is
linear in the external perturbation, it suffices to consider a single frequency and wave vector mode. Therefore,
let us focus on Eq(20), and introduce a single Fourier component ψ(~x, t) = ψq exp{−i(qxx + ωt + i0+t)},
(adiabatic switching implied) and the electric potential φ(~x, t) = φq exp{−i(qxx+ωt+ i0+t)}. We thus write

1

Ω
δĴx = L11(qx, ω)(iqx)φq + (iqx)

[

L12(qx, ω)
δTq
T

+ L̂12(qx, ω) ψq

]

, (22)

where 〈Ĵx(~x)〉 = 1
ΩδJx exp−i(qxx+ ωt), so that δJx is the amplitude of the response, and we have written

the arguments of the Onsager-Luttinger functions Lij , L̂ij explicitly.
To be explicit, we define two extreme limits of ~q & ω that arise here[40], one is the so called rapid or

transport limit, and the other is the slow or the thermodynamic limit. In the rapid or transport limit, we
first let qx → 0 and then let ω vanish. In the slow limit, we set ω → 0 first and then take the limit qx → 0.

In the transport limit, we have a spatially uniform field, and hence we can show that δTq → 0. This
is most easily seen by inspecting the continuity equation for heat density and current in the absence of an
external heating source: ω〈Kq〉+qx〈Ĵ

Q
x 〉 = 0. This can be written, using Eq(19) as δTq = −qx

C(T ) ω 〈Ĵ
Q
x 〉. Thus

dropping the δTq term, we find

1

Ω
δĴx = L11(0, ω) lim

qx→0
(iqx)φq + L̂12(0, ω) lim

qx→0
(iqx)ψq. (23)

The object limqx→0(iqx)φq → Ex and likewise for the gravitational term, and hence this equation is essentiall
the same as Eq(20) above.

On the other hand, in taking the slow limit, with ω → 0, the system is subject to a time independent
but a spatially varying gravitational potential as well as a temperature gradient; this is now an equilibrium

8Note that experiments usually employ open boundary conditions, and the temperature gradient is externally applied. The
usual argument made is that the periodic boundary case and the open boundary case are equivalent, provided we take the wave
vector ~q → 0 or the thermodynamic volume Ω → ∞ limits respectively, while keeping the frequency ω finite and small. This
gives a prescription for the DC limit in both cases, namely to take the DC limit at the end of the volume (or wave vector) limits
Eqs(13,14).

9This is where Luttinger uses the tactical analogy with the Einstein relation for the relationship between self diffusion and
conductivity. In the phenomenological equation 〈Ĵx〉 = σEx +D(−∇x)〈ρ〉, the driving term is Ex. In Eq(20) (neglecting the
L11 term for a moment), the ψ term is analogous to the Ex in the diffusion problem, and the induced temperature variation
is similar to the induced charge fluctuation. For completeness, we summarize Luttinger’s argument for this case. For small
wave vectors and slow variation of the electric field Ex = −∇φ(x) = E0 exp−i(qxx+ ωt). Upon using the continuity equation

〈ρq〉 = − qx

ω
〈Ĵx〉 we see that 〈Ĵx〉 = σE0

ω
ω+iDq2

x
. Similarly the charge fluctuation 〈ρq〉 = σφq

−iq2
x

ω+iDq2
x
, where φq = −iE0/qx.

Luttinger’s argument is that in the fast or transport limit ω → 0, qx → 0 so that the diffusion term can be dropped. However,
in the slow limit, the relations derived above show that σ

D
= −〈ρq〉/〈φq〉. The right hand side of this is easily computed from

thermodynamics, whereby the Einstein relation σ
D

= e2/(∂µ/∂n)T follows.
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problem without a net current. Thus 〈Ĵx(qx)〉 = 0, leading to

0 = L12(q, 0)
δTq
T

+ L̂12(q, 0)ψq. (24)

In this equilibrium situation, we can compute the connection between
δTq

T and ψq readily. Using lowest
order thermodynamic perturbation theory Ref[10, 11] we compute the change in energy induced by a small
perturbation ψq

δ〈K(~q)〉

ψq
= −

∑ pn − pm
εm − εn

|〈n|K(~q)|m〉|2 +O(ψ), (25)

with pn = 1
Z exp(−βεn) the probability of the state n. In the limit ~q → 0, K(~q) tends to the Hamiltonian,

and hence cannot mix states of different energy, hence we write limεm→εn

pn−pm

εm−εn
→ βpn, whereby

lim
~q→0

δ〈K(~q)〉

ψq
→ −β

[

〈K2〉 − 〈K〉2
]

(26)

= −TC(T ) (27)

This calculation is parallel to that in literature[41] for the electron liquid, where the dielectric function is
related to the the compressibility in the limit of ~q → 0 ω → 0. Comparing the final Eq(27), with the standard
thermodynamic definition of C(T ), we see that

lim
q→0

δ〈K(~q)〉

ψq
= −T

d

dT
〈K〉, (28)

whereby

lim
~q→0

ψq = − lim
~q→0

δTq
T
. (29)

Comparing Eq(29) and Eq(24), we see that

lim
q→0

[

L12(q, 0) − L̂12(q, 0)
]

= 0. (30)

From this relation, Luttinger concludes that L12 in the DC limit can be computed from L̂12. Thus the
problem of computing thermal response is reduced to computing mechanical response to the field ψ(~x, t),

and essentially treating10 the lim~q→0 ψq = lim~q→0
δTq

T .
This is undoubtedly huge progress. However, as far as I can make out, this fine proof of Luttinger makes

another implicit assumption, namely that

lim
ω→0

[

L12(0, ω) − L̂12(0, ω)
]

= 0, (31)

somehow follows from Eq(30). This is assumed so despite the fundamental difference in the two limits,
namely the slow (thermodynamic) and fast (transport) limits. The belief thus seems to be that the two
functions Lij and L̂ij must be identical in the fast limit, if they are so in the slow limit.

In this work we need to define finite q, ω thermal response functions. Towards this end, we will in fact
extend the above to all q, ω, and simply assume that

Lij(q, ω) = L̂ij(q, ω). (32)

10The alert reader would have noted that this assignment has an opposite sign from Eq(29). The explanation of this slight
“booby trap” is that in Eq(29), the gravitational field and the thermal gradient are simultaneously present in order to cancel
the current. Their relative sign is therefore negative. In making the suggested replacement, the gravitational field is used as a

proxy for the temperature gradient, and hence the relative sign is reversed from the earlier context.
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The RHS is computable within perturbation theory, and the LHS, although defined rigorously only in
the regime of small q, ω by hydrodynamic type reasoning, is extended to all q, ω by this relation. This
idea of extending the thermal functions seems reasonable, since the resulting functions agree with hydro-
thermodynamics for small q, ω, and are guaranteed to satisfy general properties such as causality and Onsager
reciprocity. With this, we can define all thermal response functions at all q, ω, and in the sequel we will work
within this generalized Luttinger viewpoint.

3.2 Finite ω thermal response functions

With this preparation, we return to exploring the thermal response Eq(37) at finite frequencies. The timing
of our quest seems fortuitous, since there is growing experimental interest in the transport of energy and
heat pulses, requiring knowledge of these variables, and of the approach to equilibrium.

We first need to define the heat current ĴQx . Towards this end, we take the time derivative of the first
law of thermodynamics for fixed volume T dQ

dt = dE
dt −µ

dn
dt . Imagining a small volume with the flow of energy

and heat as well as density, and applying this law locally, it is reasonable to identify the heat current as
the energy current minus the particle current (times µ). Thus the heat current can be decomposed as the
difference of two terms:

ĴQx = ĴEx −
µ

qe
Ĵx, (33)

where ĴEx is the energy current and Ĵx the charge current. In a quantum mechanical system, the heat current
operator is easiest computed from the commutator of the energy density operator with total energy as follows
(setting ~ = 1):

ĴQx = lim
qx→0

1

qx
[K,K(qx)] . (34)

This construction is similar to the more familiar one for the charge current Ĵx = limqx→0
1
qx

[K, ρ(qx)]. By
inspection, a local heat current operator can also be written down provided the interactions are local, so
that we can take Fourier components in a periodic box11 and write

ĴQx (~q) = v
∑

x

ĴQx (~x) exp(i~q.~x), and Ĵx(~q) = v
∑

x

Ĵx(~x) exp(i~q.~x). (35)

Therefore, ĴQx = ĴQx (~0) and Ĵx = Ĵx(~0). For different models, the heat current is easy to compute using the
above prescription, and many standard models are treated in [38].

Let us impose fields that vary as ψ(~x, t) = ψq exp{−i(qxx + ωt + i0+t)}, and similarly for the electric

field with the electric potential φ(~x, t) = φq exp{−i(qxx + ωt + i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx
and 〈ĴQx (qx)〉 = δJQx , we find from Eq(20,21)

1

Ω
δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq) (36)

1

Ω
δJQx = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq +K(−qx)ψq] exp (−iωt+ 0+t), (38)

where ρ(~q) is the charge density fluctuation operator at wave vector ~q.

11We imagine doing this calculation on a lattice, therefore the Fourier transforms are written as sums over sites, with a factor
of the atomic volume v inserted for keeping track of dimensions.
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We can reduce the calculations of all Lij to essentially a single one, with the help of some notation.
Keeping qx small but non zero, we define currents, densities and forces in a matrix notation as follows:

i=1 i=2

Charge Energy

Ii Ĵx(qx) ĴQx (qx)

Ui ρ(−qx) K(−qx)

Yi Exq = iqxφq iqxψq. (39)

The perturbed Hamiltonian Eq(38) can then be written as

Ktot = K +
∑

j

Qje
−iωct, where Qj =

1

iqx
UjYj . (40)

We denote ωc = ω + i0+ above and elsewhere. From standard linear response theory[40] applied to Eq(40),
we readily extract the induced current response

〈Ii〉 = −
∑

j

χIi,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i

∫ ∞

0

dt eiωt−0+t〈[A(t), B(0)]〉

=
∑

n,m

pm − pn
εn − εm + ωc

AnmBmn

= −
1

ωc

[

〈[A,B]〉 +
∑

n,m

pm − pn
εn − εm + ωc

Anm([B,K])mn

]

. (42)

The last line of Eq(42) follows from integration by parts of the first line, and the average 〈〉 is carried out
over the ensemble where the external fields are dropped.

From Eq(41), using the notation in Eqs(39,42), the generalized Onsager coefficients

Lij(qx, ω) =
1

Ω
lim

Yj→0
〈Ii〉/Yj (43)

are written down immediately

Lij(qx, ω) =
1

iΩωc

[

〈[Ii,Uj]〉
1

qx
+

1

qx

∑

n,m

pm − pn
εn − εm + ωc

(Ii)nm([Uj ,K])mn

]

. (44)

We now record the continuity equation for energy and charge. These can be compactly written in Fourier
space, for small q and in the absence of external energy sources. Using the definitions in Eq(39), we find

[Uj ,K] = qxI
†
j . Therefore

Lij(qx, ω) =
i

Ωωc

[

−〈[Ii,Uj ]〉
1

qx
−

∑

n,m

pm − pn
εn − εm + ωc

(Ii)nm(I†
j )mn

]

. (45)

We next proceed to take the limit of small qx. Here the inconvenient-looking first term in Eq(45) tends to a
finite limit in all cases, owing to a simple but important point. We first note that for a large system, K(−qx)
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tends continuously to the Hamiltonian K in the limit qx → 0. We further note that for a generic operator
P , the cyclicity of trace yields

〈[P,K]〉 =
1

Z
Trace

[

e−βK (PK −KP )
]

≡ 0. (46)

This relation is noted as the Identity-I in [38]. It follows that 〈[P,K(−qx)]〉 ∝ qx with a well defined
coefficient Ref[38]. Consulting the list of variables in Eq(39), we conclude that limqx→0〈[Ii,Uj ]〉 = 0 in all
cases of interest. Observe that this result does not require the vanishing of the commutator [P,K]. In the
case of thermal transport L22, this point is important since the heat current does not commute with the
Hamiltonian. In contrast, for L11, i.e. electrical transport, the charge current commutes with the total
number operator and hence the limit of the ratio is well defined more trivially, leading to the familiar f-sum
rule as shown below.

In the uniform limit qx → 0, and hence from Eq(39) we can set I†
j = Ij . Therefore for arbitrary

frequencies, the Onsager functions read as

Lij(ω) =
i

Ωωc

[

〈Tij〉 −
∑

n,m

pm − pn
εn − εm + ωc

(Ii)nm(Ij)mn

]

, (47)

〈Tij〉 = − lim
qx→0

〈[Ii,Uj ]〉
1

qx
= − lim

qx→0

d

dqx
〈[Ii,Uj ]〉. (48)

The operators Tij are not unique, since one can add to them a ‘gauge operator” T gauge
ij = [P,K] with arbitrary

P , without affecting the thermal average, due to the Identity-I 46 discussed above. These fundamental
operators play a crucial role in the subsequent analysis, since they determine the high frequency behaviour
of the response functions. These important operators are written in a more familiar representation[38] as
follows:

Stress tensor Thermal operator Thermoelectric operator
T11 T22 T12 = T21

τxx Θxx Φxx

− d
dqx

[

Ĵx(qx), ρ(−qx)
]

qx→0
− d
dqx

[

ĴQx (qx),K(−qx)
]

qx→0
− d
dqx

[

Ĵx(qx),K(−qx)
]

qx→0

(49)

The thermoelectric operator can also be written as

Φxx = T21 = −
d

dqx

[

ĴQx (qx), ρ(−qx)
]

qx→0
, (50)

and its equivalence to the form given in Eq(49) amounts to showing T12 = T21, modulo the addition of
a “gauge operator” discussed above. This task is more nontrivial than one might naively anticipate, and
requires the use of Jacobi’s identity as discussed later.

Several aspects of Eqs(47,49) are worth mentioning at this point.

3.3 Onsager Reciprocity at finite frequencies

We first note that the celebrated reciprocity relations of Onsager are extended to finite ω here. These require
in the present case (with no magnetic fields)

Lij(ω) = Lji(ω). (51)

One part of the above dealing with the second term of Eq(47) goes back to Onsager’s famous argument:
in the absence of a magnetic field we can choose a real phase convention for the quantum wave functions
such that the product (Ii)nm(Ij)mn are real. Invariance under complex conjugation then implies invariance
under the exchange i↔ j.
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The full (frequency dependent) function shows reciprocity only if we can show that Tij = Tji, since this is
the first part of Eq(47). This identity requires the use of the Jacobi identity 0 = [[a, b], c]+ [[c, a], b]+ [[b, c], a]
for any three operators a, b, c, and can be proved as follows. Consider T12 which requires the first order term
in q of the expectation of [Ĵx(q),K(−q)]. Now we use Ĵx(q) = 1/q[K, ρ(q)] to lowest order in q, so that

〈T12〉 = −

(

d

dq

1

q
[〈[K, ρ(q)],K(−q)]〉]

)

q→0

(52)

=

(

d

dq

1

q
〈[[ρ(q),K(−q)],K] + [K(−q),K], ρ(q)]]〉

)

q→0

(53)

=

(

d

dq
〈
[

[ĴQx (−q), ρ(q)]
]

〉

)

q→0

(54)

= 〈T21〉. (55)

We used Jacobi’s identity to go to Eq(53) from Eq(52), and dropped the first term in Eq(53) using the
Identity-I 46. Eq(54) follows on using the definition of the heat current Eq(34). Thus we have reciprocity

for all ω. A generalization to include magnetic fields can be readily made, but we skip it here.

3.4 General Formulas for Lij(ω)

We start with Eq(47). By using a simple algebraic identity with partial fractions for arbitrary ∆[38], we
write

1

~ωc(~ωc + ∆)
=

1

∆

(

1

~ωc
−

1

~ωc + ∆

)

,

we obtain

Lij(ωc) =
i

ωc
Dij +

i

Ω

∑

n,m

pn − pm
ǫm − ǫn

(Ii)nm(Ij)mn
ǫn − ǫm + ~ωc

. (56)

where

Dij =
1

Ω

[

〈Tij〉 −
∑

nm

pn − pm
εm − εn

(Ii)nm(Ij)mn

]

. (57)

At this point it is useful to follow Kubo [43] and introduce imaginary time operators Q(τ) ≡ eτKQe−τK ,
where 0 ≤ τ ≤ β. A simple exercise in inverse Lehmann representation12 of the above Eqs(56,57) give us
the following compact Kubo type expressions[43, 38] for the generalized conductivities:

Lij(ω) =
i

ωc
Dij +

1

Ω

∫ ∞

0

dt eiωct

∫ β

0

dτ 〈Ii(t− iτ)Ij(0)〉 (58)

Dij =
1

Ω

[

〈Tij〉 −

∫ β

0

dτ〈Ii(−iτ)Ij(0)〉

]

. (59)

The stiffnesses Dij are discussed in detail in Ref([38]), and are in general non zero for all non dissipative
systems such as superfluids and superconductors. For a superconductor D11 is the Meissner stiffness, so that
the superfluid density can be defined in terms of it[38]. In a superfluid or a highly pure crystal supporting
second sound, the stiffness D22 is non zero, and related to the second sound phenomenon. For dissipative
systems, these stiffnesses vanish, and on dropping them from Eq(58) we get back the familiar Kubo type
formulas[43, 40].

12Pedagogically it might be easier to go in the opposite direction, and to insert a complete set of eigenfunctions of K in the
expressions Eq(58,59), followed by a simple integration over the imaginary time.
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3.5 High frequency behaviour

The high frequency behaviour of these functions is easily found from Eq(47) as

lim
ω≫0

Lij(ω) =
i

ωΩ
〈Tij〉 +O(1/ω2). (60)

Thus these fundamental operators determine the high frequency response, and we will pursue the conse-
quences later.

3.6 Sum Rules for Electrical and Thermal Conductivity

It is worth noting that these relations imply sum rules as well, for the thermal response functions. To see
this, note that the causal nature of the Onsager coefficients and an asymptotic fall off as inverse frequency
provides a dispersion relation, i.e. a Kramers Kronig relation, where P represents the principal value of the
integral;

ℜeLij(ω) =
1

π
P

∫ ∞

−∞

dν

ν − ω
ℑmLij(ν) (61)

ℑmLij(ω) =
1

π
P

∫ ∞

−∞

dν

ω − ν
ℜeLij(ν). (62)

We see at high frequencies from Eq(60) and Eq(62) and assuming the reality of the averages 〈Tij〉:

lim
ω≫0

ω ℑmLij(ω) =
〈Tij〉

Ω
=

∫ ∞

−∞

dν

π
ℜeLij(ν). (63)

This relation gives all the interesting sum rules in this problem. More explicitly we find:

∫ ∞

−∞

dν

2
ℜeσ(ν) =

π〈τxx〉

2Ω
(64)

∫ ∞

−∞

dν

2
ℜeκ(ν) =

π〈Θxx〉

2TΩ
, . (65)

These are known as follows. (a) Eq(64) is the well known lattice plasma or f-sum rule[45] with the RHS
equaling ω2

p/8 with ωp as the effective plasma frequency. (b) Eq(65) is the thermal sumrule[38] found recently.
From our earlier discussion, we see that the thermal conductivity has a correction for mobile carriers Eq(17),
so that we can define a finite frequency object

κzc(ω) =
1

T

[

L22(ω) −
L12(ω)2

L11(ω)

]

, (66)

which also satisfies causality, and falls off at high frequencies as inverse ω, and therefore satisfies dispersion
relations of the type Eq(62). Thus by the same argument, and using the high frequency limits of all the
coefficients Eq(60), we infer a sum rule for this case as

∫ ∞

−∞

dν

π
ℜeκzc(ν) =

1

TΩ

[

〈Θxx〉 −
〈Φxx〉2

〈τxx〉

]

. (67)

The second term in Eq(67) is usually small for Fermi systems at low temperatures and usually can be
neglected. We may write the RHS as πCN (T )v2

eff/(2dΩ), in terms of the more conventional specific heat

for a fixed number of particles, and veff which is defined by this expression. It is interesting to note13 that

13I thank Dr S. Mukerjee and Dr M. Peterson for interesting discussions of this point.
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the explicit dependence on the chemical potential in the RHS of Eq(65) arising from the definition of ĴQx in
Eq(34), is exactly canceled in the RHS of Eq(67). Thus the zero current sum rule can be computed without
knowing the chemical potential exactly. For immobile carriers this problem is irrelevant; Eq(65) can be used
without worrying about the distinction between heat current and energy current.

We should mention that the f-sumrule Eq(64) and the thermal sum rule Eqs(65,67) are both non universal
in a general system, and depend upon various material parameters and the temperature. The f-sumrule
equals ω2

p/8 for quadratic bands εk = ~
2k2/(2m), but in a tight binding model is related to the kinetic

energy expectation. The thermal sumrule is manifestly non universal since the operators Θxx explicitly
depend on the details of the Hamiltonian[38].

3.7 Dispersion relations for Thermopower, Lorentz number and Figure of Merit

Let us now turn to the main objects of study here namely

Thermopower S(ω) =
L12(ω)

TL11(ω)

Lorentz Number L(ω) =
κzc(ω)

Tσ(ω)

Figure of Merit Z(ω)T =
S2(ω)

L(ω)
. (68)

The first two objects are very well known in transport theories Ref[27, 10, 9], while the figure of merit ZT
is a dimensionless measure of the efficacy of a thermoelectric device, with large values ZT ∼ 1 at low T
being regarded as highly desirable in many applications. Let us analyze these definitions and extract their
dispersion relations. It is readily seen that these variables differ qualitatively from the conductivity or the
thermal conductivity in their high frequency behaviour. Each of these approaches a constant asymptotically,
that can be written down by inspection.

High Freq Thermopower S∗ =
〈Φxx〉

T 〈τxx〉

High Freq Lorentz Number L∗ =
〈Θxx〉

T 2〈τxx〉
− (S∗)2

High Freq Figure of Merit Z∗T =
〈Φxx〉2

〈Θxx〉〈τxx〉 − 〈Φxx〉2
. (69)

As a result, we can write their dispersion relations readily, they are

ℜeS(ω) = S∗ +
P

π

∫ ∞

−∞

d ν

ν − ω
ℑmS(ν) (70)

ℜeL(ω) = L∗ +
P

π

∫ ∞

−∞

d ν

ν − ω
ℑmL(ν) (71)

ℜeZ(ω) = Z∗ +
P

π

∫ ∞

−∞

d ν

ν − ω
ℑmZ(ν). (72)

These transport quantities are generally real at only two values of frequency, namely zero or infinity, and
are very similar in mathematical structure to the Hall resistivity discussed in Eq(11). The imaginary part is
expected to go linearly at small ω, falling off over some finite interval in ω corresponding to the energy range
of the contributing physical processes. Thus the difference between the DC transport and high frequency
values can be expressed in all these cases as an integral over the imaginary part of these three variables
divided by the frequency, and may be amenable to direct measurements, as in the case of the Hall effect.
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4 Thermoelectric Phenomena in Correlated Matter

4.1 Limiting case of free electrons, S∗ the Heikes Mott and Mott results

We propose the use of the high frequency variables Eq(69) in correlated matter, for reasons that are essentially
the same as those for proposing the high frequency Hall constant, explained earlier. These variables are
singled out by the fact that they have a finite limit at high ω, as compared to say κ(ω) or L12(ω), which
vanish in that limit. In particular we expect that these high frequency limits of the three variables listed in
Eq(69), are good indicators of the DC transport measurements in correlated matter, where we can use the
projected t-J model, whereas for the Hubbard model, these should be good only for intermediate to weak
coupling. The origin of this expectation is not repeated here since it is identical to the argument given for
the Hall constant after Eq(9) and the later paragraphs. In the following, we will see the consequences of this
proposal, and estimate its accuracy in some well controlled examples. By way of motivating this calculation,
we show in Fig(3) the computed Hall and Seebeck coefficients for the triangular lattice, where these objects
have a similar behaviour as a function of electron filling in a Mott Hubbard system.

Let us begin by listing the three basic operators for the simplest Drude Sommerfeld type model of a
free electron gas, with particle scattering off some impurities or phonons characterized by a relaxation time
τ . Let the particle energy dispersion be denoted by εk, and their group velocity vxp = ∂εk/∂kx. A small
calculation of Eq(49) shows

τxx = q2e
∑

p,σ

∂

∂px

{

vxp
}

c†p,σcp,σ

Θxx =
∑

p,σ

∂

∂px

{

vxp (εp − µ)2
}

c†p,σcp,σ,

Φxx = qe
∑

p,σ

∂

∂px

{

vxp (εp − µ)
}

c†p,σcp,σ (73)

We next form the thermal averages,

〈τxx〉 = 2q2e
∑

p

np
d

dpx

[

vxp
]

〈Θxx〉 = 2
∑

p

np
d

dpx

[

vxp (εp − µ)2
]

〈Φxx〉 = 2qe
∑

p

np
d

dpx

[

vxp (εp − µ)
]

. (74)

Here np is the Fermi function. we now focus on the low T behaviour of these formulae. At low temperatures
T , we use the Sommerfeld expansion[9] after integrating by parts, and obtain the leading behaviour:

〈τxx〉 = Ω 2 q2eρ0(µ) 〈(vxp )
2〉µ

〈Θxx〉 = Ω T 2 2π2k2
B

3
ρ0(µ) 〈(vxp )2〉µ

〈Φxx〉 = Ω T 2 2qeπ
2k2
B

3

[

ρ′0(µ)〈(vxp )2〉µ + ρ0(µ)
d

dµ
〈(vxp )2〉µ

]

, (75)

where ρ0(µ) is the density of states per spin per site at the Fermi level µ and the primes denote derivatives
w.r.t. µ, the average is over the Fermi surface as usual. We may form the high frequency ratios as in Eq(69),
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and get the leading formulas14

S∗ = T
π2k2

B

3qe

d

dµ
ln

[

ρ0(µ)〈(vxp )2〉µ
]

(76)

L∗ =
π2k2

B

3q2e
. (77)

These formulas are indeed very close to what we expect from the Bloch Boltzmann theory. The high
frequency result gives the same Lorentz number as we get from the Bloch Boltzmann theory. In the Bloch
Boltzmann theory, the thermopower can be calculated assuming an energy momentum dependent relaxation
time τ(p, ω), as

SMott = T
π2k2

B

3qe

d

dµ
ln

[

ρ0(µ)〈(vxp )2τ(p, µ)〉µ
]

, (78)

and is referred to as the Mott formula[9, 27]. A comparison between the two formulae Eq(76, 78) for
the thermopower reveals the nature of the high frequency limit: it ignores the energy dependence of the
relaxation time, but captures the density of states. Thus this formalism is expected to be accurate whenever
the scattering is less important than say the density of states and correlations.

If the free electron gas in the above discussion is replaced by electrons that interact with each other,
in addition to scattering off impurities or phonons or amongst themselves, the details of the interactions
become crucial in writing the operators analogous to Eq(73)down. The thermal operators Θxx can be
computed for any given model by a prescription set out in [38], and detailed expressions are available there
for many standard electronic models: the Hubbard model, the t-J model, and the Anderson model. Also
corresponding expressions are available heat conduction in insulators such as the Heisenberg antiferromagnet,
and for non linear lattice models such as the Fermi Pasta Ulam chain [44]. The thermoelectric operators Φxx

are also given explicitly for the conducting models for the same set of models in the same reference. Given
their length it seems hardly worthwhile to reproduce them here. We merely mention that the operators
involve the interaction parameters, just as the energy currents do, and have to be worked out for each model
individually. The one exception is the τxx operator, which usually has the same form as in Eq(73), due to
the fact that interactions are velocity independent. We will see the explicit form of the Φxx operator for the
U = ∞ Hubbard model below Eq(92).

Let us also note the general formula for the thermopower from Eqs(68,58). On dropping the second term
Eq(59), we get the standard formulas appropriate for dissipative systems, where we can write the “exact”
Kubo formula[43]:

SKubo =

[

∫ ∞

0
dt

∫ β

0
dτ 〈ĴEx (t− iτ)Ĵx(0)〉

∫ ∞

0 dt
∫ β

0 dτ 〈Ĵx(t− iτ)Ĵx(0)〉
−
µ(0)

qe

]

+
µ(0) − µ(T )

qe
. (79)

We have used Eq(33) and further added and subtracted the µ(0)
qe

term for convenience, to arrive at Eq(79).

The Mott result Eq(78) follows from this general formula in the limit of weak scattering, as textbooks
indicate[10]. For narrow band systems, Heikes introduced another approximation popularized by Mott[46,
47], namely the Heikes Mott formula

SHM =
µ(0) − µ(T )

qe
. (80)

This formula emphasizes the thermodynamic interpretation of the thermopower, this term can be loosely
regarded as the entropy per particle15. This motivates us[38] to decompose the thermopower as

SKubo = STr + SHM , (81)

14The reader is requested to ignore the irksome issue of the dimensionality of the argument of the logarithm. The logarithm
is just a notational device to collect the coefficients in this formula and in Eqs(78,88).

15Strictly speaking µ is a derivative of the entropy w.r.t. the number of particles, i.e. µ(T ) = −T (∂S(N,T )/∂N)E,T .
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thereby defining the “transport part” of thermopower as the first part of Eq(79) evaluated with µ(0), as
opposed to the thermodynamic part SHM . Using the high frequency approximation Eq(69), we approximate
(only) the transport part in Eq(81) and write

S∗ = S∗
Tr + SHM ,

S∗
Tr =

〈Φ′xx〉

T 〈τxx〉
, (82)

with the Φ′xx differs from the variable Φxx in that the chemical potential µ is replaced by the T = 0 value
µ(0). The low T limit for the free particle case of this relation is given in Eq(76). For a correlated many body
system, it is much easier to work with this variable. The computational advantage in Eq(82) over Eq(79) is
that the transport part is approximated by an equal time correlator as opposed to a dynamical correlator.
This allows us to apply one of several possible techniques to the problem, such as exact diagonalization and
also high T expansions.

4.2 Kelvin’s thermodynamical formula for thermopower

It is interesting to discuss Kelvin’s thermodynamic derivation of the thermopower [42]. In his seminal work,
Onsager[39] discussed Kelvin’s derivation of reciprocity given several decades earlier. He argued that the
phenomenon of transport, including reciprocity, cannot be understood within equilibrium thermodynamics
or statistical mechanics. Interestingly as late as 1966, Wannier wrote in his textbook[48]: “Opinions are

divided as to whether Kelvin’s derivation is fundamentally flawed or not”. A detailed account of this debate
and its resolution seem to be missing in literature.

Our discussion of the thermopower takes us to the brink of this old debate, and so we make a small
excursion to obtain a thermodynamic approximation of the correct answer. This derivation captures the
spirit of the Kelvin argument, and provides an approximate expression for the thermopower S. For deriving
this, let us rewind to Eq(43) of the finite q, ω dependent Onsager coefficients Lij(q, ω). Using Eqs(39,41,42)
we see that

L11(q, ω) =
i

Ωqx
χĴx(qx),ρ(−qx)(ω)

L12(q, ω) =
i

Ωqx
χĴx(qx),K(−qx)(ω), hence

S(qx, ω) =
χĴx(qx),K(−qx)(ω)

T χĴx(qx),ρ(−qx)(ω)
. (83)

Onsager’s prescription at this point is to take the transport limit, i.e. first let qx → 0 followed by the static
limit, to get the exact formula[40, 43]. We saw in the previous section that this ratio has another finite and
interesting limit, leading to S∗, when we let qx → 0 followed by ω ≫ 0. It is interesting and amusing that
in the opposite slow limit, i.e. ω → 0 followed by qx → 0, once again S(qx, ω) has a finite and well defined
result. This limit is what we identify with the Kelvin calculation and his formula, since the objects that
arise are purely equilibrium quantities. Thus

SKelvin = lim
qx→0,ω→0

S(qx, ω)

S(qx, ω) =
χ[K,ρ(qx)],K(−qx)(ω)

T χ[K,ρ(qx)],ρ(−qx)(ω)
(84)

=
χρ(qx),K(−qx)(ω)

T χρ(qx),ρ(−qx)(ω)
. (85)

We have used the continuity relation Ĵx(qx) = 1
qx

[K, ρ(qx)] to go from Eq(83) to Eq(84). The next stage
involves writing a Ward type identity,

χ[K,ρ(qx)],K(−qx)(ω) = −ωχρ(qx),K(−qx)(ω) + 〈[K(−qx), ρ(qx)]〉, (86)
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and a similar one for the denominator, followed by realizing that the second term of the r.h.s. of Eq(86)
vanishes on using parity for any finite q in a system with inversion symmetry16. We can now take the static
limit and get the equilibrium Kelvin result

SKelvin = lim
qx→0

χρ(qx),K(−qx)(0)

T χρ(qx),ρ(−qx)(0)
, (87)

where in the limit, the denominator is related to the thermodynamic compressibility, and the numerator is
an equilibrium cross correlation function between energy and charge density. It is straightforward to see that
reciprocity holds in this sequence of limits as well.

In the case of free particles, it is easy to evaluate Eq(87) at low T and we find

SKelvin = T
π2k2

B

3qe

d

dµ
ln [ρ0(µ)] . (88)

It is amusing to compare Eq(76,78) and Eq(88). Compared to the “exact” Mott formula that follows from
the Onsager limiting procedure, S∗ captures the answer except for the energy dependent relaxation rate.
The Kelvin formula further approximates S∗ by neglecting the energy dependence of the velocity average.
Thus we conclude that the Kelvin approximation is inferior to the high frequency approximation, but does
capture the density of states effects.

The above, rather formal manipulation with the limits, can be nicely visualized by working instead
with open boundary conditions. Let us imagine a “gedanken experiment”, where a long isolated cylinder
of the material of interest, with length L, is subjected to a time varying temperature gradient. Since this
experiment is exempt from practical issues, we further imagine a Luttinger version of this, where a pair
of tiny blackholes 17 are brought to the two ends of the sample (somehow!!), and oscillated in space and
time. Thus we apply a space-time varying gravitational field ψ(~x, t) = δψ0

x
L exp{−iωt} together with a

similar electrostatic potential φ(~x, t), and compute the induced oscillating dipole moment P =
∑

x xρ(~x)
using perturbation theory. The gravitational field is again a proxy for temperature variation. By forming
the ratio of the gravitational field amplitude δψ0 to the electrostatic amplitude δφ0 needed to produce a
given dipole moment, we can extract the thermopower. The rigorously correct transport limit, as applied
to this situation, requires the thermodynamic limit to be taken before ω → 0. If we compute the opposite
limit instead, i.e. a finite system and a DC field, then the result maps to the above Eq(87). Such a limiting
process is tempting from the physical picture of the so called “absolute thermopower”. In this case, one
studies a single system with applied thermal gradients, which develops a voltage across its ends. This type
of a picture was presumably behind the Kelvin derivation.

4.3 Applications to Sodium Cobaltates in the Curie Weiss Metallic Phase

At this point it is worthwhile to compare the results of various approximations in the important and current
problem of sodium cobaltates NaxCoO2, with x ∼ .68. Recent interest in this system started with the
observation of high thermopower (S ∼ 80µV/K) at room temperatures in this system by Terasaki[19].
Wang, Rogado, Cava and Ong, in another important paper[20] found that this thermopower is strongly
magnetic field dependent. They further found that the metallic conduction is coexistent with a Curie Weiss
susceptibility characteristic of insulators. This has given rise to the nomenclature of a Curie Weiss metallic
phase. The basic modeling of this system, as suggested by Wang et. al., is in terms of a strongly correlated
Fermi system, with no double occupancy of holes. The holes move on a triangular lattice provided by
the Co atoms, and the system may be regarded, to a first approximation, as a bunch of uncoupled 2D

16The argument is trivial for the denominator since density fluctuations commute at different wave vectors. In the numerator,
consider the real expectation γ(qx) = 〈[K(−qx), ρ(qx)]〉. Clearly γ∗(qx) = 〈[ρ(−qx), K(qx)]〉 = −γ(−qx). But from parity
γ(−qx) = γ(qx) and hence the result γ(qx) = 0.

17If the earth became a black hole it would have a diameter of about 0.017 meters, about the size of a marble. http:

//www.windows.ucar.edu/tour/link=/kids space/black.html&edu=elem
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triangular lattice planes with a t-J model description of correlated holes. After performing a particle hole
transformation we can write the basic Hamiltonian as

H = −
∑

~x,~η

t(~η)c̃†~x+~η,σ c̃~x,σ + J
∑

<ij>

~Si.~Sj . (89)

Here ~η is the nearest neighbor vector on the triangular lattice. This model corresponds to the limit of
U → ∞. In this limit the Fermionic commutation relations need to be modified into the Gutzwiller-Hubbard
projected operator[49] relations (with σ̄ = −σ)

c̃~x,σ = PG c~x,σ PG
{

c̃~x,σ, c̃
†
~x′,σ′

}

= δ~x, ~x′

{

δσ,σ′(1 − n~x,σ̄) + (1 − δσ̄,σ′)c̃†~x,σ c̃~x,σ̄

}

≡ Yσ,σ′ δ~x, ~x′ (90)

The presence of the Y factor is due to strong correlations, and makes the computation nontrivial. The
number operator n~x,σ is unaffected by the projection. Let us consider the kinetic energy only, i.e. the t part,
since this is expected to dominate in transport properties, at least far enough from half filling and for t≫ J .
The addition of the J part can be done without too much difficulty, in fact the numerics discussed below
include the full Hamiltonian.

Let us note down the expressions for the charge current and the energy current at finite wave vectors by
direct computation:

K̂(k) = −
∑

~x,~η,σ

(t(~η) + µδ~η,0) e
i~k.(~x+ 1

2
~η) c̃†~x+~η,σ c̃~x,σ (91)

Ĵx(k) = iqe
∑

~x,~η,σ

ηxt(~η) e
i~k.(~x+ 1

2
~η) c̃†~x+~η,σ c̃~x,σ

ĴQx (k) = −
i

2

∑

~x,~η,~η′,σ

(ηx + η′x)t(~η)t(~η
′) ei

~k.(~x+ 1
2
(~η+~η′)) Yσ′,σ(~x+ ~η′) c̃†

~x+~η+~η′,σ′
c̃~x,σ

−
µ

qe
Ĵx(k)

We evaluate the thermoelectric operator as:

Φxx = −
qe
2

∑

~η, ~η′,σ,σ′,~x

(ηx + η′x)
2 t(~η) t(~η′) Yσ′,σ(~x+ ~η) c̃†

~x+~η+~η′,σ′
c̃~x,σ

−qeµ
∑

~η,σ,~x

η2
x t(~η) c̃

†
~x+~η,σ c̃~x,σ. (92)

This expression gives an idea of the complexity of the operators that arise in the theory. Let us first present
some numerical results obtained by exact diagonalization[50, 51] of small clusters of the triangular lattice.
We can compute all eigenstates and matrix elements for up to 14 or 15 site clusters of the triangular lattice.
We can therefore assemble the full dynamical conductivities from Eq(68). The involved calculations are
fully described in the papers[50, 51], and we will content ourselves with displaying the main results. Firstly,
consider the absolute scale of the thermopower S∗ as a function of temperature, shown in Fig(4). The upper
panel in Fig(4) shows that this comparison with experiment is quite successful on a quantitative scale. One
can next ask, how good is the approximation of infinite frequency, purely in theoretical terms. To answer
this we compute the frequency dependence of S(ω), as shown in Fig(5). It is clear from this figure that
the approximation of high frequency is excellent, the maximum error being less than 3%. Thus we are
computing essentially the DC transport object, at least for clusters of these sizes. This benchmarking gives
us confidence in the results of the high frequency formulas for thermopower.
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4.4 High temperature expansion for Thermopower

We next show that rather simple considerations of our formulae lead to an important prediction for enhancing
the thermopower for a triangular lattice system with a suitable choice of the hopping parameter. We find a
remarkable effect of the sign of hopping on the transport part of the thermopower. This is well illustrated in
the lower panel of Fig(4). This shows the enhancement of the computed thermopower at low and intermediate
T ’s, achieved by flipping the sign of hopping from the upper panel. We perform a simple computation at
high T that throws light on this phenomenon. We focus on the kinetic energy which is expected to dominate
the transport contributions. Let us compute the thermopower S∗ from Eqs(92,69)

S∗ = −
µ

qeT
+

qe∆

T 〈τxx〉
(93)

where

∆ = −
1

2

∑

~η,~η′,~x

(ηx + η′x)
2 t(~η) t(~η′) 〈Yσ′,σ(~x+ ~η) c̃†

~x+~η+~η′,σ′
c̃~x,σ〉 (94)

The computation of the different parts proceeds as follows: we show readily that (for the hole doped case)
using translation invariance and with n as the number of particles per site at high T,

〈τxx〉 = 6Ωq2et〈c̃
†
1c̃0〉 ∼ 3Ωq2eβt

2n(1 − n). (95)

The structure of the term Eq(94) is most instructive. At high temperatures, for a square lattice we need
to go to second order in βt to get a contribution with ηx + η′x 6= 0, to the expectation of the hopping

〈c̃†
~x+~η+~η′,σ′

c̃~x,σ〉. For the triangular lattice, on the other hand, we already have a contribution at first order.

For the triangular lattice, corresponding to each nearest neighbor, there are precisely two neighbors where
the third hop is a nearest neighbor hop. A short calculation gives

∆ ∼ −3Ωt2
∑

σ,σ′

〈Yσ′,σ(~η)c̃
†

~η+~η′,σ′
c̃~0,σ〉. (96)

The spins must be the same to the leading order in βt where we generate a hopping term c̃†~0,σ c̃~η+~η′,σ from

an expansion of exp(−βK), and hence a simple estimation yields

∆ = −
3

2
Ωt3βn(1 − n)(2 − n) +O(β3). (97)

This together with µ/kBT = log(n/2(1 − n)) +O(β2t2) gives us the result for 0 ≤ n ≤ 1

S∗ =
kB
qe

{

log[2(1 − n)/n] − βt
2 − n

2
+O(β2t2)

}

, (98)

and

S∗ = −
kB
qe

{

log[2(n− 1)/(2 − n)] + βt
n

2
+O(β2t2)

}

(99)

for 1 ≤ n ≤ 2 using particle hole symmetry[38].

We observe that the first term in Eq(93) from µ(T ) arising from thermodynamics, termed the Heikes-
Mott contribution, dominates at very high T . The approach to this value is governed by the second term
of Eq(93), called the transport term. This transport term is O(βt) for the triangular lattice, whereas it is
only O(βt)2 for the square lattice due to the existence of closed loops of length three in the former. The
high T expansion clearly identifies the role of the lattice topology here. The other important consequence is
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the dependence upon the sign of the hopping in the transport term. To be specific, for electron doping the
thermopower in Eq(99) shows that S approaches its high T limit from below as long as t < 0, as we find for
sodium cobaltates[19, 20]. On the other hand, if we could flip the sign of the hopping, as in a fiduciary hole
doped Cobalt Oxide layer, the high T value would be reached from above. Since the S must vanish at low T ,
this observation implies that we must find a maximum in S(T ) at some intermediate T . This then motivates
the calculation for a fiduciary system with the flipped sign of hopping. As seen in Fig(4,6), numerical results
are very encouraging, leading to a thermopower that is ∼ 250µV/K, and should act as an incentive to the
materials community who could seek this type of doping. Crystal structures containing triangular loops are
clearly favourable, and this includes several 3D structures as well, such as the FCC and HCP lattices.

4.5 Lorentz number and Figure of Merit for the triangular lattice t-J model

We briefly indicate the dependence of the Lorentz number L∗ and the figure of merit Z∗T as computed
by us in the case of the triangular lattice [50, 51], with parameters appropriate for sodium cobaltates at
x ∼ .68. Fig(7) indicates the dependence of these important parameters on x, T for the t-J model clusters
of size up to 14. The frequency dependence was estimated to be small and of the same scale as that of
S(ω), and therefore the results are good indicators of the DC values. We must keep in mind, that the
finite size effects are substantial for these small clusters, and hence the behaviour at low T is particularly
subject to corrections. Also we stress that our calculation pertains to the electronic part of the thermal
conduction, and neglects the often substantial lattice part. Our figure of merit is therefore likely to be a
rather optimistic upper bound to the physical values. Correcting for the lattice part using measured thermal
conductivity is straightforward in specific cases. More non trivially, an elaborate topic treated in recent
work, deals with manipulating the lattice part to maximize the figure of merit by suitably chosen lattice
structures and impurities [52]. However, it is clear that several interesting trends emerge from this purely
electronic study. A striking trend is that the proximity of the Mott Hubbard insulating state x ∼ 0 is not
necessarily favourable for good thermoelectric behaviour with a large Z∗T . This is despite the enhancement
of S itself. The enhancement arises due to Mott Hubbard correlations that lead to a logarithmic divergence
of S near half filling[36], but is offset by the unfavourable Lorentz ratio. On the other hand, the proximity
of almost filled bands or almost empty bands seems to be more favourable, and indeed the experience with
doping in NaxCoO2 seems to bear out this finding rather well.

5 Phenomenological equations for coupled Charge and Energy

transport.

In this section, we present a simple framework for the problem of coupled transport of charge and energy
(or heat) in a charged system, such as a semiconductor or a poor metal. It is perturbed by an external
temperature gradient and electric fields. We add a source that dumps energy into the system, such as
a pump laser, motivated by several recent experiments[53, 54, 55, 56, 57, 58]. In these experiments, a
cylindrical rod of a semiconductor (or metal) is subjected to pulsed laser heating at one end.18 The resulting
change in the reflectivity of a second probe laser conveniently provides a readout of the local “dynamical
temperature”[53, 54, 55]. This enables the reconstruction of several physically interesting variables, such as
the electron phonon coupling[56], the thermal conductivity[57] and the thermoelectric coefficient[58]. Given
the time dependence of the probes, we clearly need AC response functions of the type discussed above. The
laser modulation time constants currently are in the femtosecond range (10−15sec), and hence are already
able to probe energy relaxation times in semiconductors Ref([57]). Such nontrivial observations motivate
modeling of the type described below.

Our framework is a simple model of charge and heat diffusion (e.g. Ref[59, 60]) together with the exact
coefficients relating the rate of change of currents to the driving forces. The dynamical formalism set out

18This end is usually covered by a surface cap of a good metal, where the absorption of the laser power occurs, and is
transmitted to the system via a contact layer.
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in earlier sections is provided a simple context here, and sheds light on the meaning of new operators
τxx,Θxx,Φxx constructed above Eq(49). These play a fundamental role here, thereby providing a strong
pedagogical motivation for this section, in addition to the above mentioned practical one. In our simple
model, we find it advantageous to define new response functions measuring the change in energy, charge
density and the currents arising from the input power (the coefficients M1,M2, N1, N2 below in Eq(108)).
These are related to the ~q, ω dependent Onsager coefficients Lij via the various continuity equations and
Einstein type relations, but clearly and neatly isolate the “force-response” aspect of the external power
probe, and as such give a direct method of interpreting experiments.

In essence, we approach this problem through a “mechanical perturbation” point of view rather than a
thermodynamic one. Our strategy is to stick to the most broadly definable variables, such as the energy
density and currents, and to avoid, or at least postpone until the very end, mention of variables such as ~q, ω
dependent temperature fluctuations. The latter are only sensible in the domain of long wavelength and low
frequency variations, unlike the former which are always definable. The results for temperature fluctuations
emerge usefully from our formulas in the limiting sense at the end of the calculation.

Let us imagine the system in the form a cylinder of cross section A and length L along the x axis
(Ω = LA), with the surface layer at x = 0. We subject the system to an external Luttinger field ψ(~x, t) =
ψq exp−i(ωt+ qxx), an electrostatic potential φ(~x, t) = φq exp−i(ωt+ qxx). We introduce the pump laser
term below via the continuity equation below. Since we will discuss a charged system, it must be stressed
that the electric potential satisfies the Poisson equation with the induced charge density included, so that
~E = −∇φ is the total local electric field. The system is then described by the Hamiltonian Eq(38) We will
denote the (Grand canonical) Hamiltonian in the absence of the perturbing fields as K0 and the perturbation
as K1. As usual the quantum average of an observable is given by 〈Q〉 = Tr(Qρ̂(t)), where the density matrix
ρ̂ satisfies the von Neumann equation i ∂∂t ρ̂(t) = [Ktot(t), ρ̂(t)], and hence any observable expectation satisfies

the equation i ∂∂t 〈Q(t)〉 = 〈[Q,K1]〉0 + 〈[Q,K0]〉. The first term has been linearized and hence evaluated in
the unperturbed ensemble with K = K0, and the second term can be evaluated within perturbation theory
as usual, and we find the exact linearized equation of motion:

i
∂

∂t
〈Q(t)〉 = 〈[Q,K1]〉0 + (−i)

∫ ∞

0

dt′ eiωt
′−0+t′〈[[Q(t),K0],K1(−t

′)]〉0. (100)

Interestingly enough, the first term in Eq(100) is expressible exactly in terms of the three operators in Eq(68),
while the second term is approximated by a relaxational plus diffusive term. We choose the variables Q as
the heat (ĴQx ) and charge (Ĵx) currents and the densities of heat K and charge ρ as before. Exploiting the
linearity of the theory, it suffices to consider a single frequency and wave vector at the input, and hence we
introduce a notation for the induced variables depending on the single wave vector qx through

〈ĴQx (~x, t)〉 =
1

Ω
e−iωt−iqxxδJQx

〈Ĵx(~x, t)〉 =
1

Ω
e−iωt−iqxxδJx

〈K(~x, t)〉 =
1

Ω
e−iωt−iqxxδKq +

1

Ω
〈K〉0

〈ρ(~x, t)〉 =
1

Ω
e−iωt−iqxxδρq + qen. (101)

Thus the variables 〈ĴQx (~x, t)〉 etc are intensive whereas δJQx etc are extensive. Next, the pump laser coupling
to the system is introduced via the continuity equation for energy. We write the energy continuity equation
(ignoring the variations along the transverse directions and focusing on the x axis variation) as

∂

∂t
〈K(~x, t)〉 +

∂

∂x
〈ĴQx (~x, t)〉 = P0δ(x). (102)

We introduced the input power P0 per unit area at the surface layer x = 0. 19 The power P0 is further

19If we introduce the coupling of the laser field ~E0 to the matter in Ktot, it leads to an operator equation of continuity

26



modulated in time, so that we decompose it as P0 exp−i(ωt). We finally note the conservation laws for
charge and energy densities in terms of the response amplitudes :

qx δJ
Q
x + ω δKq = iA P0

qx δJx + ω δρq = 0. (103)

We next note that the first term in the dynamical equation Eq(100) for both the currents is exactly expressible

in terms of the operators defined in Eq(49). For example consider the heat current equation where the term
in question reads 〈[ĴQx (q),K(−q)]〉0ψq + 〈[ĴQx (q), ρ(−q)]〉0φq. For small q, upon using Eq(49) it becomes
−〈Θxx〉0 q ψq − 〈Φxx〉0 q φq. Similar expressions hold for the charge current. In the absence of the second
term in Eq(100), the equations are ballistic, and hence the sum rules discussed earlier are closely related to
the behaviour of the response functions in this regime. This little calculation gives us the physical meaning
of these operators Θxx,Φxx; their expectation value determines the magnitude of the ballistic force exerted

by the fields. The second term is of course crucial, and we need to estimate it using some general principles.
We write the phenomenological equations:

[

1

τ
+
d

dt

]

〈ĴQx (~x, t)〉 = −
DQ

τ
∇〈K(~xt)〉 −

c1
τ
∇〈ρ(~xt)〉

−

{

〈Θxx〉0
Ω

∇ψ(~xt) +
〈Φxx〉0

Ω
∇φ(~xt)

}

(104)

and
[

1

τ
+
d

dt

]

〈Ĵx(~x, t)〉 = −
c2
τ
∇〈K(~xt)〉 −

Dc

τ
∇〈ρ(~xt)〉

−

{

〈τxx〉0
Ω

∇φ(~xt) +
〈Φxx〉0

Ω
∇ψ(~xt)

}

(105)

These equations represent the effect of the second term in Eq(100) by terms proportional to the gradients of
the heat and charge densities, and are relaxational and diffusive in nature. DQ, Dc are the heat and charge
diffusion constants, and the cross diffusion terms c1, c2 are determined below. The basic physics contained
in the diffusion terms is that in steady state (where the time derivative of the currents are zero), and in
the absence of external mechanical fields, one can yet have charge and heat currents driven by gradients of
the charge and heat densities. The relaxation time τ ≡ τ(~q, ω), in general depends upon ~q, ω, and gives the
rate at which the currents relax to zero. Within this model τ must necessarily be the same for both charge
and energy currents, otherwise the generalized Onsager reciprocity at finite frequencies L12(ω) = L21(ω) is
violated. Let us also note the Eq(105) in terms of the induced amplitudes in the Fourier representation:

(1 − iωτ)δJQx = iτ {〈Θxx〉0 qψq + 〈Φxx〉0 qφq} + iDQ qδKq + ic1 qδρq

(1 − iωτ)δJx = iτ {〈Φxx〉0 qψq + 〈τxx〉0 qφq} + ic2 qδKq + iDc qδρq.

(106)

The constants DQ, Dc , c1, c2 can be fixed by considering the static limit at finite q where the currents and
their time derivatives are zero. Equating the various coefficients on the right to zero and taking the long
wavelength limit, we determine these as follows:

DQ = −τ〈Θxx〉0
ψq

δKq
= τ 〈Θxx〉0

C(T ) T

Dc = −τ〈τxx〉0
φq

δρq
= τ 〈τxx〉0

Ω
1
q2e

dµ
dn

c1 = Dc
〈Φxx〉0
〈τxx〉0

, c2 = DQ
〈Φxx〉0
〈Θxx〉0

.

(107)

for energy which contains ~J. ~E0 at the surface. Our treatment roughly corresponds to writing ~J = σsur
~E0, where σsur is the

conductivity at the surface, and averaging this Joule heating over the time period of the laser 2π/ω0. Assume a skin depth l

so that the power absorbed per unit area P0 = 1
2
lσsur | ~E0|2. Depending on the set up, this might need to be further corrected

for a contact (Kaptiza) resistance between the cap and the sample.
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Here C(T ) is the (extensive) specific heat, and dn
dµ is the compressibility per unit volume. We have made

use of the standard thermodynamic definitions of these response functions to arrive at these relations. Thus
all parameters are fixed in terms of the averages of the three operators Eq(49), a single relaxation time, and
the two thermodynamic response functions. For a single frequency mode, these coupled equations together
with the conservation laws Eq(103) can be solved easily, and the results expressed as

1
ΩδJ

Q
x = L22(iqψq) + L21(iqφq) +M2

P0

L
1
ΩδJx = L12(iqψq) + L11(iqφq) +M1

P0

L

(108)

In addition to the standard Onsager coefficients Lij , we have define the power response functions Mj as
above, giving the response of the currents to P0. It is also interesting to define the response of the charge
and energy density to the applied power P0 via

N1 =
1

A

∂δρq
∂P0

, N2 =
1

A

∂δKq

∂P0
(109)

The novel function N2, for example, gives us a measure of the change in energy, and hence temperature, at
various points in the system in response to the applied laser heating. We discuss this connection later.

All of these can be expressed in terms of a convenient energy denominator

∆ = (1 − iωτ + i
DQq

2

ω
)(1 − iωτ + i

Dcq
2

ω
) + ξDcDQ

q4

ω2
, (110)

where the dimensionless coupling constant between the charge and heat modes is expressible through the
high frequency figure of merit Eq(69) as:

ξ =
〈Φxx〉20

〈Θxx〉0〈τxx〉0
=

Z∗T

Z∗T + 1
. (111)

We list the finite ~q, ω Onsager coefficients:

L11 =
1

∆

τ〈τxx〉0
Ω

[

1 − iωτ + i(1 − ξ) DQ
q2

ω

]

L12 =
1

∆

τ〈Φxx〉0
Ω

[1 − iωτ ]

L22 =
1

∆

τ〈Θxx〉0
Ω

[

1 − iωτ + i(1 − ξ) Dc
q2

ω

]

M1 = −
1

∆
DQ

q

ω
[1 − iωτ ]

〈Φxx〉0
〈Θxx〉0

M2 = −
1

∆
DQ

q

ω

[

1 − iωτ + i(1 − ξ) Dc
q2

ω

]

.

N1 = −
q

ω
M1

N2 =
i

ω
−
q

ω
M2. (112)

The coefficient Lij have the standard meanings that we have commented upon earlier. The coefficients
M1,M2, N2 etc are the response coefficients to the applied power source. It is easy to see that these dynamical
results satisfy the sum rules in Eq(64, 65,67).

We note several points about this exercise next.

1. The above expressions are written in terms of energy variables. It is more rigorous as well as profitable
to view the transport processes as primarily those of charge and energy, rather than temperature.
While we can always define an energy fluctuation, it translates to a temperature pulse only under
conditions of local equilibrium, which might not always be attainable.
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2. These coupled equations have a similarity to those in the description of the two coupled fluids in
4He[61]. For insulators, the coupling between the lattice energy modes and lattice displacement
modes[60, 62] also has a formally similar structure. In these cases, the role of our coupling parameter
ξ is played by the dimensionless constant Cp/Cv − 1.

3. The new response functions Mj , Nj shed some light on pulse probe type experiments. The coefficient
N2 Eq(109) is of particular interest. In an experiment with pulsed laser heating, one would use the
coefficient N2 to compute the induced energy change δKq. This fluctuation is interpretable as a
temperature variation only if the frequency is low enough to achieve local equilibrium, but is always
definable as a mechanical response function. With the help of a model of the above type, it can be
used to extract the diffusion constant and hence the thermal conductivity.

4. For illustration of the above comment, if we turn off the coupling between the charge and energy modes
(set ξ = 0) then N2 → i(1− iωτ)/(ω− iω2τ + iDQq

2). By cross multiplying we can rewrite this in the

suggestive form
[

ω + i
DQq

2

1−iωτ

]

δKq = iP0A. If we take the limit of a slow response then we may express

the fluctuation in terms of the temperature fluctuation δKq = C(T )δTq. This can seen to be of the
form proposed by Cattaneo[63] as an improvement of Fourier’s law 20.

5. In the decoupled limit ξ = 0, we find L22 = τ〈Θxx〉0
Ω(1−iωτ+iDQq2ω) . The form of L22 displays the possibility

of a propagating mode for ωτ ≫ 1, with a dispersion ω ∼ |q|
√

DQ/τ , corresponding to a second sound.
The velocity of the second sound in this simplified model is also expressible in terms of the average of
the Θxx operator from Eq(107).

6. We see from this framework that one may devise experiments to isolate and measure different terms in
the response functions. In particular, the thermal sum rule Eq(65) is given in terms of the expectation
of 〈Θxx〉, and one might ask how this can be measured. In response to a δ(t) pulse of temperature,
the induced heat current pulse in the time domain jumps at t = 0 and the magnitude of the jump is
free from τ and a function of 〈Θxx〉 only. Similarly the energy density (hence the local reflectivity)
contains an initial tθ(t) linear rise 21

7. In the decoupled limit, the electrical conductivity σxx(ω) = σ0

1−iωτ+iDcq2/ω
, with σ0 = τ〈τxx〉0/Ω.

Hence the dielectric function

ǫ(q, ω) = 1 + 4πi
ω σ, has the correct limiting forms for a metal in both static and the plasmon limits. In

the static limit we find the screening behaviour ǫ = 1 +
4πq2e
q2

dn
dµ . For large frequencies ωτ ≫ 1 we get

the plasmon behaviour ǫ = 1 −
ω2

p

ω2 with ω2
p = 4π

Ω 〈τxx〉0.

8. For a dense metallic system we are usually in the limit where the energy scales are such that qvF ≫ ω,
so that it is a good approximation to regard the charge redistribution as almost instantaneous compared
to the heat diffusion. More formally in the decoupled limit we can see that the current response can
be written in suggestive alternate forms

δJq =
τ〈τxx〉0

1 − iωτ + iDcq2

ω

iq[φq]

=
τ〈τxx〉0
1 − iωτ

iq [φq +
1

q2eΩ

dµ

dn
δρq]. (113)

20The standard argument for the Cattaneo equation is that Fourier’s law is replaced by (1 + τ ∂
∂t

)JQ
x = Ωκ(0)(−∇T ), where

κ(0) is the DC thermal conductivity. Combining with the energy conservation law Eq(103) and further writing all variations in

terms of those of the temperature δTq as δKq = C(T )δTq , we find C(T )
h

ω +
iκ(0)Ωq2

C(T )(1−iωτ)

i

= iAP0, which is the same as the

previous result on using the relation κ(0) = DQC(T )/Ω.
21In the decoupled limit, the energy density satisfies an equation (in space time variables) ∂2

∂t2
K(~x, t) = D

τ
∂2

∂x2K(~x, t) −
1
τ

∂
∂t
K(r, t) + 〈Θxx〉

Ω
(−∇2ψ). From this we see that a δ(t) pulse in a spatially varying ψ would give an initial linear rise in the

energy ∼ tθ(t), with a slope that is inertial, i.e. independent of τ .
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We have used the conservation law to go from the first form to the second. If we assume very fast
relaxation of the charges, then the term in square brackets can be rewritten approximating the δρq
term by its static counterpart, resulting in the familiar electrochemical potential −∇(φ + 1

qe
µ[n(r)]).

However, for poorly screened low density electron systems and for narrow band systems, it is better to
avoid this approximation.

9. These dynamical expressions have the property that the Seebeck coefficient and the Lorentz number
are frequency independent, and hence the high frequency approximation Eq(69) is exact here.

Thus we see that these simple equations illustrate the meaning and possible applications of energy
transport in novel situations. We can make contact with standard transport theory in the limit of slow long
wavelength variations, where we have argued that the Luttinger field is equivalent to a temperature field
through ∇ψ(r) = ∇T (r)/T .

6 Conclusions

In this article we have presented the basic ideas of a novel approach to computing certain interesting transport
coefficients for correlated systems. These include the important Seebeck coefficient and the figure of merit.
Our basic formalism extends the idea first used by Luttinger, namely that a gravitational field can be used
as a mechanical proxy for temperature gradients. We take this view point further to include arbitrary time
variations, thereby enabling an exploration of the regions of frequency that are normally precluded in dealing
with temperature variations. This leads to the recognition of a new sum rule for thermal conductivity, as
well the application of high frequency ideas to compute the response functions mentioned above. We describe
quantitative applications of these ideas in the context of the properties of the recently found sodium cobaltate
materials.

A well defined program to correct the high frequency results for the effects of finite frequency, and hence
to approach the transport limit is formulated and illustrated. A simple phenomenological framework with
the novel response functions Mj, Nj is described, where the role of the newly defined operators becomes
clear. This framework, and its many possible extensions to include other densities, should be of useful in
formulating the new class of experiments made possible by pulsed laser heating.
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Figure 1: Frequency-dependence of the Hall coefficient on the triangular lattice from computation on small
clusters of the t-J model Ref[30, 36] for electron doping x. The values of doping x are indicated in the
figures. In the upper figure, the linear T dependence is striking in all cases. The bottom figure displays the
frequency dependence for various values of x and T . It is seen from these curves that frequency dependence
is modest except for the case of very low doping.
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Figure 2: Experimental temperature dependence Ref[35] of the Hall coefficient of sodium cobaltate
Na.68CoO2 over a broad range of temperature. The sample is in the so called Curie Weiss metallic phase.
The inset stresses the crucial role of the triangular closed loops in giving rise to the surprising behaviour.
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Figure 3: In a Mott Hubbard system both the Hall constant and the Seebeck coefficient have three zero
crossings as the band is populated from 0 ≤ n ≤ 2. The divergence at half filling is weaker in the Seebeck
coefficient than in the Hall constant, as shown in this example from the t-J model on the triangular lattice
Ref[30, 36]. The three zero crossings are in contrast to a single zero crossing of an uncorrelated band. The
distinction is understood as a consequence of the Mott Insulating state at half filling[26, 38]. This insulating
state determines the physics of the carriers in its proximity, and these are argued here to be far from the
Bloch Boltzmann holes of standard transport theory. The location of the zero crossings is determined by
details such as the lattice structure.
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parameter t = −1000K. The different curves correspond to various values of doping x and J/|t|. Lower

Panel: This shows the effect of reversing the sign of hopping in this system. This is a prediction of this
theory for a fiduciary hole doped sodium cobaltate type system. The peak value of 250µV/K can be further
manipulated upwards by changing material parameters J, x.
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Figure 6: The thermopower versus filling x = 1 − n and temperature T in the t-J model from numerical
studies[50, 51] on clusters of the triangular lattice. In both cases the lower curves correspond to the Heikes
Mott formula Eq(80) and upper to the high frequency result of Eq(69). [Top:] The case of the sodium
cobaltates, i.e. electron doping, where the two estimates are very close. [Bottom:] The fiduciary hole
doped cobaltate. The two curves in the high T limit corresponds to the first term in Eq(98) and from the
uncorrelated chemical potential. For the case on right, the Heikes Mott formula misses the enhancement
that the high frequency formula predicts. Such enhanced values of the thermopower are very exciting in the
current quest for better materials.
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Figure 7: [Left] The dimensionless figure of merit Z∗T versus x, T for the same system from Ref [51]. This
is purely electronic value of the power factor, the phonon contribution to κ is expected to be significant and
would clearly make the situation less “ideal”, thereby we expect the true Z∗T to be considerably decreased.
However this figure gives an overview of the purely electronic contribution to the figure of merit for parameters
roughly comparable to those in Na.7CoO2. The conclusion in this case is that proximity to half filling is not
particularly useful. A similar plot for the fiduciary case of the flipped sign of hopping give a considerably
larger value of the figure of merit.
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