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[. INTRODUCTION

A THEORY of the specilic heats of crystals has been put forward in Part |
of this series ol papers which is based on the determination and enumera-
tion of the normal modes and frequencies of vibration of the atoms in the
crystal aboul their positions of equilibrium. The theory enables the thermal
energy of a crystal to be expressed as a function of the temperature in terms
of these frequencics.  Diamond is admirably suited for a test of the theory,
since the frequencics of vibration of the atoms in its structure may be evaluated
theoretically and the same frequencies also admit of precise measurement
by several diflerent spectroscopic techniques.  The specific heat of diamond
can accordingly be determined in terms of these frequencies over the whole
range of temperatures for which reliable data are available. As has been
shown in Part 1 of this scries of papers, the theory emerges triumphantly
from the test, its results being in complete accord with the results of the
spectroscopic mvestigations on the one hand and with the measured specific
heat data on the other.

In the present memoir we shall consider the converse problem of deducing
the nature of the atomic vibration spectrum for a given crystal from the
empirically determined specific heat data. The method adopted for this
purpose may be briclly stated here. 'We assume that all .the atomic oscil-
lators in the crystal have a common frequency of vibration and calculate
from the obscrved specific heat at any given temperature what that frequency
is. The frequency thus cvaluated itself appears as a function of the tempera-
ture, and a graph showing its variation over the entire range of temperatuTe
gives us & uscful indication of how the total number of. degrees of atomic
frecdom is distributed over the entire range of frequencies coyered by tl*fe
atomic vibration spectrum of the crystal. The results o_btal.ned by this
procedure and their significance are best understood by considering an actual
cxample. We shall apply the method to the analysis of the specific heat

data for diamond and show how useful conclusions may be derived therefrom.
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Fic. 1. Analysis of the Specific Heat of Diamond.

2. ANALysIS OF THE SpeciFiIC HEaT CURVE

In Fig. 1 above, we reproduce the graph of the specific heat of diamond
as a function of the temperature deduced from the spectroscopic data in
Part II of the present series of papers. The abscisse in the figure are the
absolute temperatures, while the ordinates give the calculated specific heats,
the scale for the same appearing on the left-hand side of the figure. Taking
the value of the specific heat given by this graph for any given temperature
and with the aid of a table of Einstein’s specific heat function, a frequency
of vibration is found which, if ascribed to all the atomic oscillators in the
crystal, would give that value for the specific heat at that temperature. We
may call the frequency thus evaluated the effective average of the atomic
vibration frequencies at that temperature. A graph showing how this effec-
tive frequency varies with the absolute temperature appears in Fig. 1 as a
continuous curve; the scale of frequencies is that shown on the right-hand
side of the figure. It will be seen that the graph is practically a horizontal
line at the highest temperatures, the frequency having the value 1016 cm,™
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at 1100°; it then drops very slowly, being 1013 at 1000°, 1006 at 800°, and
992 at 600° K. Thereafter, it falls a little more quickly, being 978 at 500°,
954 at 400°, 911 at 300°, 826 at 200° and 767 at 160°. At still lower tempera-
tures, the frequency drops down steeply and at 25° reaches the value 247 cm.™t

The course taken by the frequency-temperature curve is readily under-
stood if we recall the features exhibited by Einstein’s specific heat function
for various values of the argument; the function vanishes for large values
of the argument, while for small values it reaches a limit in the vicinity of
which the function does not vary appreciably with the argument; inter-
mediately, however, the function decreases progressively as the argument
increases and at an approximately uniform rate. The specific heat curve
which we have analysed was obtained by the summation of a set of Einstein
functions with different arguments, giving them fractional weights propor-
tionate to the number of oscillators having the particular frequencies. In
these circumstances, the “* effective average frequency ” deduced in the manner
explained would necessarily vary with the temperature; at high tempera-
tures, the “ effective average frequency > would be the same as the arithmetical
average of the frequencies multiplied by their respective weights but with the
very lowest frequencies excluded in casting the average. At moderately
high temperatures, the effective average would continue to approximate to
the arithmetical average, but if the temperature be so low that the Einstein
functions for some of the higher frequencies become vanishingly small, it
would show a marked fall and finally, when all the higher frequencies have
dropped out in the summation, it is the few surviving oscillators with the
lowest frequencies that would determine the effective average frequency.
The latter would then be necessarily very small.

The specific heat curve appearing in Fig. 1 was derived from a set of
Einstein functions representing monochromatic frequencies whose values
and respective degeneracies are the following: 1332 (3), 1250 (8), 1239 (6),
1149 (4), 1088 (6), 1008 (4), 740 (6) and 621 (8) and, in addition, a residual
continuous spectrum with a weight three. The arithmetical sum of all these
vibration frequencies multiplied by their respective degeneracies and divided
by the total of 48 is 987 cm.~? If, however, we omit the continuous spectrum
and take the arithmetical average after division by 45, we obtain 1022 cm.™?
as the arithmetical average frequency. This is nearly the same as the value
of the effective average frequency at 1100° which is 1016 cm.”* The course
of the graph in the middle ranges of temperature is determined by the rela-
tive weights of the different frequencies. It will be noticed that these weights
are distributed in a more or less uniform manner over the entire range from
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1332 cm. ! to 621 em.~' It is this feature which is responsible for the graph
of the effective frequency dropping quite gradually from 978 em.~! to 767 cm. !
in the temperature rangc between 5007 and 160"

3. COMPARISON WITH THE OBSERVATIONS

As has already been shown in Part Il of this scries of papers, a highly
satisfactory agreement emerges when the specilic heat computed from the
spectroscopic data is comparcd with the values measured by DeSorbo in
the temperature range from 40° to 300° and by Magnus and Hodler between
300° K. and 1100° K. The samec comparison may be made in a different
manner, viz., by calculating from the obscrved specific heat at any tempera-
ture the effective average of the frequencics of the atomic oscillators and
plotting them on the same graph as the cflective average caleulated from
the theoretical specific heat curve. This has been done and the experimentil
values are shown as circles in Fig. | above. The spectlic heats from 407 to
300° were in the present instance taken from the table of smoothed means
given by DeSorbo as best representing his determinations [Jowr. Chem. Phys.,
21 (1953), 876]. The experimental data from 300" upwards were those
determined by Magnus and Hodler [Annalen der Physik., 80 (1926), S08].
[t will be seen that over the whole range of temperatures upto 4007 the
experimental values fall smoothly on the thecorctical curve. Between 4007
and 1000° the experimental values lic about the theoretical curve, but there
are appreciable deviations of about -f. 10 cm. ' In this region of tempera-
tures, this would correspond to variation in the specific heats of about 2 per
cent. of the measured values. These differences may be rcasonably explained
as due to inevitable errors in the determination of the specific heats at such
high temperatures with small quantities of the material (10 grams).

4. ANALYSIS OF DEBYE'S SpECIFIC HEAT [FUNCTION

The values for the specific heat of diamond given by Debye’s theory
have been analysed in the same manner as that explained above and repre-
sented in Fig. 1 as a broken line. In making (his calculation, the upper
limit of frequency in the Debye integral has been taken to be 1332 ¢cm. !
which is the spectroscopically observed highest fundamental frequency.
This limiting frequency also fits the experimentally observed specific heats
between 450° and 1100° with an accuracy of 1 per cent., the deviations being
as often positive as negative. It should also be remarked that the limiting
frequency calculated from the elastic constants of diamond comes out oas
1304 cm.™ in fair agreement with the spectroscopic value of 1332 cm.!

. .Comp:aring now the continuous curve and the broken line appearing
m Fig. 1, 1t will be seen that the latter lies entirely above the former in the
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temperature range from 1100° to 140°. The broken curve crosses the con-
tinuous curve at about 140° and lies below the latter down to the lowest
temperatures.

This difference in the course of the two curves is highly significant. For,
it indicates that between 140° and 400°, the Debye theory gives consistently
lower specific heats than those actually observed, while between 40° and 140°,
it gives higher specific heats than those observed. The actual specific heats,
theoretical as well as those observed in these ranges, have been plotted in
Figs. 2 and 3 below, as continuous and broken curves and as circles res-
pectively, and exhibit this situation very clearly.
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FiG. 2. Specific Heats of Diamond.
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5. COMMENTS ON DEBYE’S THEORY

We shall now consider the theoretical implications which attach to the
facts elicited by the foregoing analysis.
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In the first place we remark that since the effective average frequency
in the temperature range between 1100° and 500° lies close to 1000 cm.™,
any assumption whatever regarding the distribution of frequencies in the
atomic vibration spectrum which gives us 1000 cm.~! as the effective average
would fit the specific heat data satisfactorily within the limits of error of
the experimental determinations. If, for example, we assume that all the
atomic oscillators had a frequency of 1000 cm.™%, the calculated specific heat
would agree with the observed values in that temperature range within one
or two per cent. Likewise, if we assume that half the atomic oscillators
have a frequency of 1332 cm.~ and the other half have the frequency 666 cm.™
thereby giving us an average frequency of 999 cm.~!, the specific heat data
would also be fitted in that range with the same measure of accuracy. It
follows that the agreement between the specific heat theory of Debye and
the experimental determinations in this temperature range only indicates
that the distribution of frequencies assumed in that theory gives the arith-
metical average of the frequencies more or less correctly. That is so, since
the arithmetical average is three-fourths of the limiting frequency and is there-
fore 999 cm.-?

The second remark we have to make is that the precise course of the
specific heat curve in the middle range of temperatures, in other words,
between 140° and 500°, is of the highest importance in enabling us to decide
whether or not any assumed distribution of frequencies agrees with or differs
radically from the actual distribution. It has already been remarked that
in this range the Debye function gives systematically a lower specific heat
than that observed, the maximum deviation expressed as a percentage being
about 10 per cent. at about 200° K. The present analysis makes it clear
that this difference arises because the distribution of the frequencies con-
templated in the Debye theory differs radically from the actual distribution;
instead of all the frequencies being densely crowded together near the upper
end of the frequency range, they are actually distributed in a more or less
uniform manner over a wide range of frequencies. It may be remarked
that a deviation in the opposite sense, viz., with the calculated values higher
than the observed ones, appears in the same temperature range if we assume
that half the oscillators have a frequency of 1332 cm.~* and the other haif
a frequency of 666 cm.~! This makes it clear that the actual distribution
of frequencies does not involve a division of the atomic oscillators into two
groups with such widely separated frequencies.

The third and the final remark that we have to make is in respect of the
specific heats of diamond in the lowest part of the temperature range. The
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failure of the Debye theory to represent the course of the specific heat curve
in this region is very conspicuous. A great many measurements were made
by DeSorbo in this part of the temperature range and as he himself has
pointed out, they deviate markedly from the course of the Debye function
based on a constant limiting frequency. DeSorbo has exhibited this failure
by drawing a graph representing the ‘¢ characteristic Debye temperature
as a function of the temperature, and this exhibits a pronounced peak at 60°.
As will be seen from our Fig. 3, the specific heat at this temperature given

by the Debye theory assuming the limiting frequency to be 1332 cm."! is
60 per cent. mm excess of the observed value.

Debye claimed in his original paper that the explanation of the behaviour
of the specific heat of crystals at the lowest temperatures constituted the major
success of his theory. Since, as we have seen, the theory actually fails most
completely at these same low temperatures in the case of diamond, the only
possible inference which can be drawn from the facts is that the identification
of the thermal energy of crystals with the energy of stationary elastic vibra-
tions in their interior on which the theory is based is a misconceived idea,
in other words, that the theory itself is fundamentally untenable.

6. SUMMARY

The functional dependence of the specific heat of a crystal on the
temperature may with advantage be expressed as a variation with temperature
of the effective average frequency of the atomic oscillators, the same being
determined from the argument of the Einstein function which gives the
observed specific heat at that temperature. The usefulness of this representa-
tion is shown in the paper by a detailed discussion of the experimental data
for diamond. It emerges that the distribution of frequencies adopted in
the Debye theory is irreconcilable with the observed course of the frequency-
temperature curve. It is also pointed out that the large excess which the
specific heat calculated from that theory exhibits over the observed values
in the region of low temperatures shows that the ideas on which that theory
i1s based are misconceived and that the theory itself is untenable.
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