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1. INTRODUCTION

IN this second paper of the series, we consider the problem of evaluating
the specific heats of the four metals aluminium, copper, silver and lead,
making use of the theroretical ideas set forth in an earlier paper in these
Proceedings.! The metallic atoms in all these four cases are located at the
equivalent points of a simple Bravais lattice of which the unit cell is a
rhombohedron. Accordingly, all the normal modes of vibration are of
the second kind, namely, those in which the successive atoms along one, two
or all the three axes of the lattice oscillate with equal amplitudes but with
opposite phases. By simple inspection of a model of the structure, it can be
seen that the twenty-one possible normal modes of this kind group them-
selves into only four distinct modes with 3, 6, 4 and 8 as their respective
degeneracies. These may be described in simple geometric terms: oscil-
lations of the atoms in the cubic planes along the normals to those planes
(degeneracy 3); oscillations of the atoms in the cubic planes tangential to
those planes (degeneracy 6); oscillations of the atoms in the octahedral
planes normal to those planes (degeneracy 4); oscillations of the atoms in
the octahedral planes tangential to those planes (degeneracy 8). Accordingly,
the specific heat of these metals is obtained by a summation of the Einstein
functions for the frequencies of these four modes multiplied by their res-
pective degeneracies. To this must be added the contribution arising from
the spectrum of vibrational frequencies with a statistical weight of three
arising from the three translations of the unit cell with the 8 atoms at its
corners. This contribution appears as an integration of Einstein functions
taken over a continuous spectrum of frequencies, the upper limit of fre-

quency in the integration being the lowest of the four characteristic frequen-
cles.

2. EVALUATION OF THE CHARACTERISTIC FREQUENCIES

Each of the atoms in a face-centred cubic lattice has twelve nearest
neighbours, six second neighbours, twenty-four third neighbours and twelve
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fourth neighbours. The six constants needed to determine the force on any
one atom resulting from the displacement of another atom reduce, by
virtue of the symmetry of the structure, to three constants in the case of the
nearest neighbours, two constants for the second neighbours, four constants
for the third neighbours and so on. Thus, even if only the first three sets
of neighbours are considered, the equations of motion of an atom would
involve nine force-constants arising from the displacements of the surround-
ing atoms. In the absence of any knowledge regarding the magnitudes of
these nine constants, it is not possible to evaluate the four frequencies which
we need to know. In the case of diamond dealt with in an earlier paper in
the Proceedings, it was possible to proceed on the basis of its known spectro-
scopic behaviour and to make an independent evaluation of the -eight
characteristic frequencies of vibration of its structure. It is obvious that
a different procedure has to be adopted in the case of the metallic elements.

‘What we have to ascertain are the frequencies of vibration of the atomic
layers lying respectively in the cubic and octahedral planes normally or
tangentially to themselves. It is evident that the frequencies of such
vibration would depend on the integrated effect on any one layer of the
movements of the neighbouring layers. Various considerations indicate
that the force acting on any layer would be determined principally by the
displacements relatively to that layer of the two neighbouring layers lying
one on either side of it. By way of justifying this statement, we remark that
the first, second and third neighbours of any one atom are mostly to be found
either in the same layer or in the two adjacent layers. For instance, in the
cubic layers all the twelve near neighbours, four out of the six second neigh-
bours and sixteen out of the twenty-four third neighbours are to be found
thus located. Likewise, in the octahedral layers all the twelve near neigh-
bours, all the six second nearest neighbours and eighteen out of the twenty-
four third neighbours are to be found thus located. Hence, the frequencies
of oscillation with which we are concerned may as a first approximation
be evaluated on the basis that the forces on any one layer arise only from
the displacements relative to it of the two neighbouring layers, one on
either side of it.

For the same reasons as those explained above, the forces which
determine the velocities of elastic wave propagation in the cubic and octa-
hedral directions would likewise be determined as a first approximation by
the displacements relative to any layer of the two neighbouring layers one
on either side. Hence, we are in a position to establish simple but approxi-
mate relationships between the characteristic frequencies of vibration of the
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lattice and the velocities of propagation of elastic waves (longitudinal or
transverse as the case may be) in the directions normal to the cubic and octa-
hedral planes respectively. This relation may be written as below:

Characteristic frequency — 2 - Velocity of long elastic waves
9 Y = & Twice the distance between adjacent layers’

The correctness of the formula is easily verified by comparison with
the case of a simple linear lattice, viz., a string under tension loaded with
identical mass-particles at equidistant intervals.

3. NUMERICAL RESULTS

The foregoing approximate relationships between the velocity of pro-
pagation of elastic waves along the octahedral and cubic axes and the
characteristic frequencies of a face-centred cubic lattice enable us to evaluate
the latter for those crystals for which the elastic constants have been deter-
mined with precision. The published determinations make use of the three
constants C,,, Cys and C,, contemplated in Voigt’s theory. The four velo-
cities we are concerned with are the square roots of Cy/p, Cyylp

(Ciy +2Ca+4Cu9/3p and (Cyy — Cyp + Cyy)/3p.

In the cases of aluminium? and copper,® the values of C,;, C;, and C,,
are available over a wide range of temperatures from the very lowest
upwards. They exhibit a progressive diminution with temperature, which
at first is slow but accelerates at high temperatures. In the cases of silver*
and lead,” however, determinations of the elastic constants only at room
temperatures are available and we shall make use of them.

TABLE I

Characteristic frequencies in wave-numbers

Mode Degeneracy Alu;ninium Copper Silver | Lead
I 3 353 340 260 255 179 88
IT 6 177 169 177 171 109 48
111 4 287 302 269 263 179 87
v 8 145 138 113 109 70 30
Average .. 211 207 182 177 117 54
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Table I shows the four characteristic frequencies calculated in the
manner explained above. In the cases of aluminium and copper, the
values are given at absolute zero as also at room temperature, while in the
case of silver and lead, only room temperature values are given. Multi-
plying the frequencies by the degeneracies of the respective modes, then
adding up and dividing by 21, we get the arithmetical average of the four
frequencies. This is shown at the foot of the table in each case.

As the elastic constants diminish with increasing temperature but
not all in the same manner, it is not altogether surprising to find that one of
the calculated frequencies for aluminium actually increases instead of
diminishing with rise of temperature. However, both for aluminium and
for copper the arithmetical average shows a noticeable fall at room tem-
perature as compared with the value at the absolute zero.

4. CALCULATION OF THE SPECIFIC HEATS

The expression for the thermal energy of the crystal is given by the

formula
N i=4 h 3 V4 h
V3 v
@{Zehvi/kl?~ 1 T ;;3 el kT ] 32 dV}

i=1 o

where N is the number of lattice cells contained in the volume of the crystal
under consideration. Differentiating this with respect to T, we obtain the
specific heat of the crystal at any given temperature. In evaluating the same,
we make use of the tabulated values of the well-known functions appearing

in the expressions.

The values of the specific heat have been plotted as functions of the
absolute temperature in the lower of the two graphs in Figs. 1, 2, 3 and 4
which refer respectively to the four metals. As usual, the abscissz are the
absolute temperatures, and the scale of ordinates for the specific heat appears
on the left-hand side of the figure in each case. The upper graph in each
figure is the effective average frequency determined from the calculated
specific heat in the manner already explained in the previous papers. The
scale of ordinates for this frequency appears on the right-hand side of the
figure in each case and is expressed in wave-numbers.

It will be noticed that at the upper end of the temperature range in each
of the four cases, the effective average frequency of the atomic oscillators
deduced from the calculated specific heats is respectively 210, 182, 117 and
55cm. It will also be noticed that these are equal respectively to the
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arithmetical average of the four characteristic frequencies of each metal
shown at the foot of Table I. The effective average frequency falls off quite
slowly as the temperature goes down and hence in the upper part of the
temperature range, the arithmetical average frequency determines the
course of the specific heat curve. Hence any assumption, however arbit-
rary, regarding the nature of the atomic vibration spectrum would give
the specific heat correctly in this part of the range, provided it gives the
same arithmetical average for the atomic vibration frequencies. It is only
the steeply falling part of the specific heat curve that is sensitive to the
precise nature of the assumed vibration spectrum and can furnish reliable
information regarding its true complexion.
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5. DISCUSSION OF THE RESULTS

In Part T of the present series of papers,® an analysis of the results of the
specific heat determinations by Giaque and his collaborators for these four
metals was presented and graphs were reproduced showing the effective
average frequency as a function of the temperature. These graphs, unlike
those appearing in the present paper, do not appear as nearly horizontal
lines in the upper part of the temperature range in each case, but exhibit a
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plateau* in the middle part of the range and then slope down to lower values
at the upper limit of the range. It is to be inferred from these consequen-
ces deduced from the actual specific heat determinations that the atomic
vibration frequencies are themselves not independent of the temperature,

and that they (or at least their arithmetical averages) diminish progressively
as the temperature rises.
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The experimentally determined specific heats’® have been plotted
alongside of the graphs of the calculated specific heats in Figs. 1, 2, 3 and 4
of the present paper. In view of the remarks made above, it is to be expect-
ed that the observed specific heats would lic above the calculated ones in the
upper part of the temperature range. It will be noticed from the figures
that this is actually the case. The deviations are fairly conspicuous in the
case of aluminium and copper, but are less conspicuous in the cases of silver
and lead. The characteristic frequencies for aluminium and copper were
calculated from the low-temperature elastic constants, while for silver and
lead the frequencies were calculated from the elastic constants at room

* The plateau frequencies are 206, 167, 113 and 50 cm.~* respectively for aluminium, copper,

silver and lead. These are somewhat smaller than the arithmetical average frequencies, as is to
be expected.
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temperature. The closer approximation actually found between the observ-
ed and the calculated specific heats for silver and lead at the higher tempera-
tures is therefore to be expected.

Having regard to the method used for evaluating the four characteristic
frequencies, and remembering also that in the present theory we have
totally disregarded the anharmonicity of the atomic oscillators, the general
agreement between theory and observation over the entire range of tempera-
tures exhibited by Figs. 1 to 4 may be considered satisfactory. However,
it is to be remarked that the observed specific heats are sensibly lower than
the calculated ones in the range of temperatures where the specific heat
~curve slopes steeply down. This is noticeable in the cases of all the four
metals and indicates that the characteristic frequencies as determined by
the present approximate method need revision. We shall return to this in
the third paper of the series.

6. SUMMARY

The specific heats of the four metals aluminium, copper, silver and
lead which crystallise as face-centred cubic lattices are evaluated in terms of
the four characteristic frequencies of vibration of such a lattice, these latter
being determined by an approximate method which relates them to the
elastic constants of the crystal. The results thus derived are discussed and
compared with the experimentally determined specific heats.
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