THE VIBRATION SPECTRA OF CRYSTALS
Part I. Basic Theory
By Sir C. V. RamMAN

(From the Department of Physics, Indian Institute of Science, Bangalore)

Received October 31, 1947

CONTENTS

I. Introduction. 2. The Eigenvibrations of Crystal Structures.
3. Some Illustrative Examples. 4. The Elastic Vibration Spectrum.
5. Remarks on Some Earlier Theories. 6. Molecular Crystals. 7. An-
harmonicity and Interaction of Vibrations. 8. Influence of Temperature.

9. Summary.
1. INTRODUCTION

A kNOWLEDGE of the modes and frequencies of vibration of the atoms in
a crystal about their positions of equilibrium is of the utmost significance
for the theory of the solid state. For, such knowledge is complementary
to that regarding the structure of the solid furnished by the data of X-ray
and electron diffraction. These latter data enable the geometric positions
of the atoms to be ascertained, while the modes and frequencies of atomic
vibration permit of the evaluation of the forces which hold them together
as a rigid structure. The study and interpretation of the vibration spectra
of crystals is thus the pathway to a fuller understanding of the nature of
the solid state and the elucidation of the physical properties of solids gene-
rally. It follows that the theory of these spectra is a topic of outstanding
importance for the progress of crystal physics. ‘

The problem of finding the nature of the vibration spectrum of a crystal
may be approached from two different points of view. The first is that
which bases itself on the known behaviour of elastic solids. Acoustic
theory and experience alike indicate that a solid body has a whole series
of normal modes of vibration determined by its external form and dimen-
sions. These may be regarded as stationary vibration patterns resulting
from the interference of elastic waves which traverse the interior of the solid in
different directions and suffer reflections at its outer boundary. On this view,
the frequencies of the modes would be determined by the length of the waves
and their type. The problem of enumerating the possible stationary vibra-
tions and of arranging them in a frequency scale is somewhat more compli-
cated than the analogous problem for an enclosed volume,of fluid, since

Al ‘ 339




340 C. V. Raman

there are three types of waves instead of one as in the latter case, and since
the wave-velocities in a crystal also depend on the direction of propagation.
It is evident, however, that the general nature of the results would be similar
in the two cases. There would be a crowding together of the modes as the
wave-lengths are diminished and the frequencies of vibration are corres-
pondingly greater, their number becoming ultimately very large. Hence,
the vibration spectrum would to all intents and purposes be a continuous
one. It may be remarked that the method of enumeration of the vibra-
tional modes in this manner according to wave-lengths or frequencies does
not in any way compel us to take account of the discrete structure of the
medium and in effect regards the latter as a continuum.

The second point of view from which the subject may be approached
is that in which we fix our attention on the movements of the individual
atoms in the solid. The structure of a crystal is built up of a great number
of units of very small size, all of which are exactly alike and each of which
comprises a finite number of atoms. Since the range of the interatomic
forces is also very small, the problem of finding the possible modes of vibra-
tion of these groups of atoms is of the same general nature as that of finding
the normal modes of vibration of a polyatomic molecule. The nature of
the results to be expected would therefore also be similar, and the vibration
spectrum of a crystal should accordingly consist of a finite set of sharply
defined frequencies, each of which represents an exactly specifiable mode of
vibration. The characteristic frequencies would be the same for every one
of the vibrating groups of atoms, and hence in relation to the entire crystal
must be considered as being highly degenerate.

Thus, the continuum standpoint and the atomistic standpoint lead to
conceptions of the nature of the vibration spectrum of a crystal which are
radically different from each other. The two points of view are therefore
mutually exclusive, and since they both appear reasonable, we infer that the
ranges of frequency in which they are respectively appropriate are quite
different. The continuum standpoint is the one which would naturaily be
adopted in considering the lower part of the frequency range comprised in
the spectrum, while the atomistic standpoint is obviously the correct one to
take up when we are concerned with the upper part of the frequency range.
In other words, the vibration spectrum of every crystal is composed of two
parts which are essentially different in nature, namely the atomic vibration
spectrum properly so called which exhibits a discrete set of monochromatic
frequencies appearing in the infra-red, and the elastic spectrum which is
continuous and forms a low-frequency appendage to it.
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The present paper has a two-fold purpose. In the first part, we shall
present a theoretical discussion of the problem and justify the statements
made above concerning the nature of the vibration spectra of crystals. The
arguments put forward are simpler without being less rigorous than those
contained in an earlier presentation of this topic (Raman, 1943). In the
later parts, we shall review the experimental data for the spectroscopic
behaviour of crystals as known at the present time and show that the facts
are in complete accord with the theoretical ideas developed in the first part.
Incidentally, we shall also comment upon the older theories of the subject
which lead to the conclusion that the vibration spectrum of a crystal is a
continuous one throughout the entire range of frequency. It will be shown
that these theories are based on an extrapolation of the ideas derived from
elastic solid behaviour into the atomistic field, and that such extrapolation
is invalid and leads to results which are contradicted by the experimental
facts.

2. THE EIGENVIBRATIONS OF CRYSTAL STRUCTURES

The structure of a crystal consists of a great number of similar and
similarly situated cells each containing the same number of atoms, and the
clue to the spectroscopic behaviour of the crystal is therefore to be found
in the properties of the group of atoms contained in the unit cell. In other
words, we have to consider the possible modes of vibration of the group
of atoms included in the unit cell, and the problem is therefore generally
analogous to the theory of vibrations of polyatomic molecules. There is
however a notable difference between the two cases arising from the fact
that the atoms in the unit cell are not isolated from the rest of the crystal;
it is clearly necessary to take account of the interactions with the surrounding
cells in so far as they affect the motion of the atoms in the cell under consi-
deration. The frequencies of wvibration with which we are concerned lie
in the infra-red. Hence, the problem does not lie strictly within the scope
of the classical mechanics. Nevertheless, as in the case of polyatomic
molecules, we may hope that the methods of classical mechanics suffice
to yield results which are in agreement with the facts in all essential respects.
Also, as in the case of polyatomic molecules, we may in the first instance
limit ourselves to the theory of small vibrations under harmonic forces. The
modifications arising from the removal of these restrictions are, however,
by no means unimportant. They will be dealt with later in the paper.

In any eigenvibration of the atoms contained in the unit cell, their fre-
quencies of vibration are necessarily the same, while the phases are all the
same or opposite. In considering the interactions with the surrounding
atoms, we may properly assume that this is true also for the atoms included
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in the surrounding cells whose direct interactions with the‘unit cell under
consideration are of sensible magnitude. We proceed to find the cases for
which these requirements are satisfied. |

The equations of motion of the atoms in a crystal for an oscillation
proportional to sin wt take the general form

my &g 0= ZEZFY - g, (1)
s 27

Here, m denotes the mass of an atom, while the co-ordinates £, n, { indicate
its displacements parallel to x, y and z respectively. The suffixes £ and /
indicate particular atoms in the unit cell, where the suffixes r and s refer to
particular cells of the lattice in which the atoms are situated. F denotes
a force-factor, its upper and lower suffixes indicating respectively the dis-
placement of the particular atom on which it acts and the displacement of the
particular atom giving rise to the force. The triple summation must be made
over the £, 7 and { values of all the atoms in the crystal for which the force-
factors are not negligible in respect of the particular atom under considera-
tion; the size of the domain including all such atoms would depend on the
range of the interatomic forces. We shall assume the crystal to be of suffi-
cient size to ensure that its external boundary is very remote from the limits
of such domain. To enable us to solve the set of 3p equations of motion of
the p atoms comprised in the unit cell under consideration, we shall require
to know the displacements of the atoms in the neighbouring cells which also
appear on the right-hand side of the equations (1). To enable them to be
found, we make use of the fact that in any eigenvibration, the equations of
motion of the atoms included in these cells must also simultaneously be
satisfied. Considering the atoms comprised in a cell adjacent to the rth
which we denote as the (r 4+ 1)th, their equations of motion would have
the form

My € (r 41y @ = 2‘122 ' Fg;c(grill)) TN +1) )

s 17
the cell index (s + 1) representing one adjacent to the cell of index s along
the same axis is as that on which the rth and (r + 1)th cells are situated.

Now the transitional symmetry of the crystal has the consequence that
the force-constants for adjacent cells satisfy general relations of the form

br _ ik (r+1)
By =Fi i) (3)
Comparing equations (1) and (2) and taking account of the relations
given by (3), we notice that provided general relations subsist connecting
the displacement of equivalent atoms which are



The Vibration Spectra of Crystals—{ 343

either of the form
i = &k reny a0d Mg = My (4)
or of the form
&, =— & (r+1) and 7 = — M (s +1) (5)

the 3p equations (1) and the corresponding 3p equations (2) would become
identical. In these circumstances, any set of displacement co-ordinates which
satisfy the former set of equations would also satisfy the latter. Further,
the number of unknown co-ordinates appearing in the 3p equations (1) would
be reduced to 3p only by reason of (4) or (5), thus enabling them to be com.
pletely solved. However, (4) and (5) being different alternatives, the 3p
equations obtained by making use of these relations would be different, and
the solutions obtained would also be different. Further, there would be
two such alternatives in respect of the cells adjacent to each other along each
of the three axes of the lattice, and these three sets of alternative possibilities
would be independent of each other, so that there would be2 X 2 X 2 or 8
sets of alternative possibilities to be considered. Each of these would, in
general, give a different set of 3p equations and therefore a different set of
solutions. Thus, in all, we would obtain 24p solutions on the basis of the
relations indicated by (4) and (5) above.

We shall now consider the significance of the alternative relations (4)
and (5) which we have assumed to subsist in order to enable the equations
of motion to be reduced and solved. They evidently signify that the ampli-
tudes of vibration of equivalent atoms in the different cells are the same, while
their phases are either all the same or else alternate in successive cells along
each of the three axes of the lattice. In either case, the energy of vibration
is the same in the different cells of the lattice when the frequency is the same.
It is obvious that such a state of affairs necessarily represents a possible
stationary regime within the crystal. In other words, the 24p solutions of
the equations of motion obtained on this basis represent the normal modes
of vibration of the crystal structure. It will be noticed that only in 3p
solutions would the phase of the vibration be the same in all the cells of the
lattice; in the remaining 21p solutions, the phase of the vibration is oppo-
site in adjacent cells of the lattice along one, two or all three of its axes. In
these latter, the condition that the centre of inertia of the system should
remain at rest is automatically secured. The constraints necessary to secure
the same condition would however reduce the 3p solutions of the former
kind to (3p — 3) solutions, so that in all we would have (24p — 3) eigen-
vibrations and not 24p.
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It will be noticed that if we mark out domains in the crystal which extend
in each direction twice as much as the unit cells of the lattice, the pattern
of vibration within each such domain would be the same as for neighbouring
ones in each of the (24p — 3) modes of vibration indicated by the preceding
argument. Hence, the results of that argument may be summarised by the
statement that the units of the vibration pattern of the crystal are super-cells
having twice the linear dimensions and therefore eight times the volume of the
static units of the crystal structure. The number of atoms included in each
such dynamic unit or super-cell is 8p, and we may therefore regard the
(24p — 3) modes as its internal vibrations and the three excluded degrees
of freedom as its three translations. This point of view is useful in two
ways. Firstly, it indicates that in relation to the entire crystal, each of our
(24p — 3) modes of vibration is highly degenerate, being in fact N-fold dege-
nerate if N be the number of super-cells contained in the crystal. Secondly,
the three excluded degrees of freedom which represent the translations of the

super-cell provide an appropriate starting point for a consideration of the

possible elastic modes of vibrations of the solid. We shall return to this
aspect of the subject later in the paper.

3. SoME ILLUSTRATIVE EXAMPLES

As an illustration of the general theory set out above, we shall now
consider two specific cases, viz., that of a face-centred cubic lattice of atoms,
as also the structure resulting from the interpenetration of two such lattices,
viz., that of diamond or zinc-blende and describe their characteristic modes
of vibration.

The unit cells in a face-centred cubic lattice are really rhombohedra,
the unit translations being those by which an atom placed at the corner of
the cube goes over respectively to the three neighbouring face-centred atoms.
The theorem that equivalent atoms in the lattice have the same amplitude
of vibration and either the same phase or the opposite phases successively
along the axes of the lattice enables us immediately to describe the possible
modes. An atom located at a cube corner and the three others located
at the nearest face-centres form the four vertices of a regular tetrahedron the
faces of which are the (111) planes, while its diagonal planes are the (10C)
planes of atoms in the crystal. It is easily seen that all the eigenvibrations
are movements of these planes of atoms; alternate planes move in opposite
phases, while the directions of movement are indicated by considerations
of symmetry to be either normal or tangential to the respective planes.
Thus, there are only four different kinds of vibration of the lattice, namely
the normal and tangential vibrations respectively of the octahedral and cubic

ke
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planes of atoms, the tangential vibrations being twice as many as the normal
ones. As there are four sets of octahedral planes and three sets of cubic
planes in the lattice, the four species of vibration have degeneracies of 4,
8, 3 and 6 respectively, making up a total of 21 modes. Adding the 3 trans-
lations of the super-lattice cell, we obtain the total of 24 degrees of freedom
of the 8 atoms contained in it.

The possible modes of vibration of the diamond or zinc-blende struc-
ture may be obtained by coupling similar modes of vibration of the two
face-centred lattices as described above with appropriate relations of ampli-
tude and phase. There are only two possibilities, viz., that the oscillations
of the planes of atoms adjacent to each other belonging respectively to the
two lattices are in the same or the opposite phase. Hence, the four types
of eigenvibration of a face-centred cubic lattice give us eight types of vibra-
tion of the structure. To this, we must add a ninth mode of vibration repre-
senting the translations in opposite phases of the two lattices with respect
to each other. Thus in all, we have 9 modes with degeneracies 4, 4, 8, 8,
3,3,6,6 and 3 respectively, making up a total of 45 degrees of freedom.
The 3 translations of the two lattices moving together in the same phase are
excluded from this scheme. Taking account of them, we recover the 48
degrees of freedom of the 16 atoms included in the super-lattice cell.

4. Tue FLASTIC VIBRATION SPECTRUM

We now turn to a consideration of the problem from the point of view
provided by the theory of the vibrations of elastic solids. The principles
on which an enumeration of the possible modes of vibration of an elastic
solid may be based are indicated by the comparatively simpler problem of
the vibrations of an enclosed volume of fluid. Considering a rectangular
chamber whose edge-lengths are a, B, y respectively, it may be shown either
directly or by application of Fourier’s theorem that the general solution
which includes-all particular solutions of the equations of wave-motion
satisfying the boundary conditions at the walls of the enclosure is

¢ = ZZZ (A cos kat + B sin kat)

nlﬂx cos ngwy oS nz’n‘z’ (6)

a B Y '
where ¢ is the velocity-potential, A and B are arbitrary constants, while
1y, Ny, Mg are positive integers and k is 2m/A, where A is the “ wave-length ”

of the stationary vibration. It is defined by the relation
k2= 2 (n?la®+ n*[B%+ mglly®) (7)

X Cos
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and hence A diminishes as n,, n,, n; are increased. If the medium be regarded
as continuous, #,, M, n; may be as large as we please, and the number of
possible stationary wave-patterns is then unlimited. We may, however,
if we so desire, set a limit to the total number of possible stationary patterns
of vibration by assuming that the maximum possible values of ny, n,, ny are
respectively Ny, Ny, Ny. The total number of possible eigenvibrations is
then the product N;N,Na.

Equation (7) connects the “ wave-length > of an oscillation with the
linear dimensions of the vibrating body and the number of parts of its
aliquot division by the resulting vibration in each of three mutually ortho-
gonal directions. We shall not be wholly at fault in assuming a similar
relationship to subsist in the case of the elastic vibrations of a rectangular
block of solid. Earlier in the paper, we have seen that the atomistic
approach to our problem leads to the result that the structure of a crystal
has (24p — 3) characteristic modes of vibration, and we identified these
with the internal vibrations of a group of 8p atoms included in a super-lattice
cell having twice the linear dimensions and hence eight times the volume of
the unit cell of the crystal lattice.  The three excluded degrees of freedom
on the same basis represent the three translations of the super-cell, and if
there be N such super-cells comprised in the entire crystal, we have 3N
degrees of dynamical freedom of movement which are left unaccounted for
in the atomistic treatment. In view of the remarks made in the introduc-
tion, we may properly identify these with the total number of possible elastic
eigenvibrations of the crystal. Since there are three types of elastic waves
in a crystal, we may ascribe one-third of the total number to each of the
corresponding types of elastic eigenvibration. Accordingly, on the basis
of the foregoing argument, we set

N = NlNgNg (8)

which signifies merely that the total number of elastic eigenvibrations of
each type is the same as the total number of super-lattice cells comprised
in the crystal. By virtue of (8), we may write (7) in the form

4/2%= (m*N,*-1/d,*+ ny?/Np?-1/dy?+ n32[N32-1/ds?) ‘ 9
which connects the reciprocal of the wave-length X of the vibration with
the-reciprocals of certain spacings d;, d,, d; whose product d,d,d, is equal to
the volume of the super-lattice cell. As N;, N,, N are very large numbers,
the wave-lengths permitted by (9) form a practically continuous sequence
of values which become densely crowded together as n,, n,, 1, approach their

maximum possible. values Ny, N,, N;. When one of the three numbers
ny, Ny, Ny has its maximum value and the other two are set equal to zero,

[
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A becomes equal to 2d; or 2d, or 2d; respectively. Thus, the “ limiting
wave-lengths  along the three edges of the rectangular block are related
in a very simple manner to the linear dimensions of the super-lattice cell of
the crystal structure. In the particular case where the edges of the block
are parallel to the axes of the crystal lattice, the limiting wave-lengths are
just twice the edges of the super-lattice cell or four times the edges of the lattice
cell of the crystal. Vice-versa, if the limiting wave-lengths of the elastic
eigenvibrations are so chosen as to satisfy these relations, the number of
degrees of dynamical freedom left out from the atomistic enumeration of the
vibrations in the crystal are completely accounted for as its elastic eigen-
vibrations. It will be noticed that we are not assuming d,= d,= d,, and hence
the argument is not limited to the case of cubic symmetry but is more general.
In passing from an enumeration of the eigenvibrations on the scale of wave-
lengths provided by (9) to an enumeration on a scale of frequencies, we must,
of course, take account of the fact that the ratio of wave-length to frequency
is different for the three types of elastic waves and is also a function of the
direction of propagation.

We may illustrate the preceding argument by consfdering once again
the case of a face-centred cubic lattice. As mentioned earlier, the eigen-
vibrations of such a lattice are of four different kinds which may be de-
scribed as being respectively normal and tangential oscillations of the cubic
and octahedral planes of atoms, the movements of alternate planes of atoms
being in opposite phases. The normal oscillations of the cubic planes are
represented in Fig. 1. A similar figure with the arrows parallel to the atomic
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Fic. 1. Eigenvibrations of a Face-centred Cubic Lattice
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planes would represent the tangential oscillations. With an altered spacing
of the planes the figure would also represent the oscillations of the octa-
hedral layers of atoms.

As will be seen from the figure, there are no nodal planes or layers of
atoms at rest, and since the nature of the vibration is completely determined
by the lattice structure, the mode is a characteristic property of that structure
and not an elastic vibration properly so called. Since, however, the motion
repeats itself periodically along the crystal axes, we may ascribe to it a “ wave-
length” which as seen from the figure is twice the distance between the
atomic layers. Fig. 2 represents an elastic vibration properly so-called with
the smallest possible wave-length; every alternate layer of atoms is a nodal
plane which remains at rest, while the intervening planes of atoms move in
opposite phases. The “wave-length” is thus four times the distance
between the atomic layers. A similar figure with the arrows parallel to the
atomic planes would represent the transverse elastic vibration of smallest
wave-length.
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Fi. 2. Elastic Vibrations of Minimum Wave-length in a Face-centred Cubic Lattice

We can, of course, similarly picture elastic vibrations in which every
third or fourth or fifth plane of atoms is at rest, while the intervening planes
of atoms oscillate with phases which are opposite on either side of each nodal
plane. The * wave-lengths  of such oscillations would be respectively 6, 8
or 10 times the spacing of the atomic planes, the motion repeating itself at
these intervals and the energy of the vibration being the same in the successive
layers separated by the nodal planes. Such an arithmetical progression of
increasing wave-lengths is however altogether different from that conter-
plated by equation (9) above in which they form a densely crowded sequence
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with wave-lengths diminishing in harmonic progression, the permitted values
being determined by aliquot division of the macroscopic dimensions of the
solid. Moreover, the form and disposition of the nodal planes of elastic
vibration are determined by the shape and dimensions of the outer boundary
of the solid and not by its internal structure. Hence, having set the lower
limit of wave-length at four times the lattice spacings, we must for all larger
wave-lengths and therefore lower frequencies of elastic vibration ignore
the discrete structure of the solid and treat it as a continuum. Per contra,
we are precluded from extending into the region of the higher frequencies
of vibration a treatment based on the idea of free propagation of elastic
waves of lengths determined by the external dimensions of the solid.

5. REMARKS ON SOME EARLIER THEORIES

The Debye Theory.—The foregoing remarks prepare us for a considera-
tion of the earlier theories of the vibration spectra of crystals. The proto-
type of these theories is Debye’s well-known treatment (1912) of the specific
heat problem for elementary solids. This is based on the postulate that
the thermal agitation in a solid may be identified with stationary elastic
vibrations in it of various wave-lengths superposed on each other. All the
three possible kinds of elastic vibration are assumed to have frequencies
inversely proportional to their respective wave-lengths and to terminate at
a common upper limit of frequency. The simplicity of the Debye formula
for the specific heat is a consequence of these specific assumptions. Later
writers have sought to modify the theory by postulating that all the three
types of elastic vibration (one longitudinal and two transverse) have a com-
mon upper limit of wave-length instead of frequency. With this modi-
fication, the Debye theory and the results derived in the preceding section
may be readily compared with each other. Limiting ourselves to the case
in which each cell of the crystal lattice contains only one atom, it is obvious
that if all the possible atomic vibrations are considered as elastic eigenvibra-
tions, they would be eight times more numerous, and the limiting wave-lengths
would be one-half of those derived in the present paper. The additional
eigenvibrations are those having the smallest wave-lengths and therefore
the highest frequencies, and they form the great majority, viz., seven out of
every eight.

In order to appreciate the precise nature of the situation thus arising,
we consider the specific case of a face-centred cubic lattice. Figs. 1 and 2
above show respectively the characteristic eigenvibrations of the structure
and the elastic vibrations of minimum wave-length possible in it according
to our present point of view. It is evident that the great majority of the
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stationary vibrations assumed by the Debye theory (seven-cighths of the
total number) would have “ wave-lengths” intermediate between those
represented by these two figures. We may remark, however, that a charac-
teristic feature of stationary vibrations in a continuous elastic medium—
vide equation (6) of the preceding section—is that the medium is partitioned
by the nodal planes into cells in which the energy of oscillation is the same
and the phase opposite in alternate cells. The same situation in the case
of a discontinuous periodic structure is represented in Figs. | and 2, but
there is clearly no possibility of a stationary vibration with these characters
and of wave-length intermediate between twice and four times the atomic
spacing. We can, of course, postulate waves of any intermediate wave-length
that we may choose and assume them to traverse the discontinuous periodic
structure in opposite directions. But the result of their superposition would
in no way resemble the stationary vibrations described in equation (6) which
form the basis of the enumeration, since the energy of the vibration would
fluctuate arbitrarily along the direction of propagation. The situation is
thus that the overwhelming majority of the stationary modes of vibration which
are assumed to exist in Debye’s theory are possible only in an elastic conti-
nuum but have no counterparts in a periodically stratified structure. In other
words, the Debye theory is based on an extrapolation of notions derived
from the behaviour of elastic solids into the field of atomic theory, such
extrapolation being, on the face of it, physically untenable. The postulates
made in the theory are therefore invalid even in the case of crystals of the
simplest structure to which the foregoing discussion has been limited.

The Born-Karman Theory.—We now proceed to comment on the so-
called lattice dynamics of Born and Karman. This claims to be more exact
than the Debye theory and also to include within its scope crystals of com-
plex structure comprising two or more atoms in each Jattice cell. For this
purpose, the theory (1923) divides the degrees of freedom of the systemn—
namely thrice the total number of atoms—into distinct groups which are
each equal to the number of lattice cells comprised in the crystal. Each
degree of freedom corresponds to a wave which is assumed to traverse the
crystal, and we have thus present in it an immense number of sets of waves
of different wave-lengths, each set corresponding to a group of wave-lengths
chosen and allotted on the same common plan. (3p — 3) of the groups
of waves represent the so-called “ optical > vibrations of the lattice, while
the remaining 3 groups represent its * acoustic vibrations ”. The frequen-
cies of vibration depend on the wave-lengths, and each group accordingly
represents an immense number of different frequencies of vibration. The
nature of the vibration spectrum has to be determined by calculation on the
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basis of specific assumptions regarding the nature and magnitude of the
interatomic forces. As the computations are laborious, it is not surprising
that comparatively few cases have actually been worked out in detail. The
published results, however, indicate that the vibration spectra in both the
“optical ” and the ‘“acoustic” branches are diffuse continua which
overlap each other (Blackman, 1935; Kellermann, 1940). Such a result
might have been expected a priori in view of the assumptions underlying
the theory. For the “ wave-lengths ” assumed are most crowded together
when they are smallest and are most nearly comparable with the lattice
spacings of the crystal. The * optical frequencies” depend notably on
the wave-lengths when these are small, and hence the assumed distri-
bution of wave-lengths results in spreading out the * optical spectrum ”
into a diffuse continuum, instead of its being a set of sharply defined lines
as in the case of vibration spectra of polyatomic molecules.

The Born-Karman theory rests on the premise that a crystal has as
many different frequencies of vibration as it has degrees of dynamical free-
dom, and the sets of waves with which its vibrations are identified are indeed
assumed to secure this result. Neither the premise nor the assumptions
made to ensure its fulfilment can, however, be justified. As has been re-
marked earlier in the paper, a crystal consists of an immense number of
similar groups of atoms whose characteristic modes of vibration are neces-
sarily all similar, and hence a high degree of degeneracy is necessarily to be
expected in respect of the vibration frequencies of the system. Further,
a wave is not a normal vibration since the phase changes progressively along
its course. Hence, an enumeration of waves is not a valid procedure unless
it can be shown that a physical mechanism exists which selects particular
wave-lengths and transforms the motion to normal vibrations of a deter-
minate type. Such a mechanism exists in respect of the elastic vibrations,
being provided by the reflection of the waves at the boundaries of the crystal
and the consequent formation of wave-patterns of a determinate type by
interference. But as we have seen above, stationary wave-patterns of this kind
can account for only a small proportion of the dynamical degrees of freedom
even in the case of crystals of simple type having only one atom in each lattice
cell. It follows that in the case of crystals of complex structure, the propor-
tion of the dynamical degrees of freedom represented by stationary wave-
patterns would be even smaller. Hence, the identification of the socalled
“ optical vibrations ” with waves having the same set of wave-lengths as the
elastic vibrations has no physical meaning or justification. In effect, the Born-
Karman theory ascribes to the atomic structure of a crystal an immense
number of modes and frequencies of vibration which it does not really possess,
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6. MoLecULAR CRYSTALS

The arguments and results set out in Section 2 above are, of course,
quite general, and do not depend on the particular manner in which the p
atoms in the unit cell of the crystal are linked with each other or with the
atoms in the neighbouring cells. Some of them, for instance, may be consti-
tuent parts of ions or molecules, e.g., the CO, ions in calcite ot the CyH,
molecules in a naphthalene crystal. Indeed, it is precisely such cases which
make it most obvious that the vibration spectra of crystals in the infra-red
should consist of a sharply defined set of monochromatic frequencies and
not a diffuse continuum. For, we know that the ions or molecules in the
free state have sharply defined spectral frequencies; though their mutual
interactions in a crystal would have to be considered, these interactions
are exactly specifiable and hence could only result in altering the vibration
frequencies and increasing their number without changing the essential
nature of the spectra. To show that this is the case, we may consider the
particular example of a crystal in which the p atoms in each lattice cell form
a single molecule. Each such molecule has 3p degrees of dynamical freedom
which may be identified with specific modes of vibration in the crystal, since
simple rotations and translations are excluded, at least ordinarily. The
nature of a normal vibration, viz., that all the particles in the system vibrate
with the same frequency and with the same or opposite phases enables us to
define the manner in which the vibrations of the interacting molecules would
be related to each other. Since every molecule vibrates with the same fre-
quency as its neighbours, the forces which come into play must be the same
for all. These forces include not only the internal ones arising within each
molecule but also the forces of interaction between them. Hence, the latter
should also be the same for all molecules. But the forces of interaction
are determined by the amplitudes and phases of vibration. Hence, to ensure
that the forces of interaction are the same, it is necessary that the molecules
which interact with each other vibrate with the same amplitude, while each
molecule has the same relation of phase to its neighbours that every other
molecule has. The latter requirement can only be satisfied if the phases
are either all the same or else alternate in successive cells of the lattice along
one, two, or all three of ifs axes. We have thus 2 X 2 x 2 or 8§ different
ways in which the requirements for a normal vibration may be satisfied.
Hence, each of the 3p possible modes of vibration of a molecule would be
modified in 8 different ways, giving us in all 24p different normal vibrations,
which is the same result as that deduced in Section 2, if we exclude the
3 translations of the molecules moving together as a group.
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The foregoing approach to the subject is useful in elucidating the rela-
tions between the vibration spectrum of a crystal and the spectra of the same
substance in the liquid and gaseous conditions. The (24p—3) modes of
vibration may be divided into two classes, namely, (3p—3) modes in which
the amplitude and phase of the vibration of a molecule are the same as those
of its neighbours, and 21p modes in which the vibration occurs in opposite
phase in alternate layers of the crystal structure. The (3p—3) modes of
the first kind represent the internal vibrations and the rotational oscillations of
the molecules, while the 21p modes of the second kind would include also
the 21 modes of translational oscillation of the molecules against each other.
Unless the forces of interaction are large, the internal oscillations of the
second kind would differ but little in frequency from similar oscillations of
the first kind, and both would be nearly the same as for the free molecules.
On the other hand, the rotational oscillations with discrete frequencies which
are characteristic of the crystal are determined entirely by the interactions
between the molecules, and hence they should differ notably in the first and
second class of normal modes.

7. ANHARMONICITY AND INTERACTION OF VIBRATIONS

So far, we have concerned ourselves with small oscillations under
harmonic forces. In the actual problem, the amplitudes of vibration are
determined by quantum-theoretical considerations and are by no means
infinitesimal. Hence, a complete theory would require us to include, in
addition to the forces proportional to the atomic displacements, also forces
proportional to their squares and to their products. On introducing such
additional terms into the equations, it becomes evident that the motion can
no longer be described as a summation of independent normal vibrations
and that interactions would arise profoundly modifying the dynamical
behaviour of the system. Problems of this kind have already been consi-
dered in the theory of the vibrations of polyatomic molecules (Herzberg,
1945), and we may therefore take over the known results of that theory
mutatis mutandis in our present case. If the anharmonicity be not too large,
the behaviour of the system may still be described by sets of quantum numbers,
each set corresponding to one of the normal vibrations possible in the har-
monic approximation. The quantum numbers do not, however, as in the
harmonic case, represent equal increments of energy, but a diminishing
sequence of increments. The selection rules are also modified and in parti-
cular, overtones and combinational frequencies forbidden in the harmonic
approximation are permitted to appear. Overtones and combinations may
also appear by reason of the electric moments associated with the vibrations
having a non-linear dependence on the amplitudes. Anharmonicity results
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further in cases of non-accidental degeneracy in the splitting up of various
higher energy levels which would be coincident in the harmonic approxi-
mation. Accidental degeneracy may also result in splitting up or displacing
the energy levels concerned and in modifying the intensities with which they
appear in the spectra.

8. INFLUENCE OF TEMPERATURE

Anharmonicity also plays an important role when we consider the effect
of elevating the temperature of a crystal on its vibration spectrum. As the
temperature rises, a considerable proportion of the various low-lying energy
levels would be thermally excited, as also a smaller proportion of the higher
ones. Hence, any further excitation caused, for instance, by the incidence
of radiation on the crystal has to start from the thermally excited levels, and
by reason of the anharmonicity, the energy increments would then be less
than for similar transitions from the ground state. As a consequence, the
spectral lines corresponding to various possibilities which are equivalent in
the harmonic approximation would no longer be coincident. The effect
of elevating the temperature would accordingly be to lower the vibrational
frequencies and simultaneously to spread them out over a finite range of
values. Further, since the majority of the induced tramsitions start from
the thermally excited levels and not from the ground state, the electrical
anharmonicity would also come into play and make the observed intensity
of the lines less than what they would be if there were no such
anharmonicity. ‘

It is evident that similar results would also follow from the interaction
between the eigenvibrations of the crystal structure and the elastic vibrations
of the solid. The energy of an elastic vibration is distributed over the entire
volume of the crystal, and hence its amplitude would be exceedingly small.
Hence, the elastic vibrations, considered individually, would have no
sensible perturbing effect on the eigenvibrations. The position would how-
ever, be altered if we consider the aggregate effect of all the elastic modes
of vibration when thermally excited, since their number is very large. A
convenient way of regarding the matter is to fix our attention on a very small
element of volume in the crystal. This volume element would, as the result
of the thermal agitation, suffer fluctuations of density. These may be
regarded as oscillations of varying amplitude and frequency. When the
volume element considered is sufficiently small, the density fluctuations
would be large enough to perturb the eigenfrequencies to an observable
extent, lowering them and spreading them out over a finite range of
values.
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6. SUMMARY

The paper presents the author’s theory of the vibration spectra of
crystals from a fresh point of view. It is shown that the nature of the spectra
is necessarily different in the two regions of frequency in which they represent
respectively the characteristic eigenvibrations of the crystal structure and
the stationary wave-patterns of elastic vibration. The eigenvibrations repeat
themselves in volume elements within the crystal having twice the linear
dimensions and eight times the volume of the lattice cells. The number
of modes of eigenvibration is (24p—3), p being the number of atoms in each
lattice cell. The spectral frequencies which are (24p—3) in number (or less by
reason of crystal symmetry) are accordingly monochromatic. In relation
to the entire crystal, they are highly degenerate. The three missing degrees
of freedom are exactly accounted for when the possible elastic vibrations
which give a quasi-continuous spectrum of frequencies are enumerated.
The limiting elastic wave-lengths come out as four times the lattice spacings
of the crystal. The effects of anharmonicity are also considered. It is shown
that they result in lowering and spreading out the spectral frequencies of
the crystal when its temperature is elevated.
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