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1. Iwutroduction.

In Part III* of this series of papers, we considered the Doppler effects and
- coherence phenomena among the diffracted components of light emerging
from a rectangular cell of a medium traversed by supersonic waves per-
pendicular to the direction of the propagation of the incident plane wave
of light. We showed, in the case of a progressive supersonic wave, that the
nth order diffraction component which is inclined at an angle sin = ( —nA/A¥)
to the direction of propagation of the incident light has the frequency
v — nv¥, where v and A denote the frequency and the wave-length of the
incident light while »* and A* correspond to those of the sound wave. In
the case of the diffraction of light by a standing sound wave, we got the
interesting result that in any even order, radiations with frequencies
v & 2%, (r =0,1,2,....), would be present while in any odd order, radia-
tions with frequencies v & 271 v*, (r =0,1,9,... .), would be present.
‘These results give a satisfactory interpretation of the coherence phenomena
among the diffractidn components observed by Bir.2 In the following, we
show that our previous results remain valid even if we consider a general
Pperiodic supersonic wave and that they can be derived in a simple and direct
fashion. We have also presented in the following, some general considera-
tions of the problem on hand.

2. Doppler effect and coherence phenomena.
The partial differential equation governing the propagation of light in
a medium with time-variation and space-variation in its refractive index is
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* C. V. Raman and N. S. Nagendra Nath, Proc. Ind. Acad. Sci. (4), 1936, 3, 75.
2 R. Bir, Helv. Phy. Acta, 1935, 8, 591. . )
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if the frequency of the time-variation of p (¥, y, 2, ?) is very slow compared
to the time-variation of the wave-function of light. This would be so in the
case of the propagation of light in a medium filled with sound waves for the
frequency of the variation of u (%, ¥, 2, ) correspouds to the frequency of
tihc-: sound waves present in the medium, which is negligible compared to the
frequency of light.

) If we choose our axes of reference such that the X-axis points to the
direction of the propagation of the plane sound waves and the Z-axis points
to the direction of the propagation of the incident plane wave of light, we’
could ignore the dependence of ¢ on y and write the differential equation as
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If w (%, £) did not depend on time,  would have had the only time factor
exp (2mivt) where v is the {requency of the incident light. If we consider
the time variation of p (¥, #), we can write i as given by
= exp [2mivt] ¢ (¥, 2, F)
where ¢ (w, z, £) varies slowly in time compared to exp [2mivt]. On the
consideration that »*< < v, we can show that -
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With these considerations, we can consider the differential equation
2 2 2 .
e P A
and obtain i by the equation ' ’
b = exp [2mivE] ¢ (%, 2, 8). |
As the sound waves which travel along the X-axis are periodic in space and
time, we can regard p (x,1) to be also periodic in x and ¢ with the same
periods in space and time. "It should he noticed that we do not restrict
i (x, t) to be simply periodic in x andv.t but it may he ageneral periodic func-
tion of x and ¢, amenable to Fourier Analysis. Thus
wEHpXs, 8 =p (5 0)
and . p (%, t+pp*) = p (%, 0)
where p is any integer. ' |
1f we consider the differential equation in which u (%, £) has the above
properties, we see that ¢ (%, 2, 1) should also be-periodic in x and ¢ with the
same periods in the case we are considering. That is,
o (P, 2 ) = @ (%, 2, 1)
and ¢ (%, 2, t+p/v*) =¢ (x, 2, 1)
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Hence we can write the double-Fourier expansion of ¢ (x, z, ) as
5 5 f (2) ermirsiXr g2misv
. Joeouoo
" Progressive Sound W aves.—In the case of the progressive waves travelling
. along the positive direction of the X-axis, we have the property that
. (4P, ) = (v, £~ plv¥) |
where p is any number. Thus - : o .
b (x4 ph, 5, 8) = b (x, 2, L—pp*) .. LW
_U@mor the double-Fourier expansion, we can write (1) as '
zZ Zfs (2) e2mirx IN* g2 misv¥teQmir P ' ’
= 5 Zf,s (2) e2irc|]A* g2misv*t g-2misp .. . .. (2)
Comparing the Fourier coefficients on each side of (2), we get
| frs () e2mirP = f,, (z) e2mic |
" This could be true only if ' '
| frefz) =0 whenr + — s ' .- e (3)
The condition (3) restricts the number of terms in the Fourier expansion of
‘¢, so that o
L (m 2 f) =3 f (7) e2mireiA g2mivte
. - 00

Thus , :
‘ ' i (x’ 2, t) :.:2:_]‘7, (z) e2mirx [A* g2mi(v-rv*)e .. .. (4)

If one considers the diffraction cffects of Y (x, 2, 8) given by (4), it is fairly
- obvious that the nth order diffraction component will he inclined at an angle
sint (—#A/A*) with the incident heam of light and will have the frequency
v — nv* and the relative intensity expression |f, (2) 2.
- Standing Sound Waves.——In the case of standing waves, we have the
property that
- plo+ 28 = u (x t =+ , P an integer,
so that ' ,
A
_¢(x+2,zt </>xzti .. .. .. (5)
If we use (5) in the double Fourier expansion of ¢ we get |
22 frs (2) e2mirx [N¥ e2mrisv*s emirp
= 2 Zfr.r ( ) e2mirx|A* g27rzsv*t emisp .. . .. (6)
Comparmg the Fourier coefficients in (6), we get .
. -f;’,r ( ) eﬂzrzﬂ _.._j;r z\ eﬂjcp
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This means that f,, (z) is zero unless 7 and s are both even integers or odd
‘integers. . ‘
Returning now to the Fourier expansion of ¢, we could write it as

q5 (x, 3, t) == j‘:’o 2‘0 er. 25 (z) e217‘1'2rx/)* e2mi2sv¥e
OO =00

L X N s .—"——‘” she
+ 2 5 fore, son (7) e2mi2r TLx]A* g2mi2s 1y
- 00 '

Thus
. oo o0 )
(%, 2,8) =2 2 far s (z).327T{27'~r//\* e2mi(v+2sv*)t
=00 =00 '
oo oo o , o
+ 223 faprn aen (3) e2midr F1lx A g2miv+2s+1v*)e | (7)
- 00 =00 ' )

If one considers the diffraction effects of ¢ (¥, 2, ¢) given by (7), it will be quite
easy to see that the diffraction orders could be classed into two groups, one
containing the even ones and the other odd ones; any even order contains
radiations with frequencies, v, v £2v*,...., v +9%v*,. ..., and any odd order
contains radiations with frequencies, v £v¥, vx3v*,...., v 427 F1v%, ..

3. The case when the disturbance in the medium 1s simple harmonic.

If we suppose that the variation in the refractive index of the medium

is simple harmonic along the X-axis, it can he represented as

p (%, 1) = po + psin 27(p* — x[A¥)
in the case of a progressive wave, while it will be of the form

p (%, 1) = po — p sin (2mx[A*) sin (2mv*E)
in the case of a standing wave, where u (%, 1) is the refractive index of the
‘medinm at height x and at time £, y, is the constant refractive index of the
medium when there is no sound wave and u is the maximum variation of the
refractive index from w,.

 Progressive Wave.—To obtain the wave function for the emerging wave-
front of light, we have to solve the differential equation

LR D% 4m?
o L 9% . _ T ne
Py + 32 bE { (%, 2)} ¢

B, . ]
::..:,v [A,—lr-'é? {ez(bﬁ"f) _ 3-z(bx—€)}]'¢ . : .o (8)

where b = 2n/A*, e = 2m™*, A = — 472 2 [N and B = 8n%u, pu/A

omitting the second order term with coefficient pe,
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We have shown in the previous seciion that ¢ can be developed as a
Fourier seriesin x.and ¢ as

-0

Zfr (g) g27Tzrx/A* e~2Trirv*e

: - v |
or _ 2 [, (z) eirtx gire .. .. .. .. (9)

Substituting the Fourier series (9) in the differential equation (8) and com-
paring the Fourier. coefficients We obtain the equation

W — (A8 fo = 5 (fan—Ton)
dz ” 2& -1 72+1

Putting f, (2) = exp (—1tupy2) ¢, (z) where 4 == 2m/)
‘we obtain ' '

a2 . dd, ' Bi \
““—‘(é;'z - 217/5“0 ’d—¢z"” - b2n2¢’z = e .._2.3.’ (¢7!"1 - ¢7b+1)
Putting z = (2= )”'qu, we obtain
d n2AZ .
IJ‘ &_?__ 2““0“‘ ;Sg BY (ﬁﬂ = Lot (‘f’n-«l - ‘éwl—l)

AS po, bei_ng the\refraetive index of the medium, is in the neighbourhood of
unity and p is in the neighbouthood of 10-%, we can omit the first term on
the left hand side and consider the differential equation

d ” 2N
(/6 (?Sn—] 7571+1) = ‘M:ZA*z ¢n

If there Were no term on the right hand side, ¢,, would be the Bessel Func-
tion' Jy (§) or J, (2muz/A) satisfying the required bDoundary conditions.
This follows as a consequence of Sonine’s® theorem which gives that if

d¢n 9572"1 -

n+1 == 0,

then ¢, could be developed as a series in Bessel Functions as

b1 (€)= $u0) T, (§) + 2 [$1-l0) + (=Ybpre O] T, (&)

Setting the boundary conditions that
¢y (0) = 1 and sf?s (0) = 0, s*0

957; = J7t (f)'

If nis not too great and A%/A*2y is. emall we can approuma’ce

b (8) = T, (8) = T (22

we get

. % N. Nielsen, Handbuch der theorie der Cylinderfunktionen, p. 286 (1904 edition),
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If the cell is hound by z == I, at the emerging face, it will be easy to see that
the relative intensity of the nth order diffraction component would be
T (2mul, //\) A Ce -
~ The case of “the standing wave.—In this case we have to write ¢ (x, 7, #)
as given by :
b (x,2,0) = 5 3 fo, on X grmineyt:

- 00 =00

oo o0 JR—
+ 2 X fa] 1, 2e4p EOTIITHLE )\k 2TrisZH 1V,
- =00

(=]

_ Zg,- (2, ) ermira R (]0) |

Substituting (10) the differential equatlon for qS 'md comparing the co-
efficients, we obtain

Mg, dmip, dgn 47* 22 4n*u g 8in € .
A e ol e e e )
Putting z = (2mp)~'A¢ we obtain
2 D% Oy _ M N2 ’
’ bf - 2ipo p Dé: NEE §n = — Fo pi ‘3111 € (€n1 — Lnw1)-

Under the same considerations as in the prevmus paragraph, we will have
to solve the equation

) o o 'mzho
2 ggg — SN € (gu-l e g”"‘l) \*ﬁ 4

If » is not too great and A%/A*2y is %mall we can dppro*clmate

'gn (E; ) = J/z (5 5111 5) = Ju (HW}LM Sln 277'1/ )

But we have shown in Part I II tthat . - ] K

T (v sin 6) ( )r Jnr (7’/9) J7z+) (7)/2) 3121'5

- OO

Jonta (7’ sin 6) =, 'LE( ) Jn-r (1)/2) Jntr+1 (’Z)/‘)) ’ZT—HE

Hence,

¢, (x, 2, t). Z‘m S‘,‘e ( )r Jses ('0/2) Tt (0/2) ezm‘zrx/,\* e2Tri(V+25VEy
00«00

— i EF () Toes (012) Trrons (0]2) @mErFTmine gty

- 00 OO
If one considers now the diffraction effects due to this emerging wave-front
at z=1,, it can be seen that ah even order, say 2n, contains radiations with
frequencies v£2v*, (v =0, 1, 2,....), the relative intensity of the v +27v*
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sub-component being J%,—, (mul/A) J%4, (7ul/A) and an odd order, say
2n +1, contains radiations with frequencies v +27 +1v%, ( = 0, 1, 2,. .. .), the
relative intensity of the v£2 +1v* sub-component being J%-, (mul/A)
Putrn ('W-LL/)‘) '
4.  Swmmary. |

The essential idea that the phenomenen of the diffraction of light by
high frequency sound waves depends on the corrugated nature of the trans-
.mitted wave-front of light, pointed out by the authors in their first paper,
has: been developed on general considerations in this paper. The results
in this paper can be summiarised as follows :— |

(1) If progressive sound-waves travel in a rectangular medium normal
to two faces and the direction of propagation of a plane beam of incident
light, the incident light will be diffracted at the angles given by sin-1( —nA/X*)
and the light belonging to the nth order will have the frequency v—ny*

(2) If the sound waves are stationary, the incident li ght will be d]ffracted
‘at the angles given by sin~! (—uA/A*), an even order’ Would contain radiations
‘with frequencies, v, v +2v*, v4dv*, ..., v£2v* ..., and an odd order-
Would contain mdlatmns with frequenc1es v -w*, v 3'&3;’*, v i5v*,
v '3:21’ —L-I % ye s

(3) A differential- dlﬂ'erence equation has been obtained for the ampli-
tude function of the diffracted orders whose approximate solution is satis-
‘fied by the Bessel Functions already obtained by the author% in thelr
‘previous papers.
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