
A Theory of Regular MSC Languages

Jesper G. Henriksen 1

BRICS, Computer Science Department, Aarhus University, Aarhus, Denmark 2

Madhavan Mukund ∗

Chennai Mathematical Institute, Chennai, India

K. Narayan Kumar

Chennai Mathematical Institute, Chennai, India

Milind Sohoni

Indian Institute of Technology Bombay, Mumbai, India

P. S. Thiagarajan 3

National University of Singapore, Singapore

Abstract

Message Sequence Charts (MSCs) are an attractive visual formalism widely used
to capture system requirements during the early design stages in domains such as
telecommunication software. It is fruitful to have mechanisms for specifying and rea-
soning about collections of MSCs so that errors can be detected even at the require-
ments level. We propose, accordingly, a notion of regularity for collections of MSCs
and explore its basic properties. In particular, we provide an automata-theoretic
characterization of regular MSC languages in terms of finite-state distributed au-
tomata called bounded message-passing automata. These automata consist of a set
of sequential processes that communicate with each other by sending and receiving
messages over bounded FIFO channels. We also provide a logical characterization
in terms of a natural monadic second-order logic interpreted over MSCs.

A commonly used technique to generate a collection of MSCs is to use a Hier-
archical Message Sequence Chart (HMSC). We show that the class of languages
arising from the so-called bounded HMSCs constitute a proper subclass of the class
of regular MSC languages. In fact, we characterize the bounded HMSC languages
as the subclass of regular MSC languages that are finitely generated.

Key words: Message sequence charts, Message-passing systems, Regularity,
Realizability, Synthesis, Monadic second-order logic

Preprint submitted to Information and Computation 14 November 2003

1 Introduction

Message sequence charts (MSCs) are an appealing visual formalism often used
to capture system requirements in the early stages of design. They are particu-
larly suited for describing scenarios for distributed telecommunication software
[19,31]. They also appear in the literature as sequence diagrams, message flow
diagrams and object interaction diagrams and are used in a number of soft-
ware engineering notational frameworks such SDL [31] and UML [7,14]. In its
basic form, an MSC depicts the exchange of messages between the processes of
a distributed system along a single partially-ordered execution. A collection of
MSCs is used to capture the scenarios that a designer might want the system
to exhibit (or avoid).

Given the requirements in the form of a collection of MSCs, one can hope
to do formal analysis and discover errors at the early stages of design. One
question that naturally arises in this context is: What constitutes a reasonable
collection of MSCs on which one can hope to do formal analysis? A related
issue is how one should go about representing such collections.

In this paper, we propose regular collections of MSCs as the candidate for
representing reasonable collections and present a variety of results in support
of our proposal. We also present a number of representations of regular MSC
collections and establish a strong connection to a standard way of representing
MSC collections, namely, Hierarchical MSCs [25]. Preliminary versions of these
results appeared in [17,18,26] where the notion of regular MSC languages and
the related automata model were introduced.

Our notion of regularity has been guided by a number of concerns. The primary

∗ Corresponding Author. Address: Chennai Mathematical Institute, 92
G. N. Chetty Road, Chennai 600017, India. Fax: +91-44-28157671.

Email addresses: gulmann@brics.dk (Jesper G. Henriksen),
madhavan@cmi.ac.in (Madhavan Mukund), kumar@cmi.ac.in
(K. Narayan Kumar), sohoni@cse.iitb.ac.in (Milind Sohoni),
thiagu@comp.nus.edu.sg (P. S. Thiagarajan).
1 Present address: Airport Division, DSE A/S, Sverigesvej 19, DK-8700 Horsens,
Denmark. E-mail: jgh@dse.dk
2 BRICS: Basic Research in Computer Science (www.brics.dk), funded by the
Danish National Research Foundation.
3 This work was partially supported by the NUS-SOC-ARF grant R-252-000-103-
112.

2

one has been finite-state realizability. In other words, a good starting point for
capturing the notion of a reasonable collection of MSCs is to demand that the
behaviors denoted by the collection should be, as a whole, realizable by some
finite-state device. A closely related concern is to synthesize systematically
an executable specification—say in the form of an automaton—from a set of
requirements as a regular collection of MSCs.

A standard way to generate a set of MSCs is to use a Hierarchical (or High-
level) Message Sequence Chart (HMSC) [25]. An HMSC is a finite directed
graph in which each node is itself labeled by an HMSC. The HMSCs that
appear as the labels of the vertices may not refer to each other. Message Se-
quence Graphs (MSGs) are HMSCs in which each node is labeled by just an
MSC (and not an HMSC). An MSG defines a collection of MSCs by con-
catenating the MSCs labeling each path from an initial vertex to a terminal
vertex. Though HMSCs provide more succinct specifications than MSGs, they
are only as expressive as MSGs. Thus, one often studies HMSCs in terms of
MSGs [2,28,30].

In [2], Alur and Yannakakis investigate the restricted class of bounded (or
locally synchronized) HMSCs. They show that the collection of MSCs gener-
ated by a bounded HMSC can be represented as a regular string language.
As a result, the behaviors captured by a bounded HMSCs can be, in prin-
ciple, realized as a finite-state automaton. It is easy to see that not every
HMSC-definable collection of MSCs is realizable in this sense.

The main goal of this paper is to pin down this notion of realizability in
terms of a notion of regularity for collections of MSCs and explore its basic
properties. One consequence of our study is that our definition of regularity
provides a general and robust setting for studying collections of MSCs which
admits a number of different, but equivalent, representations. An important
consequence is that our notion leads to a state-based representation that is one
step closer to an implementation than the description in terms of MSCs. Stated
differently, our work also addresses the issue, raised in [10], of converting
inter-process descriptions at the level of requirements, as specified by MSCs,
into intra-process executable specifications in terms of a reasonable model of
computation.

Yet another motivation for focusing on regularity is that the classical notion
of a regular collection of objects has turned out to be very fruitful in a variety
of settings including finite (and infinite) strings, trees and restricted partial
orders known as Mazurkiewicz traces [11,35,36]. In all these settings there is
a representation of regular collections in terms of finite-state devices. There is
also an accompanying monadic second-order logic that usually induces tem-
poral logics using which one can reason about such collections [35]. One can
then develop automated model-checking procedures for verifying properties

3

specified in these temporal logics. In this context, the associated finite-state
devices representing the regular collections often play a very useful role [37].
We show here that our notion of regular MSC languages fits in nicely with a
related notion of a finite-state device, as also a monadic second-order logic.

In our study, we fix a finite set of processes P and consider M, the universe of
MSCs that the set P gives rise to. An MSC in M can be viewed as a labeled
partial order in which the labels come from a finite alphabet Σ that is canon-
ically fixed by P. Our proposal for L ⊆ M to be regular is that the collection
of all linearizations of all members of L should together constitute a regular
subset of Σ∗. A crucial point is that, due to the communication mechanism of
MSCs, the universe M itself is not a regular collection. This is in stark contrast
to settings involving strings, trees or Mazurkiewicz traces. Futhermore, this
distinction has a strong bearing on the automata-theoretic and logical formu-
lations in our work. It turns out that regular MSC languages can be stratified
using the concept of bounds. An MSC is said to be B-bounded if during any
run of the MSC and at any stage in the run and for every pair of processes (p, q)
there are at most B messages sent from p to q that have yet to be received
by q. A language of MSCs is B-bounded if every member of the language
is B-bounded. It turns out that every regular MSC language is B-bounded
for some B. This leads to our automaton model called B-bounded message-
passing automata. The components of such an automaton correspond to the
processes in P. The components communicate with each other over (poten-
tially unbounded) FIFO channels. We say that a message-passing automaton
is B-bounded if, during its operation, a channel never contains more than B
messages. We establish a precise correspondence between B-bounded message-
passing automata and B-bounded regular MSC languages. In a similar vein, we
formulate a natural monadic second-order logic MSO(P, B) interpreted over
B-bounded MSCs. We then show that B-bounded regular MSC languages are
exactly those that are definable in MSO(P, B).

We also characterize exactly the regular MSC languages that can be repre-
sented by MSGs. In general, the MSC language defined by an MSG is not
regular. Conversely, it turns out that there are regular MSC languages that
can not be represented by an MSG. We show that the crucial link here is that
of an MSC language being finitely generated. We prove that a regular MSC
language can be represented by an MSG iff the language is finitely generated.
As a by-product of this result we also show that a regular MSC language can
be represented by an MSG iff it can be represented by a locally synchronized
MSG.

As for related work, a number of studies are available that are concerned with
individual MSCs in terms of their semantics and properties [1,21]. As pointed
out earlier, a nice way to generate a collection of MSCs is to use an MSG.
A variety of algorithms have been developed for MSGs in the literature—for

4

instance, pattern matching [22,28,30] and detection of process divergence and
non-local choice [5]. A systematic account of the various model-checking prob-
lems associated with MSGs and their complexities is given in [2]. The problem
of model-checking MSGs with respect to formulas in Monadic Second-Order
logic (MSO) is shown to be decidable in [23]. Note that the class of regular
MSC languages and the class of MSG definable languages are incomparable.
This decidability result has been extended to a generalization of MSGs called
CMSGs (standing for Compositional MSGs) in [24]. The class of languages
definable by CMSGs includes the class defined by MSGs as well as the class of
regular MSC languages. The model-checking problem with respect to MSO is
shown to be decidable for some infinite-state subclasses of HMSCs in [13]. For
such subclasses the authors also show that equivalent communicating finite-
state automata can be synthesised.

Recently, a new notion called weak realizability has been introduced in [3,4]. In
this work, the target automata are message-passing automata (as we use them
in this paper) with local rather than global accepting states. In the setting
of Mazurkiewicz traces it is known that distributed automata with global
acceptance conditions are strictly stronger than those with local acceptance
conditions [38]. Trace languages accepted by automata with local accepting
states are called product languages and are well-understood [33]. It would be
interesting to extend the work of [3,4] to develop a corresponding theory of
product MSC languages.

In this paper we confine our attention to finite MSCs and further we assume
that each channel exhibits FIFO behaviour. As the recent results of [20,6] bear
out, our results and techniques serve as a good launching pad for a similar
account concerning infinite MSCs as well as to settings where messages may
be delivered out of order.

The paper is structured as follows. In the next section we introduce MSCs
and regular MSC languages. In Section 3 we establish our automata-theoretic
characterization and, in Section 4, the logical characterization. While doing so,
we borrow a couple of proof techniques from the theory of Mazurkiewicz traces
[11]. However, we need to modify these techniques in a non-trivial way (espe-
cially in the setting of automata) due to the asymmetric flow of information
via messages in the MSC setting, as opposed to the symmetric information
flow via handshake communication in the trace setting.

We define Message Sequence Graphs in Section 5. We survey the existing body
of theory for this class of labeled graphs and bring out the notion of locally
synchronized MSGs. In Section 6 we define finitely generated languages and
provide an effective procedure to decide whether a regular MSC language is
finitely generated. Following this, we establish our characterization result for
regular MSC languages that are MSG-representable.

5

2 Regular MSC Languages

Our study of regular MSC languages will focus on the most basic kind of
MSCs—those that model communication through message-passing via reli-
able FIFOs. We ignore the actual content of the messages exchanged by the
processes as well as internal events. Our aim is to clearly bring out the basic
issues in the theory with as little clutter as possible. The theory that we de-
velop will go through—with considerable notational overhead—in the presence
of additional features such as handshake communication, non-FIFO channels,
hierarchically structured states etc.

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate
with each other through messages via reliable FIFO channels. For each p ∈ P

we define Σp
def
= {p!q | p 6= q} ∪ {p?q | p 6= q} to be the set of communication

actions in which p participates. The action p!q is to be read as p sends to q and
the action p?q is to be read as p receives from q. As mentioned above, at our
level of abstraction, we shall not be concerned with the actual messages that
are sent and received and we will also not deal with the internal actions of the
agents. We set ΣP =

⋃
p∈P Σp and let a, b range over ΣP . We also denote the

set of channels by Ch = {(p, q) | p 6= q} and let c, d range over Ch. Whenever
the set of processes P is clear from the context, we will often write Σ instead
of ΣP etc.

Labelled posets A Σ-labelled poset is a structure M = (E,≤, λ) where
(E,≤) is a poset and λ : E → Σ is a labelling function. For e ∈ E we define

↓e
def
= {e′ | e′ ≤ e}. For p ∈ P and a ∈ Σ, we set Ep

def
= {e | λ(e) ∈ Σp} and

Ea
def
= {e | λ(e) = a}, respectively. For each (p, q) ∈ Ch, we define the relation

<pq as follows:

e <pq e′ ⇐⇒ λ(e) = p!q, λ(e′) = q?p and |↓e ∩ Ep!q| = |↓e′ ∩ Eq?p|

Since messages are assumed to be read in FIFO fashion, e <pq e′ implies that
the message read by q at the receive event e′ is the one sent by p at the send

event e. Finally, for each p ∈ P, we define the relation ≤pp
def
= (Ep × Ep) ∩ ≤,

with <pp standing for the largest irreflexive subset of ≤pp.

Definition 2.1 An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ)
that satisfies the following conditions 4 :

(1) Each relation ≤pp is a linear order.

4 Our definition captures the standard partial-order semantics associated with
MSCs in, for instance, [1,31].

6

(p)
_

(q)
_

(r)
_

•e1 //• e2

•e′2 • e3oo

•e′1 • e′3oo

Fig. 1. An MSC over {p, q, r}.

(2) If p 6= q then |Ep!q| = |Eq?p|.
(3) The partial order ≤ is the reflexive, transitive closure of the relation⋃

p,q∈P <pq.

2

In diagrams, the events of an MSC are presented in visual order. The events
of each process are arranged in a vertical line and the members of the relation
<pq are displayed as horizontal or downward-sloping directed edges from the
vertical line corresponding to p to the vertical line corresponding to q. We
illustrate the idea with an example, depicted in Figure 1. Here P = {p, q, r}.
For x ∈ P, the events in Ex are arranged along the line labelled (x) with earlier
(relative to ≤) events appearing above later events. For any two processes
p, q, the <pq-edges are depicted by horizontal edges—for instance e3 <rq e′2.
The labelling function λ is easy to extract from the diagram—for example,
λ(e′3) = r!p and λ(e2) = q?p.

MSC languages Henceforth, we will identify an MSC with its isomorphism
class. We let MP be the set of MSCs over P. An MSC language is a subset
L ⊆ MP . As before, we shall often omit P and denote MP by M.

We shall define regular MSC languages in terms of their linearizations. For an

MSC M = (E,≤, λ), we let lin(M)
def
= {λ(π) | π is a linearization of (E,≤)}.

By abuse of notation, we have used λ to also denote the natural extension of
λ to E∗. For an MSC language L ⊆ M, we set lin(L) =

⋃
{lin(M) | M ∈ L}.

In this sense, the string p!q r!q q?p q?r r!p p?r is one linearization of the MSC
in Figure 1.

In the literature (e.g. [1,29,30]) one sometimes considers a more generous no-
tion of linearization where two adjacent receive actions in a process corre-
sponding to messages from different senders are deemed causally independent.
For instance, p!q r!q q?r q?p r!p p?r would also be a valid linearization of the
MSC in Figure 1. This is called the causal order of the MSC (as opposed to
the visual order). Our results go through with suitable modifications even in

7

the presence of this more generous notion of linearization.

Proper and complete words The notions of proper and complete words
will be very useful for relating MSCs to their linearizations. For a word w
and a letter a, we let #a(w) denote the number of times a appears in w. We
say that σ ∈ Σ∗ is proper if for every prefix τ of σ and every pair p, q of
processes #p!q(τ) ≥ #q?p(τ). We say that σ is complete if σ is proper and
#p!q(σ) = #q?p(σ) for every pair p, q of processes.

An independence relation on complete words Next we define a context-
sensitive independence relation I ⊆ Σ∗ × (Σ × Σ) as follows. (σ, a, b) ∈ I iff
the following conditions are satisfied :

• σab is proper
• a ∈ Σp and b ∈ Σq for distinct processes p and q
• a = p!q and b = q?p implies #a(σ) > #b(σ).

We note that if (σ, a, b) ∈ I then (σ, b, a) ∈ I.

We now set Σ◦ = {σ | σ ∈ Σ∗ and σ is complete}. Next we define ∼ ⊆ Σ◦×Σ◦

to be the least equivalence relation such that if σ = σ1abσ2, σ′ = σ1baσ2 and
(σ1, a, b) ∈ I then σ ∼ σ′. For a complete word σ, we let [σ]∼ denote the
equivalence class of σ with respect to ∼. It is important to note that ∼ is
defined over Σ◦ and not Σ∗. It is easy to verify that for each M ∈ M, lin(M)
is a subset of Σ◦ and is in fact a ∼-equivalence class over Σ◦.

String MSC languages

We define L ⊆ Σ∗ to be a string MSC language if there exists an MSC language
L ⊆ M such that L = lin(L). It is easy to see that L ⊆ Σ∗ is a string MSC
language iff every string in L is complete and L is ∼-closed ; that is, if σ ∈ L
and σ ∼ σ′ then σ′ ∈ L.

Just as a Mazurkiewicz trace can be identified with its linearizations [11], we
can identify each MSC with its linearizations. To formalize this, we construct
representation maps sm : Σ◦/∼ → M and ms : M → Σ◦/∼ and argue that
these maps are “inverses” of each other.

From linearizations to MSCs . . . Let σ ∈ Σ◦. Then sm(σ) = (Eσ,≤, λ)
where

• Eσ = {τa | τa ∈ prf(σ)}, where prf(σ) is the set of prefixes of σ. In other
words, Eσ = prf(σ) − {ε}.

• ≤ = (RP ∪ RCh)
∗ where RP =

⋃
p∈P Rp and RCh =

⋃
p,q∈P Rpq. The con-

8

stituent relations are defined as follows. For each p ∈ P, (τa, τ ′b) ∈ Rp iff
a, b ∈ Σp and τa ∈ prf(τ ′b). Further, for each p, q ∈ P, (τa, τ ′b) ∈ Rpq iff
a = p!q and b = q?p for some p, q ∈ P and in addition, #a(τa) = #b(τ

′b).
• For τa ∈ E, λ(τa) = a.

It is easy to see that sm(σ) is an MSC with <pp= Rp and <pq= Rpq. One can
show that σ ∼ σ′ implies sm(σ) = sm(σ′). We can thus extend sm to a map
sm
′ : Σ◦/∼ → M given by sm

′([σ]∼) = sm(σ). Henceforth, we shall write sm

to denote both sm and sm
′.

. . . and back Conversely, we define the map ms : M → Σ◦/∼ by ms(M) =
lin(M). It is easy to show that ms is well-defined. We can also show that for
every σ ∈ Σ◦, ms(sm(σ)) = [σ]∼ and for every M ∈ M, sm(ms(M)) = M .
Thus Σ◦/∼ and M are two equivalent ways of representing the same class of
objects. Hence, abusing terminology, we will often write “MSC language” to
mean “string MSC language”. From the context, it should be clear whether
we are working with labelled partial orders from M or complete strings over
Σ∗. A good rule of thumb is that L will denote the former and L will denote
the latter.

We can now finally define our notion of a regular collection of MSCs.

Definition 2.2 L ⊆ M is a regular MSC language iff lin(L) is a regular
subset of Σ∗. 2

Note that, unlike many standard settings (strings, trees or Mazurkiewicz
traces), the universe M is itself not regular according to our definition be-
cause Σ◦ is not a regular subset of Σ∗. This fact has a strong bearing on the
automata-theoretic and logical formulations of regular MSC languages as will
become apparent in the later sections.

We now observe that there is an effective (and finitary) presentation of regular
MSC languages.

Proposition 2.3 It is decidable whether a regular subset L ⊆ Σ∗ is a regular
MSC language.

Proof:

Let A = (S, Σ, sin, δ, F) be the minimal DFA representing L. We say that a
state s of A is live if there is a path from s to a final state. It is not difficult to
see that L is a regular MSC language iff we can associate with each live state
s ∈ S, a channel-capacity function Ks : Ch → N that satisfies the following

9

conditions.

(1) If s ∈ {sin} ∪ F then Ks(c) = 0 for every c ∈ Ch.
(2) If s, s′ are live states and δ(s, p!q) = s′ then Ks′((p, q)) = Ks((p, q))+1

and Ks′(c) = Ks(c) for every c 6= (p, q).
(3) If s, s′ are live states and δ(s, q?p) = s′ then Ks((p, q)) > 0, Ks′((p, q)) =

Ks((p, q))−1 and Ks′(c) = Ks(c) for every c 6= (p, q).
(4) Suppose δ(s, a) = s1 and δ(s1, b) = s2 with a ∈ Σp and b ∈ Σq, p 6= q.

If it is not the case that a = p!q and b = q?p, or it is the case that
Ks((p, q)) > 0, there exists s′1 such that δ(s, b) = s′1 and δ(s′1, a) = s2.

2

Clearly the conditions enumerated in the proof can be checked in time linear
in the size of the next state function δ.

We also point out that Item (4) in the proof above has useful consequences.
By abuse of notation, let δ(sin, u) denote the (unique) state reached by A on
reading an input word u. Suppose u is a proper word and a, b are communica-
tion actions such that (u, a, b) belongs to the context-sensitive independence
relation defined earlier. Then, due to Item (4), δ(sin, uab) = δ(sin, uba). From
this, we can conclude that if v, w are complete words such that v ∼ w, then
δ(sin, v) = δ(sin, w).

We conclude this section by introducing the notion of B-bounded MSC lan-
guages. Let B ∈ N be a natural number. We say that a proper word σ is
weakly B-bounded if for each prefix τ of σ and for each channel (p, q) ∈ Ch,
#p!q(τ) − #q?p(τ) ≤ B. We say that L ⊆ Σ◦ is weakly B-bounded if every
word σ ∈ L is weakly B-bounded.

Next we say the proper word σ is B-bounded if every w′ with w ∼ w′ is weakly
B-bounded.

Turning now to MSCs, we shall say that the MSC M is B-bounded if every
string in lin(M) is weakly B-bounded. Since lin(M) is an ∼-equivalence class,
this is the same as saying that every string in lin(M) is in fact B-bounded.
Finally, a collection of MSCs is B-bounded if every member of the collection
is B-bounded.

Proposition 2.4 Let L be a regular MSC language. There is a bound B ∈ N

such that L is B-bounded.

Proof Sketch: From the proof of Proposition 2.3, it follows that every regular
MSC language L is weakly BL-bounded where the bound BL is the largest
value attained by the capacity functions attached to the live states in the

10

minimal DFA for L. Since MSC languages are ∼-closed, it then follows that
L is in fact BL-bounded. 2

3 An Automata-Theoretic Characterization

In what follows we assume the terminology and notation developed in the
previous section. Recall that the set of processes P determines the communi-
cation alphabet Σ and that for p ∈ P, Σp denotes the actions that process p
participates in.

Definition 3.1 A message-passing automaton over Σ is a structure A =
({Ap}p∈P , ∆, sin, F) where:

• ∆ is a finite alphabet of messages.
• Each component Ap is of the form (Sp,−→p) where
· Sp is a finite set of p-local states.
· −→p ⊆ Sp × Σp × ∆ × Sp is the p-local transition relation.

• sin ∈
∏

p∈P Sp is the global initial state.
• F ⊆

∏
p∈P Sp is the set of global final states.

2

The local transition relation −→p specifies how the process p sends and receives
messages. The transition (s, p!q, m, s′) specifies that when p is in the state s,
it can send the message m to q (by executing the communication action p!q)
and go to the state s′. The message m is, as a result, appended to the queue of
messages in the channel (p, q). Similarly, the transition (s, p?q, m, s′) signifies
that at the state s, the process p can receive the message m from q by executing
the action p?q and go to the state s′. The message m is removed from the head
of the queue of messages in the channel (q, p).

We say that A is deterministic if the local transition relation −→p for each
component Ap satisfies the following conditions:

• (s, p!q, m1, s
′
1) ∈ −→p and (s, p!q, m2, s

′
2) ∈ −→p imply m1 = m2 and s′1 =

s′2.
• (s, p?q, m, s′1) ∈ −→p and (s, p?q, m, s′2) ∈ −→p imply s′1 = s′2.

In other words, determinacy requires that the nature of the message sent from
p to q depends only on the local state of the sender p. Note, however, that from
the same state, p may have the possibility of sending messages to more than
one process. When receiving a message, the new state of the receiving process
is fixed uniquely by its current local state and the content of the message.

11

Once again, a process may be willing to receive messages from more than one
process in a given state.

The set of global states of A is given by
∏

p∈P Sp. For a global state s, we let
sp denote the pth component of s. A configuration is a pair (s, χ) where s is
a global state and χ : Ch → ∆∗ is the channel state that specifies the queue
of messages currently residing in each channel c. The initial configuration of
A is (sin, χε) where χε(c) is the empty string ε for every channel c. The set of
final configurations of A is F × {χε}.

We now define the set of reachable configurations ConfA and the global tran-
sition relation =⇒ ⊆ ConfA × Σ × ConfA inductively as follows:

• (sin, χε) ∈ ConfA.
• Suppose (s, χ) ∈ ConfA, (s′, χ′) is a configuration and (sp, p!q, m, s′p) ∈ −→p

such that the following conditions are satisfied:
· r 6= p implies sr = s′r for each r ∈ P.
· χ′((p, q)) = χ((p, q)) · m and for c 6= (p, q), χ′(c) = χ(c).

Then (s, χ)
p!q

=⇒ (s′, χ′) and (s′, χ′) ∈ ConfA.
• Suppose (s, χ) ∈ ConfA, (s′, χ′) is a configuration and (sp, p?q, m, s′p) ∈ −→p

such that the following conditions are satisfied:
· r 6= p implies sr = s′r for each r ∈ P.
· χ((q, p)) = m · χ′((q, p)) and for c 6= (q, p), χ′(c) = χ(c).

Then (s, χ)
p?q
=⇒ (s′, χ′) and (s′, χ′) ∈ ConfA.

Let σ ∈ Σ∗. A run of A over σ is a map ρ : prf(σ) → ConfA such that
ρ(ε) = (sin, χε) and for each τa ∈ prf(σ), ρ(τ)

a
=⇒ ρ(τa). The run ρ is

accepting if ρ(σ) is a final configuration. Note that a deterministic automaton
has at most one run on any σ ∈ Σ∗.

We define L(A)
def
= {σ | A has an accepting run over σ}. It is easy to see that

every member of L(A) is complete and L(A) is ∼-closed in the sense that if
σ ∈ L(A) and σ ∼ σ′ then σ′ ∈ L(A). Consequently, L(A) can be viewed as
an MSC language.

Unfortunately, L(A) need not be regular. Consider, for instance, a message-
passing automaton for the canonical producer-consumer system in which the
producer p sends an arbitrary number of messages to the consumer q. Since we
can reorder all the p!q actions to be performed before all the q?p actions, the
queue in channel (p, q) can grow arbitrarily long. Hence, the set of reachable
configurations of this system is not bounded and the corresponding language
is not regular.

For B ∈ N, we say that a configuration (s, χ) of the message-passing automa-
ton A is B-bounded if for every channel c ∈ Ch, it is the case that |χ(c)| ≤ B.

12

(p) : ?>=<89:;s1

p!q

��

=⇒ (q) : ?>=<89:;t1

q!p

q?p

��

=⇒

?>=<89:;/.-,()*+s2

p!q

		

?>=<89:;t2

q?p

JJ

?>=<89:;/.-,()*+t3

?>=<89:;s3

p?q

II

Fig. 2. A 3-bounded message-passing automaton.

(p)
_

(q)
_

•p!q

$$IIIIIIIII • q!p

����
��

��
��

��
��

��

i

•p!q

��6
66

66
66

66
66

66
6 • q?p

i

•p?q • q!p

����
��

��
��

��
��

��

•p!q

$$IIIIIIIII • q?p

•p?q • q?p

Fig. 3. The Mi’s accepted by the automaton in Figure 2.

We say that A is a B-bounded automaton if every reachable configuration
(s, χ) ∈ ConfA is B-bounded. It is not difficult to show that given a message-
passing automaton A and a bound B ∈ N, one can decide whether or not A
is B-bounded. Figure 2 depicts an example of a 3-bounded message-passing
automaton with two components, p and q. The initial state is (s1, t1) and there
is only one final state, (s2, t3). (The message alphabet is a singleton and hence
omitted.) The automaton accepts the infinite set of MSCs L = {Mi}i∈

� , where
M2 is displayed in Figure 3.

This automaton accepts an infinite set of MSCs, none of which can be ex-
pressed as the concatenation of two or more non-trivial MSCs. As a result,
this MSC language cannot be represented using MSGs, as formulated in [2].
We will return to this point in Section 6.

The following result follows from the definitions. It constitutes the easy half
of the characterization we wish to obtain.

Proposition 3.2 Let A be a B-bounded message-passing automaton over Σ.
Then L(A) is a B-bounded regular MSC language.

13

(p) (q) (r)

•e1
A
A
A
A
A
A
A
A
A
A
AU

•e2 -•e3

•e4�•e5

•e6�•e7

•e9

•e8 -•e10

•e11�•e12

Fig. 4.

The second half of our characterization says that every B-bounded regular
MSC language can be recognized by a B-bounded message-passing automaton.
This is much harder to establish.

Let L ⊆ Σ∗ be a regular MSC language. As observed at the end of Section 2,
the minimum DFA AL for L yields a bound B such that L is B-bounded.

Our strategy to prove this result is as follows. For a regular MSC language
L, we consider the minimum DFA AL for L. We construct a message-passing
automaton A that simulates the behaviour of AL on each complete word
σ ∈ Σ∗. The catch is that no single component of A is guaranteed to see all
of σ. The partial information about σ that is available at each process can be
formalized using ideals.

Ideals (prefixes) Let σ ∈ Σ∗ be proper. A set of events I ⊆ Eσ is called an
(order) ideal if I is closed with respect to ≤—that is, e ∈ I and f ≤ e implies
f ∈ I as well.

Ideals constitute consistent prefixes of σ—notice that any linearization of an
ideal forms a proper communication sequence.

p-views For an ideal I, the ≤-maximum p-event in I is denoted maxp(I),
provided #I(Σp) > 0. The p-view of I, ∂p(I), is the ideal ↓maxp(I). Thus,
∂p(I) consists of all events in I that p can “see”. (By convention, if maxp(I)
is undefined—that is, if there is no p-event in I—the p-view ∂p(I) is empty.)

14

For P ⊆ P, we use ∂P (I) to denote
⋃

p∈P ∂p(I).

Consider the MSC in Figure 4. The set of events {e1, e2, e3, e4, e5, e6, e9} form
an ideal while the events {e1, e2, e3, e4, e5, e7} do not.

Let I be the ideal {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}. The p-view of I is ↓e8 =
{e1, e2, e3, e4, e5, e6, e7, e8}. The q-view of I is ↓e9 = {e1, e2, e3, e4, e5, e6, e9}.
The joint {p, q}-view of I is {e1, e2, e3, e4, e5, e6, e7, e8, e9}.

As we mentioned earlier, our strategy is to construct a message-passing au-
tomaton A that simulates the behaviour of the minimum DFA for L, AL =
(S, Σ, sin, δ, F), on each complete communication sequence σ. In other words,
after reading σ, the components in A must be able to decide whether δ(sin, σ) ∈
F . However, after reading σ each component Ap in A only “knows about” those
events from Eσ that lie in the p-view ∂p(Eσ). We have to devise a scheme to
recover the state δ(sin, σ) from the partial information available with each
process after reading σ.

Another complication is that processes can only maintain a bounded amount
of information as part of their state. We need a way of representing arbitrary
words in a bounded, finite way. This can be done by recording for each word
σ, its “effect” as dictated by the minimum automaton AL. We associate with
each word σ a function fσ : S → S, where S is the set of states of AL, such
that fσ(s) = δ(s, σ). The following observations follow from the fact that AL

is a DFA recognizing L.

Proposition 3.3 Let σ, ρ ∈ Σ∗. Then:

(1) δ(sin, σ) = fσ(sin).
(2) fσρ = fρ ◦ fσ, where ◦ denotes function composition.

Clearly the function fσ : S → S corresponding to a word σ has a bounded
representation. For an input σ, if the components in A could jointly compute
the function fσ they would be able to determine whether δ(sin, σ) ∈ F—by
part (i) of the preceding proposition, δ(sin, σ) = fσ(sin). As the following result
demonstrates, for any input σ, it suffices to compute fρ for some linearization
ρ of the MSC sm(σ).

Proposition 3.4 For complete sequences σ, ρ ∈ Σ∗, if σ ∼ ρ then fσ = fρ.

Proof: Follows from the structural properties of AL described in Section 2.
2

Before proceeding, we need a convention for representing the subsequence of
communication actions generated by a subset of the events in an MSC.

15

Partial computations Let σ = a1a2 . . . an be proper and let X ⊆ Eσ be
given by {a1 . . . ai1 , a1 . . . ai2 , . . . , a1 . . . aik}, where i1 < i2 < · · · < ik. When
we call X a partial computation, we mean that X should be identified with
the induced labelled partial order (EX ,≤, λ) obtained by restricting Eσ to X.
We denote by σ[X] the set of linearizations of (EX ,≤, λ).

Observe that the linearizations of a partial computation are not, in general,
proper words. Thus, if v and w are two linearizations of the same partial
computation, it is quite likely that fv and fw are not the same function.

The following fact, analogous to standard results in Mazurkiewicz trace theory,
will be used several times in our construction. We omit the proof.

Lemma 3.5 Let σ be proper and let I, J ⊆ Eσ be ideals such that I ⊆ J .
Then σ[J] ⊇ σ[I]σ[J \ I].

Corollary 3.6 Let σ be a word and I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ Eσ be a sequence of
nested ideals. Then σ[Ik] ⊇ σ[I1]σ[I2 \ I1] · · ·σ[Ik \ Ik−1].

3.1 Residues and decomposition

Returning to our problem of simulating the DFA AL by a message-passing
automaton, let P consist of m processes {p1, p2, . . . , pm}. Consider a complete
word σ. We wish to compute fρ for some ρ ∼ σ. Suppose we construct a chain
of subsets of processes ∅ = Q0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qm = P such that for
j ∈ {1, 2, . . . , m}, Qj = Qj−1 ∪ {pj}. From Corollary 3.6, we then have

[σ]∼ = σ[∂Qm
(Eσ)]

⊇ σ[∂Q0(Eσ)]σ[∂Q1(Eσ) \ ∂Q0(Eσ)] · · ·σ[∂Qm
(Eσ) \ ∂Qm−1(Eσ)]

Observe that ∂Qj
(Eσ) \ ∂Qj−1

(Eσ) is the same as ∂pj
(Eσ) \ ∂Qj−1

(Eσ). Thus,
we can rewrite the expression above as

[σ]∼ = σ[∂Qm
(Eσ)]

⊇ σ[∅]σ[∂p1(Eσ) \ ∂Q0(Eσ)] · · ·σ[∂pm
(Eσ) \ ∂Qm−1(Eσ)]

(♦)

Let us examine (♦) more closely. For each i ∈ [1..m], let wi be a linearization
of the partial computation ∂pi

(Eσ) \ ∂Qi−1
(Eσ). The expression (♦) then tells

us that σ ∼ w1w2 . . . wm.

Recall that different linearizations of a partial computation may give rise to
different transition functions. However, (♦) tells us that we need not keep
track of all linearizations of the partial computations ∂pi

(Eσ) \ ∂Qi−1
(Eσ).

16

Suppose that each process pi, i ∈ [1..m], locally computes the function fwi
cor-

responding to any one linearization wi of the partial computation {∂pi
(Eσ) \

∂Qi−1
(Eσ)}. Then, from the global state at the end of the run, we can re-

construct fσ by composing fwm
◦ fwm−1 ◦ · · · ◦ fw1 to get fw1w2...wm

= fσ. We
can thus mark a global state as accepting if the composite function fσ that it
generates is such that fσ(sin) ∈ F .

In order to achieve this, each process pj must inductively maintain information
about the partial computation ∂pj

(Eσ) \ ∂Qj−1
(Eσ). This partial computation

represents the portion of σ that pj has seen but the processes in Qj−1 have
not seen. This is a special case of what we call a residue.

Residues Let σ be proper, I ⊆ Eσ an ideal and p ∈ P a process. R(σ, p, I)
denotes the set ∂p(Eσ) \ I and is called the residue of σ at p with respect to
I. Observe that any residue of the form R(σ, p, I) can equivalently be written
R(σ, p, ∂p(Eσ) ∩ I). Notice that a residue can be thought of as the induced
labelled partial order defined by the events that it contains.

A residue of R(σ, p, I) is a process residue if R(σ, p, I) = R(σ, p, ∂P (Eσ)) for
some P ⊆ P. We say that R(σ, p, ∂P (Eσ)) is the P -residue of σ at p.

Note that ∂pj
(Eσ) \ ∂Qj−1

(Eσ) is a process residue. The expression (♦) seems
to suggest that each process should try and maintain information about lin-
earizations of process residues locally. Unfortunately, a process residue at p
may change due to an action of another process. For instance, if the word σ
is extended by an action a = q?p, it is clear that R(σ, p, ∂q(Eσ)) will not be
the same as R(σa, p, ∂q(Eσa)) since q will get to know about more events from
∂p(σ) after receiving the message via the action a. On the other hand, since
p does not move on an action of the form q?p, p has no chance to update its
q-residue when the action q?p occurs.

Returning to the MSC in Figure 4, consider the proper word σ = p!q p!r r?p r!q
q?r q!p p?q p!q q?p corresponding to the (partial) linearization e1e2e3e4e5e6e7e8e9.
Let I denote the ideal corresponding to σ. Let J be the ideal {e1, e2, e3, e4, e5}.
The residue R(σ, p, J) = {e6, e7, e8}. This is not a process residue. The q-
residue of σ at p, R(σ, q, ∂q(I)), is given by {e7, e8}. The r-residue of σ at p,
R(σ, p, ∂r(I)), is given by {e5, e6, e7, e8}. However if we extend σ to σ′ = σ r?p
generating the ideal I ′ = I ∪ {e10}, we find that R(σ′, p, ∂r(I

′)) = ∅.

To get around this problem, each process will have to maintain residues in
terms of local information that changes only when it moves. This information
is called the primary information of a process. Maintaining and updating
primary information requires a bounded time-stamping protocol, described in
[27]. We now summarize the essential aspects of this protocol and then describe
how to use it to fix the problem of maintaining process residues locally.

17

3.2 Bounded time-stamps

Recall that for a complete word σ, sm(σ) = (Eσ,≤, λ) is the associated partial
order defined on page 8. The map σ can be extended in a natural way to words
that are proper but not complete. For such a proper word σ, the structure
(Eσ,≤, λ) corresponds to an “incomplete” MSC in which some messages that
have been sent have not yet been received. In fact, the resulting structure will
be an ideal. In this sense, the correspondence between MSCs and complete
words expressed by the maps sm and ms extends to a correspondence between
ideals and proper words.

For the rest of this section, for any proper word σ, we implicitly use Eσ to
denote the set of events associated with sm(σ).

Latest information Let I ⊆ Eσ be an ideal and p, q ∈ P. Then latest(I)
denotes the set of events {maxp(I) | p ∈ P}. For p ∈ P, we let latestp(I) denote
the set latest(∂p(I)). A typical event in latestp(I) is of the form maxq(∂p(I))
and denotes the ≤-maximum q-event in ∂p(I). This is the latest q-event in I
that p knows about. For convenience, we denote this event latest p←q(I). (If
there is no q-event in ∂p(I), the quantity latest p←q(I) is undefined.)

It is clear that for q 6= p, latest p←q(I) will always correspond to a send ac-
tion from Σq. However latest p←q(I) need not be of the form q!p; the latest
information that p has about q in I may have been obtained indirectly.

Message acknowledgments Let I ⊆ Eσ be an ideal and e ∈ I an event
of the form p!q. Then, e is said to have been acknowledged in I if the corre-
sponding receive event f such that e <pq f belongs to ∂p(I). Otherwise, e is
said to be unacknowledged in I.

Notice that it is not enough for a message to have been received in I to deem
it to be acknowledged. We demand that the event corresponding to the receipt
of the message be “visible” to the sending process.

For an ideal I and a pair of processes p, q, let unack p→q(I) be the set of
unacknowledged p!q events in I. The following proposition characterizes B-
boundedness via the number of unacknowledged messages:

Consider the MSC in Figure 4. Let I be the ideal {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}.
Then, latestp←q(I) = e6. Notice that latest q←p(I) = e2. This information about
p comes to q via r and is more current than the direct message from p to q
sent at e1 that arrives at e9.

In I, the message sent by p at e2 is acknowledged (at e7) while the message

18

sent by p at e1 is belongs to unack p→q(I), though it has been received by q at
e9 within I.

Proposition 3.7 Let σ ∈ Σ∗ be proper and let sm(σ) = (Eσ,≤, λ). Then σ is
B-bounded, for B ∈ N, if and only if, for every pair of processes p, q and for
every ideal I ⊆ Eσ, unack p→q(I) contains at most B events.

During the course of a B-bounded computation, none of the message buffers
ever contains more than B undelivered messages, regardless of how the events
are sequentialized. Thus, if each component Ap of a message-passing automa-
ton is able to keep track of the sets {unack p→q(Eσ)}q∈P for each word σ, this
information can be used to inhibit sending messages along channels that are
potentially saturated and thus enforce B-boundedness. This would provide
a mechanism for constraining an arbitrary message-passing automaton to be
B-bounded.

Primary information Let I ⊆ Eσ be an ideal. The primary information of
I, primary(I), consists of the following events in I:

• The set latest(I) = {maxp(I) | p ∈ P}.
• The collection of sets unack(I) = {unack p→q(I) | p, q ∈ P}.

For p ∈ P, we denote primary(∂p(I)) by primaryp(I). Thus, primaryp(I)
reflects the primary information of p in I. Observe that for B-bounded com-
putations, the number of events in primary(I) is bounded.

In [27], a protocol is presented for processes to keep track of their primary infor-
mation during the course of an arbitrary computation. This protocol involves
appending a bounded amount of information to each message in the underly-
ing computation, provided the computation is B-bounded. To ensure that the
message overhead is bounded, the processes use a distributed time-stamping
mechanism that consistently assigns “names” to events using a bounded set
of labels.

Consistent time-stamping Let Γ be a finite set of labels. For a proper
communication sequence σ, we say that τ : Eσ → Γ is a consistent time-
stamping of Eσ by Γ if for each pair of (not necessarily distinct) processes p, q
and for each ideal I the following holds: if ep ∈ primaryp(I), eq ∈ primaryq(I)
and τ(ep) = τ(eq) then ep = eq.

In the MSC shown in Figure 4, let I denote the entire collection of events
{e1, e2, . . . , e12}. Here, primaryp(I) = {e8, e6, e4}, primaryq(I) = {e8, e12, e11}
and primaryr(I) = {e8, e6, e11}. Thus, a consistent time-stamping is one that
uses distinct labels for the events {e6, e8, e11} that span the primary infor-
mation of more than one process in I. Normally, a consistent time-stamping

19

would actually use distinct labels for all events that constitute primary infor-
mation, namely {e4, e6, e8, e11, e12}. Since {e1, e2} are both send events that
do not appear in the primary information of any process, a consistent time-
stamping may assign both these events the same label as each other or, indeed,
the same label as a third event.

In the protocol of [27], whenever a process p sends a message to q, it first
assigns a time-stamp to the new message from a finite set of labels. Process p
then appends its primary information to the message being sent. Notice that
the current send event will form part of the primary information since it is
the latest p-event in ∂p(Eσ). When q receives the message, it can consistently
update its primary information to reflect the new information received from
p.

The two tricky points in the protocol are for p to decide when it is safe to
reuse a time-stamp, and for q to decide whether the information received from
p is really new. In order to solve these problems, the protocol of [27] requires
processes to also maintain additional time-stamps, corresponding to secondary
information. Though we do not need the details of how the protocol works,
we will need to refer to secondary information in the proof of our theorem.

Secondary information Let I be an ideal. The secondary information of
I is the collection of sets primary(↓e) for each event e in primary(I). This
collection of sets is denoted secondary(I). As usual, for p ∈ P, secondary p(I)
denotes the set secondary(∂p(I)).

In the MSC shown in Figure 4, let I denote the entire collection of events
{e1, e2, . . . , e12}. Since primaryp(I) = {e8, e6, e4}, secondaryp(I) = primary(↓e8)∪
primary(↓e6) ∪ primary(↓e4) = {e8, e6, e4} ∪ {e2, e6, e4} ∪ {e2, e4}.

In our framework, the protocol of [27] can now be described as follows.

Theorem 3.8 For any B ∈ N, we can fix a set Γ of labels of size O(B×|P|2)
and construct a deterministic B-bounded message-passing automaton AB =
({AB

p }p∈P , ∆
B, sB

in, F B) such that for every B-bounded proper communication
sequence σ, AB inductively generates a consistent time-stamping τ : Eσ → Γ.
Moreover, for each component AB

p of AB, the local state of AB
p at the end of

σ records the information primaryp(Eσ) and secondaryp(Eσ) in terms of the
time-stamps assigned by τ .

Actually, we need a more general version of this result, corresponding to main-
taining consistent timestamps upto an arbitrary depth.

k-ary information Let I be an ideal. The k-ary information of I, k-ary(I)

20

is inductively defined as follows:

• 1-ary(I) = primary(I).
• For k > 1, k-ary(I) is the collection of sets primary(↓e) for each event e in

(k−1)-ary(I).

As usual, for p ∈ P, k-aryp(I) denotes the set k-ary(∂p(I)).

We can now extend the notion of a consistent time-stamping to arbitrary
levels.

k-consistent time-stamping Let Γ be a finite set of labels and k ∈ N. For
a proper communication sequence σ, we say that τ : Eσ → Γ is a k-consistent
time-stamping of Eσ by Γ if for each pair of (not necessarily distinct) processes
p, q and for each ideal I the following holds: if ep ∈ k-aryp(I), eq ∈ k-aryq(I)
and τ(ep) = τ(eq) then ep = eq.

In the MSC shown in Figure 4, let I denote the entire collection of events
{e1, e2, . . . , e12}. The event e2 is not a primary event but does lie within
secondaryp(I). Thus, a 2-consistent time-stamping would have to assign a
distinct label to e2, whereas a 1-consistent time-stamping can safely reuse the
label assigned to e2 within I.

The generalized version of Theorem 3.8 that we need is the following.

Theorem 3.9 For any B, k ∈ N, we can fix a set Γ of labels of size O(B ×
|P|k+1) and construct a deterministic B-bounded message-passing automaton
AB = ({AB

p }p∈P , ∆
B, sB

in, F B) such that for every B-bounded proper commu-
nication sequence σ, AB inductively generates a k-consistent time-stamping
τ : Eσ → Γ. Moreover, for each component AB

p of AB, the local state of AB
p at

the end of σ records the information k-aryp(Eσ) in terms of the time-stamps
assigned by τ .

3.3 Process and primary residues

With this background on primary information, we return to our problem of
keeping track of residues. Recall that for a proper word σ, an ideal I ⊆ Eσ

and a process p, the residue R(σ, p, I) denotes the set ∂p(Eσ) \ I. A residue
R(σ, p, I) is a process residue for P ⊆ P if I = ∂P (Eσ). The goal is to maintain
information about process residues locally at each process p, but the problem
is that these residues may change even when p does not move, thereby making
it impossible for p to directly represent this information.

However, it turns out that each process can maintain a set of residues based on

21

its primary information such that these primary residues subsume the process
residues. The key technical fact that makes this possible is the following.

Lemma 3.10 For any non-empty ideal I, and p, q ∈ P, the maximal events
in ∂p(I) ∩ ∂q(I) lie in primaryp(I) ∩ primaryq(I).

Proof: We show that for each maximal event e in ∂p(I) ∩ ∂q(I), either e ∈
latest(∂p(I)) ∩ unack(∂q(I)) or e ∈ unack(∂p(I)) ∩ latest(∂q(I)).

First suppose that ∂p(I)\∂q(I) and ∂q(I)\∂p(I) are both nonempty. Let e be a
maximal event in ∂p(I)∩∂q(I). Suppose e is an r-event, for some r ∈ P. Since
∂p(I) \ ∂q(I) and ∂q(I) \ ∂p(I) are both nonempty, it follows that r /∈ {p, q}.
The event e must have ≤-successors in both ∂p(I) and ∂q(I). However, observe
that any event f can have at most two immediate ≤-successors—one “internal”
successor within the process and, if f is a send event, one “external” successor
corresponding to the matching receive event.

Thus, the maximal event e must be a send event, with a <rr successor er

and a <rs successor es, corresponding to some s ∈ P. Assume that er ∈
∂q(I) \ ∂p(I) and es ∈ ∂p(I) \ ∂q(I). Since the r-successor of e is outside ∂p(I),
e = maxr(∂p(I)). So e belongs to latest(∂p(I)). On the other hand, e is an
unacknowledged r!s-event in ∂q(I). Thus, e ∈ unack r→s(∂q(I)), which is part
of unack(∂q(I)).

Symmetrically, if er ∈ ∂p(I) \ ∂q(I) and es ∈ ∂q(I) \ ∂p(I), we find that e
belongs to unack(∂p(I)) ∩ latest(∂q(I)).

We still have to consider the case when ∂p(I) ⊆ ∂q(I) or ∂q(I) ⊆ ∂p(I). Suppose
that ∂p(I) ⊆ ∂q(I), so that ∂p(I)∩∂q(I) = ∂p(I). Let e = maxp(∂q(I)). Clearly,
∂p(I) = ↓e and the only maximal event in ∂p(I) is the p-event e. Since e has a
successor in ∂q(I), e must be a send event and is hence in unack(∂p(I)). Thus,
e ∈ unack(∂p(I)) ∩ latest(∂q(I)). Symmetrically, if ∂q(I) ⊆ ∂p(I), the unique
maximal event e in ∂q(I) belongs to latest(∂p(I)) ∩ unack(∂q(I)). 2

Let us call R(σ, p, I) a primary residue if I is of the form ↓X for some
subset X ⊆ primaryp(Eσ). Clearly, for p, q ∈ P, R(σ, p, ∂q(Eσ)), can be
rewritten as R(σ, p, ∂p(Eσ) ∩ ∂q(Eσ)). From Lemma 3.10 it follows that the
q-residue R(σ, p, ∂q(Eσ)) is a primary residue R(σ, p, ↓X) for some X ⊆
primary(∂p(Eσ)). Further, from the Lemma we know that the set X can be
effectively computed from the primary information of p and q. In fact, it turns
out that all process residues can be effectively described in terms of primary
residues.

We begin with a simple observation, whose proof we omit.

22

Proposition 3.11 Let σ ∈ Σ∗ be proper and p ∈ P. For ideals I, J ⊆
Eσ, let R(σ, p, I) and R(σ, p, J) be primary residues such that R(σ, p, I) =
R(σ, p, ↓XI) and R(σ, p, J) = R(σ, p, ↓XJ) for XI, XJ ⊆ primaryp(Eσ). Then
R(σ, p, I∪J) is also a primary residue and R(σ, p, I∪J) = R(σ, p, ↓(XI ∪ XJ)).

Our claim that all process residues can be effectively described in terms of
primary residues can then be formulated as follows.

Lemma 3.12 Let σ ∈ Σ∗ be proper, p ∈ P and Q ⊆ P. Then R(σ, p, ∂Q(Eσ))
is a primary residue R(σ, p, ↓X) for p. Further, the set X ⊆ primaryp(Eσ)
can be effectively computed from the information in

⋃
q∈{p}∪Q primaryq(Eσ).

Proof: Let Q = {q1, q2, . . . , qk}. We can rewrite R(σ, p, ∂Q(Eσ)) as
R(σ, p,

⋃
i∈[1..k] ∂qi

(Eσ)). From Lemma 3.10 it follows that for each i ∈ {1, 2, . . . , k},
p can compute a set Xi ⊆ primaryp(Eσ) from the information in primaryp(Eσ)∪
primaryqi

(Eσ) such that R(σ, p, ∂qi
(Eσ)) = R(σ, p, ↓Xi). From Proposition 3.11,

it then follows that R(σ, p, ∂Q(Eσ)) = R(σ, p,
⋃

i∈{1,2,...,k} ∂qi
(Eσ)) = R(σ, p, ↓X)

where X =
⋃

i∈{1,2,...,k}Xi. 2

3.4 Updating residues

Our strategy for constructing a message passing automaton for the regular
MSC language L is to inductively have each process p maintain for each pri-
mary residue of the current input σ, the function fw for some linearization
w of the residue. Then, using the expression (♦), the processes can jointly
compute fσ for the entire input σ.

Initially, at the empty word σ = ε, every primary residue from
{R(σ, p, ↓X)}p∈P ,X⊆primary(∂p(Eσ)) is just the empty word ε. So, all primary
residues are represented by the identity function Id : {s 7→ s}.

Let σ ∈ Σ∗ be a proper word and let a ∈ Σ. Assume inductively that at the end
of σ, for each p ∈ P and for every primary residue R(σ, p, ↓X) corresponding
to X ⊆ primary(∂p(Eσ)), p has inductively computed fw for some linearization
w of R(σ, p, ↓X). We show how to update these functions for each process p
after extending the computation from σ to σa.

Suppose a is of the form p!q and X ⊆ primaryp(Eσa). Let ea denote the event
corresponding to the new action a. If ea ∈ X, then R(σa, p, ↓X) = ε, so
we represent the residue by the identity function Id . On the other hand, if
ea /∈ X, then X ⊆ primaryp(Eσ), so we already have a function fw corre-
sponding to some linearization w of the residue R(σ, p, X). Since, every event

23

in R(σ, p, X) is causally below the final a-event in sm(σa), wa is a linearization
of R(σa, p, ↓X). Thus, we can extend fw to fwa = fa ◦ fw.

For r 6= p, the primary residues are unchanged when going from σ to σa. We
can thus extend the function fw corresponding to the residue R(σa, p, ↓X) to
fwa = fa ◦ fw.

The case where a is of the form p?q is more interesting. As before, the primary
residues are unchanged for r 6= p. We show how to calculate all the new
primary residues for p using the information obtained from q. This will use
the following result.

Lemma 3.13 Let σ ∈ Σ∗ be proper. Let p, q ∈ P and e ∈ Eσ such that
e ∈ primaryq(Eσ) but e /∈ ∂p(Eσ). Then R(σ, p, ↓e) is a primary residue
R(σ, p, ↓X) for p. Further, the set X ⊆ primaryp(Eσ) can be effectively com-
puted from the information in primaryp(Eσ) and secondaryq(Eσ).

Proof: Let e be an r-event, r ∈ P and let J = ∂p(Eσ)∪ ↓e. By construction,
maxp(J) = maxp(Eσ). On the other hand, maxr(J) = e, since e is an r-event
and we assumed that e /∈ ∂p(Eσ).

By Lemma 3.10, the maximal events in ∂p(J) ∩ ∂r(J) lie in primaryp(J) ∩
primaryr(J). Since maxp(J) = maxp(Eσ), primaryp(J) = primaryp(Eσ). On
the other hand, primary r(J) = primary(↓e), which is a subset of secondary q(Eσ),
since e ∈ primaryq(Eσ).

Thus, the set of maximal events in ∂p(J)∩∂r(J), which is the same as ∂p(Eσ)∩
↓e, is contained in primaryp(Eσ) ∩ primary(↓e). These events are available in
primaryp(Eσ) ∪ secondaryq(Eσ). 2

Suppose that X = {x1, x2, . . . , xk} ⊆ primaryp(Eua).

We first argue that for each xi ∈ X, R(σ, p, ↓xi) is a primary residue R(σ, p, ↓Yi),
where Yi ⊆ primaryp(Eσ). If xi ∈ primaryp(Eσ), then R(σ, p, ↓xi) is already
a primary residue, so we can set Yi = {xi}. If, however, xi /∈ primaryp(Eσ),
then xi must have been contributed from primaryq(σ) through the message
received at the action a. We have xi ∈ primaryq(Eσ) but xi /∈ ∂p(Eσ). Thus,
appealing to Lemma 3.13, we can identify Yi ⊆ primaryp(Eσ) such that
R(σ, p, ↓{xi}) = R(σ, p, ↓Yi).

Since X =
⋃

i∈{1,2,...,k} xi, we can appeal to Proposition 3.11 to argue that
R(σ, p, ↓X) is the primary residue R(σ, p, ↓Y) where Y =

⋃
i∈{1,2,...,k} Yi. We

can then set

24

R(σa, p, ↓X) = R(σ, p, ↓Y) ∪R(σ, q, ∂p(Eσ) ∪ ↓Xq) ∪ {ea}

where Xq is X ∩primaryq(Eσ). Inductively, p maintains fw for some lineariza-
tion w of R(σ, p, ↓Y) and q communicates fw′ for some linearization w′ of
R(σ, q, ∂p(Eσ) ∪ ↓Xq) in the current message to p. By construction, no event
in R(σ, p, ↓Y) can be above any event in R(σ, q, ∂p(Eσ)∪↓Xq) and both these
sets of events lie below ea. Thus, w◦w′◦a is a valid linearization of R(σa, p, ↓X)
and p can compute the function fww′a = fa ◦ fw′ ◦ fw from the information
available to it after σ.

Thus, when each action is performed, the process performing the action can
effectively update the functions corresponding to the linearizations of its pri-
mary residues using the primary and secondary information available to it.

3.5 A deterministic message-passing automaton for L

Let L be a regular MSC language and let B be the bound derived form the
minimum DFA AL for L as described earlier. We now construct a B-bounded
message-passing automaton A = ({Ap}p∈P , ∆, sin, F) for L.

Recall that AB = ({AB
p }p∈P , ∆

B, sB
in, F

B) is the time-stamping automaton
for B-bounded computations, where the state of each component records the
primary and secondary information of the component in terms of a consistent
set of time-stamps.

• The message alphabet of A is the alphabet ∆B used by the time-stamping
automaton AB.

• In A, a typical state of a component Ap is a pair (sB, sR) where sB is a
state drawn from AB

p and sR is the collection {fwX
: S → S}X⊆primaryp(Eσ)

of functions corresponding to one linearization wX for each primary residue
X of Ap at the end of a word σ.

• The local transition relation −→p of each component Ap is as follows:
· For a of the form p!q, the tuple ((sB, sR), a, m, (s′B, s′R)) ∈ −→p provided

(sB, a, m, s′B) ∈ −→B
p and the functions in s′R are derived from the func-

tions in sR using the time-stamping information in sB, as described in
Section 3.4.

Moreover, according to the primary information in sB, it should be the
case that |unackp→q(Eσ)| < B for the word σ read so far.

· For a of the form p?q, the tuple ((sB, sR), a, m, (s′B, s′R)) ∈ −→p provided
(sB, a, m, s′B) ∈ −→B

p and the functions in s′R are derived from the func-
tions in sR using the time-stamping information in sB and the message
m, as described in Section 3.4.

25

• In the initial state of A, the local state of each component Ap is of the form
(sp

B,in, sp
R,in) where sp

B,in is the initial state of AB
p and sp

R,in records each
function to be the identity function Id .

• The global state {(sp
B, sp

R)}p∈P belongs to the set F of final states if the func-
tions stored in the global state record that δ(sin, σ) ∈ F for the word σ read
so far. (This is achieved by evaluating the expression (♦) in Section 3.1.)

From the analysis of the previous section, it is clear that A accepts precisely
the language L. The last clause in the transition relation −→p for send actions
ensures that A will not admit a run in which unack p→q(Eσ) grows beyond B
events for any input σ and any pair of processes p, q. This ensures that every
reachable configuration of A is B-bounded. Finally, we observe that A is
deterministic because the time-stamping automaton AB is deterministic and
the update procedure for residues described in Section 3.4 is also deterministic.
Thus, we have established the following:

Lemma 3.14 Let L ⊆ Σ∗ be a B-bounded regular MSC language. Then there
exists a B-bounded message-passing automaton A over Σ such that L(A) = L.

The main result of this section, stated in the following theorem, is an easy
consequence of the preceding Lemma combined with Proposition 3.2.

Theorem 3.15 Let L ⊆ Σ∗. Then L is a regular MSC language if and only if
there exists a bounded message-passing automaton A over Σ such that L(A) =
L.

We conclude by providing an upper bound for the size of A,

Proposition 3.16 Let n be the number of processes in the system, m be the
number of states of the minimum DFA AL for L and B the bound computed
from the channel-capacity functions of AL. Then, the number of local states

of each component Ap is at most 2(2O(Bn2)m log m).

Proof: Each process p has to maintain one function from S → S for each
subset of its primary events. The number of distinct primary events is bounded
by O(Bn2)—for any ideal I, there are at most O(n) events in latest p(I) and
O(Bn2) events in unackp(I). Thus, p has to maintain at most 2O(Bn2) functions
from S → S. Since each function from S → S can be written down using
m log m bits, the entire state of p can be described using 2O(Bn2)m log m bits,
whence the result follows. 2

26

4 A Logical Characterization

We formulate a monadic second-order logic that characterizes regular B-
bounded MSC languages for each fixed B ∈ N. Thus, our logic will be pa-
rameterized by a pair (P, B). For convenience, we fix B ∈ N through the rest
of the section. As usual, we assume a supply of individual variables x, y, . . .,
a supply of set variables X, Y, . . ., and a family of unary predicate symbols
{Qa}a∈Σ. The syntax of the logic is then given by:

MSO(P, B) ::= Qa(x) | x ∈ X | x ≤ y | ¬ϕ | ϕ1 ∨ ϕ2 | (∃x)ϕ | (∃X)ϕ.

Thus, the syntax does not reflect any information about the bound B or the
structural features of an MSC. These aspects will be dealt with in the seman-
tics. Let M(P, B) be the set of B-bounded MSCs over P. The formulas of our
logic are interpreted over the members of M(P, B). Let M = (E,≤, λ) be an
MSC in M(P, B) and I be an interpretation that assigns to each individual
variable x a member I(x) in E and to each set variable X a subset I(X) of E.
Then M |=I ϕ denotes that M satisfies ϕ under I. This notion is defined in
the expected manner—for instance, M |=I Qa(x) if λ(I(x)) = a, M |=I x ≤ y
if I(x) ≤ I(y) etc. For convenience, we have used ≤ to denote both the predi-
cate symbol in the logic and the corresponding causality relation in the model
M .

As usual, ϕ is a sentence if there are no free occurrences of individual or
set variables in ϕ. With each sentence ϕ we can associate an MSC language

Lϕ
def
= {M ∈ M(P, B) | M |= ϕ}. We say that L ⊆ M(P, B) is MSO(P, B)-

definable if there exists a sentence ϕ such that Lϕ = L. For convenience, we
often use “definable” to mean “MSO(P, B)-definable”. We wish to argue that
L ⊆ M(P, B) is definable iff it is a B-bounded regular MSC language. It
turns out that the techniques used for proving a similar result in the theory
of traces [12] can be suitably modified to derive our result.

Lemma 4.1 Let ϕ be a sentence in MSO(P, B). Then Lϕ is a B-bounded
regular MSC language.

Proof Sketch: The fact that Lϕ is B-bounded follows from the semantics
and hence we just need to establish regularity. Consider MSO(Σ), the monadic
second-order theory of finite strings in Σ∗. This logic has the same syntax as
MSO(P, B) except that, to avoid confusion, we will use the predicate symbol
� instead of ≤ and interpret � as the usual ordering relation over the positions
of a structure in Σ∗. Let L = lin(Lϕ). We exhibit a sentence ϕ̂ in MSO(Σ) such
that L = {σ | σ |= ϕ̂}. The required conclusion will then follow from Büchi’s
theorem [8]. Let {K0,K1, . . . ,Kn} be the set {K ∈ NCh | ∀c ∈ Ch. K(c) ≤ B}.
Without loss of generality, assume that K0(c) = 0 for every c ∈ Ch. For K ∈

27

NCh and c ∈ Ch, let K++c to be the member of NCh where K++c(c) = K(c)+1
and K++c(d) = K(d) for all d 6= c. Similarly, for K ∈ NCh and c ∈ Ch such
that K(c) > 0, K−−c is given by K−−c(c) = K(c) − 1 and K−−c(d) = K(d) for
all d 6= c.

The required sentence ϕ̂ will be of the form:

(∃XK0)(∃XK1) · · · (∃XKn
)(COMP ∧ B-BOUNDED ∧ ||ϕ||)

where COMP , B-BOUNDED, and ||ϕ|| are defined as follows. We provide
these definitions in textual form to enhance readability. They can be easily
converted to formulas in MSO(Σ).

First we define COMP to be the conjunction of the following formulas.

(1) Every position x belongs to exactly one of the sets in {XK0, . . . , XKn
}.

(2) If x is the first position then x ∈ XK0.
(3) If x is the last position then Qq?p(x) for some c = (p, q). Moreover x

belongs to XKm
such that Km(c) = 1 and Km(d) = 0 for d 6= c.

(4) If y is the successor of x, Qp!q(x), x ∈ XKi
and y ∈ XKj

, then Kj = K++c
i ,

where c = (p, q).
(5) If y is the successor of x, Qq?p(x), x ∈ XKi

and y ∈ XKj
, then Ki(c) > 0

and Kj = K−−c
i , where c = (p, q).

The formula ||ϕ|| is given inductively as follows:

• ||Qa(x)||
def
= Qa(x).

• ||x ∈ X||
def
= x ∈ X.

• ||¬ϕ′||
def
= ¬||ϕ′||.

• ||ϕ1 ∨ ϕ2||
def
= ||ϕ1|| ∨ ||ϕ2||.

• ||(∃x)ϕ′||
def
= (∃x)||ϕ′||.

• ||(∃X)ϕ′||
def
= (∃X)||ϕ′||.

• Finally, ||x ≤ y||
def
= x v y where we shall first define v in terms of @·

and then define @·. This translation is based on the fact that in an MSC
M = (E,≤, λ), ≤ = (

⋃
p,q∈P <pq ∪

⋃
p∈P ≤pp)

∗.

The formula x v y asserts existence of non-empty subsets {p1, p2, . . . , pm} of
processes and {x1, y1, x2, y2, . . . , xm, ym} of positions such that x = x1 and
ym = y. Further, xi � yi and xi and yi are both in Σpi

for 1 ≤ i ≤ m. In
addition, yi @· xi+1 for 1 ≤ i < m.

The predicate x @· y is given by: x ≺ y and there is a channel c = (p, q)
such that Qp!q(x) and Qq?p(y). Further, if x ∈ XKm

then there are exactly
Km(c) occurrences of the symbol q?p between the positions x and y (and not
including y).

28

The formula B-BOUNDED asserts that the word under consideration is B-
bounded. Proposition 3.7 implies that a word w violates B-boundedness if and
only if there is a q?p-event that is causally independent of (i.e. incomparable
under v from) at least (B + 1) p!q-events. This can be easily stated in MSO.

It is now straightforward to show that ϕ̂ has the required property.

2

Lemma 4.2 Let L ⊆ M(P, B) be a regular MSC language. Then L is defin-
able in MSO(P, B).

Let L = lin(L). Then L is a regular (string) MSC language over Σ. Hence
by Büchi’s theorem [8] there exists a sentence ϕ in MSO(Σ) such that L =
{σ | σ |= ϕ}. An important property of ϕ is that one linearization of an
MSC satisfies ϕ iff all linearizations of the MSC satisfy ϕ. We then define
the sentence ϕ̂ = ||ϕ|| in MSO(P, B) inductively such that the language of
MSCs defined by ϕ̂ is precisely L. The key idea here is to define a canonical
linearization of MSCs and show that the underlying linear order is expressible
in MSO(P, B). As a result, we can look for a formula ϕ̂ that will say “along
the canonical linearization of an MSC, the sentence ϕ is satisfied”. We present
below the main ideas and constructions involved in arriving at ϕ̂.

Throughout what follows, we fix a strict linear order ≺ ⊆ Σ×Σ. Consider an
MSC M = (E,≤, λ). For e ∈ E, let ↑e = {e′ | e ≤ e′}. For events e, e′ ∈ E,
we define e co e′ if e 6≤ e′ and e′ 6≤ e. For X ⊆ E, let λ(X) = {λ(e) | e ∈ X}.
Next, suppose that ∅ 6= Σ′ ⊆ Σ. Then min(Σ′) is the least element of Σ′ under
≺. Finally, suppose e, e′ ∈ E with e co e′. Then Σee′ = λ(↑e \ ↑e′).

Let M = (E,≤, λ) be an MSC. Then the ordering relation ≺ induces the
ordering relation ≺M ⊆ E × E given by e ≺M e′ if e < e′ or (e co e′ and
min(Σee′) ≺ min(Σe′e)).

Claim 4.3 Let M = (E,≤, λ) be an MSC. Then (E,≺M) is a strict linear
order and ≺M is a linearization of ≤.

Proof: Same as the proof of [34, Lemma 15], which asserts an identical result
in the setting of (infinite) Mazurkiewicz traces. 2

We next exhibit a formula in MSO(P, B) (for any B ∈ N) that captures
the relation ≺M for each B-bounded MSC M . First we define the formula

29

min(z1, z2, a) where z1 and z2 are individual variables and a ∈ Σ via:

min(z1, z2, a) = (∃z)[z1 ≤ z ∧ ¬(z2 ≤ z) ∧ Qa(z)∧

(∀z′) ((z1 ≤ z′ ∧ ¬(z2 ≤ z′)) ⇒ Qa(z
′) ∨

∨
a≺a′ Qa′(z′))]

The formula Lex(x, y) is now given by:

Lex(x, y) = (x < y) ∨

co(x, y) ∧

∨

a≺b

min(x, y, a) ∧ min(y, x, b)

where co(x, y) is an abbreviation for ¬(x ≤ y) ∧ ¬(y ≤ x).

Turning now to the proof of Lemma 4.2, let L = lin(L). Then L is a regular
(string) MSC language over Σ. Hence by Büchi’s theorem [8] there exists a
sentence ϕ in MSO(Σ) such that L = {σ | σ |= ϕ}. We now define the formula
ϕ̂ = ||ϕ|| in MSO(P, B) inductively as follows:

||Qa(x)|| = Qa(x) and ||x � y|| = (x ≤ y ∧ y ≤ x) ∨ Lex(x, y)

The remaining clauses are the natural ones. It is now straightforward to verify
that Lϕ̂ = L. The key step in the proof is to show the following: Suppose
M ∈ M(P, B) and σ is the linearization of M dictated by ≺M . Then M is a
model of ϕ̂ iff σ is a model of ϕ. This follows easily by structural induction on
ϕ. The required conclusion can now be derived by exploiting the fact that L
is ∼-closed.

Since MSO(Σ) is decidable, it follows that MSO(P, B) is decidable as well.
We can now summarize the results characterizing regularity as follows.

Theorem 4.4 Let L ⊆ Σ∗, where Σ is the communication alphabet associated
with a set P of processes. Then, the following are equivalent.

(i) L is a regular MSC language.
(ii) L is a B-bounded regular MSC language, for some B ∈ N.
(iii) There exists a bounded message-passing automaton A such that L(A) =

L.
(iv) L is MSO(P, B)-definable, for some B ∈ N.

5 Message Sequence Graphs

The standard method to describe multiple communication scenarios is to gen-
erate collections of MSCs by means of Hierarchical Message Sequence Charts
(HMSCs). As described in the introduction, to analyze HMSCs, it suffices to

30

(p)
_

(q)
_

(r)
_

(s)
_

• //• • //•

• •oo • •oo

M1 M2

GFED@ABCM1
++

=⇒ GFED@ABC?>=<89:;M2kk

Fig. 5. An example MSG.

flatten them out to obtain Message Sequence Graphs (MSGs). As a conse-
quence, henceforth we concentrate on MSGs rather than HMSCs.

An MSG allows the protocol designer to write a finite specification that com-
bines MSCs using basic operations such as branching choice, composition and
iteration. Such MSGs are finite directed graphs with designated initial and
terminal vertices. Each vertex in an MSG is labelled by an MSC. The edges
represent the natural operation of MSC concatenation. The collection of MSCs
represented by an MSG consists of all those MSCs obtained by tracing a path
in the MSG from an initial vertex to a terminal vertex and concatenating the
MSCs that are encountered along the path.

Formally, the (asynchronous) concatenation of MSCs is defined as follows. Let
M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs such that E1

and E2 are disjoint. The (asynchronous) concatenation of M1 and M2 yields
the MSC M1 ◦ M2 = (E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if e ∈ Ei,
i ∈ {1, 2}, and ≤ = (

⋃
p,q∈P <pq)

∗, where <pp=<1
pp ∪ <2

pp ∪{(e1, e2) | e1 ∈
E1, e2 ∈ E2, λ(e1) ∈ Σp, λ(e2) ∈ Σp} and for (p, q) ∈ Ch, <pq=<1

pq ∪ <2
pq.

We can now formally define MSGs. A Message Sequence Graph (MSG) is a
structure G = (Q,−→, Qin, F, Φ), where:

• Q is a finite and nonempty set of states.
• −→ ⊆ Q × Q.
• Qin ⊆ Q is a set of initial states.
• F ⊆ Q is a set of final states.
• Φ : Q → M is a (state-)labelling function.

A path π through an MSG G is a sequence q0−→q1−→· · ·−→qn such that

(qi−1, qi) ∈ −→ for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π)
def
=

M0 ◦M1 ◦M2 ◦ · · · ◦Mn, where Mi = Φ(qi). A path π = q0−→q1−→· · ·−→qn

is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) ∈ M | π is a run through G}.

31

p // q p && qgg

r

OO ??�������
r '' sgg

Fig. 6. CGM of Figure 1 (left) and CGM1◦M2 of Figure 5 (right).

An example of an MSG is depicted in Figure 5. It is not hard to see that the
language L defined is not regular. To see this, we note that L projected to
{p!q, r!s}∗ is {σ ∈ {p!q, r!s}∗ | |σ|p!q = |σ|r!s ≥ 1}, which is not a regular string
language. (Recall that regular languages are closed under projections.)

Following [2] we now define the notion of a locally synchronized MSG.

Communication graph For an MSC M = (E,≤, λ), let CGM , the commu-
nication graph of M , be the directed graph (P, 7→) where:

• P is the set of processes of the system.
• (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) = p!q.

M is said to be com-connected if CGM consists of one nontrivial strongly
connected component and isolated vertices. An MSC language L ⊆ M is
com-connected in case each MSC M ∈ L is com-connected.

Locally synchronized MSGs The MSG G is locally synchronized 5 if for
every loop π = q−→q1−→· · ·−→qn−→q, the MSC M(π) is com-connected. In
our terminology, we will say that an MSC language L is a locally synchronized
MSG-language if there exists a locally synchronized MSG G with L = L(G).
Figure 6 illustrates the communication graphs of the example MSCs encoun-
tered thus far. It is easy to see that neither M nor M1◦M2 are com-connected.

Clearly, the MSG of Figure 5 is not locally synchronized. This is no coinci-
dence, as it will turn out that every locally synchronized MSG-language is a
regular MSC language.

6 Finitely Generated Regular MSC Languages

As pointed in the introduction, a standard way of representing a collection of
MSCS is to use an HMSC or—equivalently from a formal standpoint—as an
MSG. Our goal here is to pin down the power of this representation relative to

5 This notion is called “bounded” in [2]. The terminology “locally synchronized” is
taken from [29].

32

the class of regular MSC languages. Stated differently we wish to characterize
the class of regular MSC languages that can be represented by MSGs.

A key feature of MSG languages is that for each such language there is a
fixed finite set X of MSCs such that each MSC in the language can be ex-
pressed as a concatenation of MSCs (with multiple copies) taken from X .
Such languages are said to be finitely generated. In this section we investi-
gate the important connection between MSGs and finitely generated regular
MSC languages. More precisely, we characterize the locally synchronized MSG-
languages as precisely the class of MSC languages that are both regular and
finitely generated.

Let L1,L2 ⊆ M be two sets of MSCs. As usual, L1 ◦L2 denotes the pointwise
concatenation of L1 and L2, as defined out in the previous section. For X ⊆ M,
we define X 0 = {ε}, where ε denotes the empty MSC, and for i ≥ 0, X i+1 =
X ◦ X i. The asynchronous iteration of X is then defined by X

�

=
⋃

i≥0 X
i.

Now, let L ⊆ M. We say that L is finitely generated if there is a finite set of
MSCs X ⊆ M such that L ⊆ X

�

.

We first observe that not every regular MSC language is finitely generated.
As an example, the automaton in Figure 2 accepts a regular language that is
not finitely generated. By inspection of Figure 3 one readily verifies that none
of the MSCs in this language can be expressed as the concatenation of two or
more nontrivial MSCs. Hence, this language is not finitely generated.

Our interest in finitely generated languages stems from the fact that these
arise naturally from standard high-level descriptions of MSC languages such
as message sequence graphs. However, as we saw earlier, Figure 5 provides
an example showing that, conversely, not all finitely generated languages are
regular.

The first question we address is that of deciding whether a regular MSC
language is finitely generated. To do this, we need to introduce atoms. Let
M, M ′ ∈ M be nonempty MSCs. Then M ′ is a component of M in case there
exist M1, M2 ∈ M, possibly empty, such that M = M1◦M

′◦M2. Let Comp(M)
denote the set of components of M and let Comp(L) =

⋃
{Comp(M) | M ∈

L}.

We say that M is an atom if the only component of M is M itself. Thus, an
atom is a nonempty message sequence chart that cannot be decomposed into
non-trivial subcomponents. For an MSC M , we let Atoms(M) denote the set
{M ′ | M ′ is an atom and M ′ is a component of M}. For an MSC language
L ⊆ M, Atoms(L) =

⋃
{Atoms(M) | M ∈ L}. It is clear that the question

of deciding whether L is finitely generated is equivalent to that of checking
whether Atoms(L) is finite.

33

Theorem 6.1 Let L be a regular MSC language. It is decidable whether L is
finitely generated.

Proof Sketch: Let A = (S, Σ, sin, δ, F) be the minimum DFA for L. From A,
we construct a finite family of finite-state automata that together accept the
linearizations of the MSCs in Atoms(L). It will then follow that L is finitely
generated if and only if each of these automata accepts a finite language. We
sketch the details below.

We know that for each live state s ∈ S, we can assign a capacity function
Ks : Ch → N that counts the number of messages present in each channel
when the state s is reached. We say that s is a zero-capacity state if Ks(c) = 0
for each channel c.

Claim 6.2 Let M be an MSC in Comp(L) (in particular, in Atoms(L)) and
w be a linearization of M . Then, there are zero-capacity live states s, s′ in A
such that s

w
−→ s′.

If M is in Comp(L), then there are MSC’s M1, M2 such that M1MM2 ∈ L.
Thus, if w1, w2 are some linearizations of M1 and M2, then w1ww2 is accepted
by A. Thus, there is an accepting run sin

w1−→ s
w

−→ s′
w2−→ t. w1, w2 and w

are complete words as they arise as linearizations of MSCs. Further, sin is a
zero-capacity state and thus s and s′ must be zero-capacity states. This proves
Claim 6.2.

Claim 6.3 Let M be an MSC in Comp(L). M is an atom if and only if for
each linearization w of M and each pair (s, s′) of zero-capacity live states in
A, if s

w
−→ s′ then no intermediate state visited in this run has zero-capacity.

Let M an atom and w be a linearization of M . Suppose w = w1w2 for
nonempty words w1 and w2 and s

w1−→ s1
w2−→ s′, where s1 is a zero-capacity

state. w1 and w2 are nonempty complete words. Recall that every complete
word is the linearization of some MSC. Let M1 and M2 be the MSCs corre-
sponding to w1 and w2. Then, M = M1 ◦ M2 ◦ M3, where M3 is the empty
MSC, contradicting the assumption that M is an atom. Thus, the run can
have no intermediate zero-capacity state.

Suppose M is not an atom. Then M = M1 ◦ M2 ◦ M3 where at least two
of M1, M2, M3 are nonempty. Let w1, w2 and w3 be linearizations of M1, M2

and M3. All three are complete words. Thus, there are states s1, s2 such that
s

w1−→ s1
w2−→ s2

w3−→ s′. Since at least one of these words is nonempty, one of
the states s1 or s2 is a zero-capacity intermediate state. This completes the
proof of Claim 6.3.

Suppose s
w

−→ s′ and w ∼ w′ . Then it is easy to see that s
w′

−→ s′ as

34

well. With each pair (s, s′) of live zero-capacity states we associate a language
LAt(s, s

′). A word w belongs to LAt(s, s
′) if and only if w is complete, s

w
−→ s′

and for each w′ ∼ w the run s
w′

−→ s′ has no zero-capacity intermediate
states. From Claims 6.2 and 6.3 above, each of these languages consists of all
the linearizations of some subset of Atoms(L) and the linearizations of each
element of Atoms(L) is contained in some LAt(s, s

′). Thus, it suffices to check
for the finiteness of each of these languages.

Let Ls,s′ be the language of strings accepted by A when we set the initial state
to be s and the set of final states to be {s′}. Clearly LAt(s, s

′) ⊆ Ls,s′. We now
show how to construct an automaton for LAt(s, s

′).

We begin with A and prune the automaton as follows:

• Remove all incoming edges at s and all outgoing edges at s′.
• If t /∈ {s, s′} and Kt = 0, remove t and all its incoming and outgoing edges.
• Recursively remove all states that become unreachable as a result of the

preceding operation.

Let B be the resulting automaton. B accepts any complete word w on which
the run from s to s′ does not visit an intermediate zero-capacity state. Clearly,
LAt(s, s

′) ⊆ L(B). However, L(B) may also contain linearizations of non-
atomic MSCs that happen to have no nontrivial complete prefix. For all such
words, we know from Claim 6.3 that there is at least one equivalent lineariza-
tion on which the run passes through a zero-capacity state and which would
hence be eliminated from L(B). Thus, LAt(s, s

′) is the ∼-closed subset of L(B)
and we need to prune B further to obtain the automaton for LAt(s, s

′).

Recall that the original DFA A was structurally closed with respect to the
independence relation on communication actions in the following sense. Sup-
pose δ(s1, a) = s2 and δ(s2, b) = s3 with a, b independent at s1. Then, there
exists s′2 such that δ(s1, b) = s′2 and δ(s′2, a) = s3.

To identify the closed subset of L(B), we look for local violations of this
“diamond” property and carefully prune transitions. We first blow up the
state space into triples of the form (s1, s2, s3) for each s1, s2 and s3 such
that there exist a and a′ with δ(s1, a) = s2 and δ(s2, a

′) = s3. Let S ′ de-
note this set of triples. We obtain a nondeterministic transition relation δ ′ =
{((s1, s2, s3), a, (t1, t2, t3)) | s2 = t1, s3 = t2, δ(s2, a) = s3}. Set Sin = {(s1, s2, s3) ∈
S ′ | s2 = sin} and F ′ = {(s1, sf , s2) ∈ S ′ | sf ∈ F}. Let B′ = (S ′, Σ, δ′, Sin, F ′).

Consider any state s1 in B such that a and b are independent at s1, δ(s1, a) =
s2, δ(s2, b) = s3 but there is no s′2 such that δ(s1, b) = s′2 and δ(s′2, a) = s3.
For each such s1, we remove all transitions of the form ((t, s0, s1), a, (s0, s1, t

′))
and ((t, s2, s3), b, (s2, s3, t

′)) from B′. We then recursively remove all states that

35

become unreachable after this pruning.

Eventually, we arrive at an automaton C such that L(C) = LAt(s, s
′). Since C

is a finite-state automaton, we can easily check whether L(C) is finite. This
process is repeated for each pair of live zero-capacity states. 2

We will now bring out the intimate connection between message sequence
graphs and finitely generated regular MSC languages. As pointed out earlier,
Alur and Yannakakis noted that every locally synchronized MSG-language
is regular [2, Thm. 7]. One way to establish this result is — following [9]
— to show that the asynchronous iteration of a com-connected regular MSC
language is regular. The proof in [9] is based on grammars. A more direct,
automata-theoretic proof of the same result is described in Appendix A. Thus,
every locally synchronized MSG accepts a finitely generated regular MSC lan-
guage.

All languages arising from MSGs are finitely generated, so the language ac-
cepted by the message-passing automaton on Figure 2 shows that not all
regular MSC languages can be described by MSGs. It turns out that locally
synchronized MSGs generate precisely those MSC languages that are both
regular and finitely generated.

Theorem 6.4 Let L be an MSC language. Then L is a finitely generated
regular MSC language if and only if L is a locally synchronized MSG-language.

Proof Sketch: From the remarks above, it suffices to show that any finitely
generated regular MSC language can be accepted by some locally synchronized
MSG.

Suppose L is a regular MSC language accepted by the minimal DFA A =
(S, Σ, sin, δ, F). Let Atoms(L) = {a1, a2, . . . , am}. For each atom ai, fix a

linearization ui ∈ lin(ai). Define an auxiliary DFA B = (S0,Atoms(L), sin,
δ̂, F̂) as follows:

• S0 is the set of states of A that have zero-capacity functions.
• F̂ = F .
• δ̂(s, ai) = s′ iff δ(s, ui) = s′ in A. (Note that u, u′ ∈ lin(ai) implies δ(s, u) =

δ(s, u′), so s′ is fixed independent of the choice of ui ∈ lin(ai).)

Thus, B accepts the (regular) language of atoms corresponding to L(A). We
can define a natural independence relation IA on atoms as follows: atoms ai

and aj are independent if and only if the set of active processes in ai is disjoint
from the set of active processes in aj. (The process p is active in the MSC
(E,≤, λ) if Ep is non-empty.)

36

It follows that L(B) is a regular Mazurkiewicz trace language over the trace
alphabet (Atoms(L), IA). As usual, for w ∈ Atoms(L)∗, we let [w] denote the
equivalence class of w with respect to IA.

We now fix a strict linear order ≺ on Atoms(L). This induces a (lexicographic)
total order on words over Atoms(L). Let LEX ⊆ Atoms(L)∗ be given by:
w ∈ LEX iff w is the lexicographically least element in [w].

For a trace language L over (Atoms(L), IA), let lex(L) denote the set L∩LEX .

Fact 6.5 ([11], Sect. 6.3.1)

(1) If L is a regular trace language over (Atoms(L), IA), then lex (L) is a
regular language over Atoms(L). Moreover, L = {[w] | w ∈ lex (L)}.

(2) If w1ww2 ∈ LEX , then w ∈ LEX .
(3) If w is not a connected 6 trace, then ww /∈ LEX .

From (1) we know that lex (L(B)) is a regular language over Atoms(L). Let C =
(S ′,Atoms(L), s′in, δ

′, F ′) be the DFA over Atoms(L) obtained by eliminating
the (unique) dead state, if any, from the minimal DFA for
lex (L(B)). It is easy to see that an MSC M belongs to L if and only if it can be
decomposed into a sequence of atoms accepted by C. Using this fact, we can de-
rive an MSG G from C such that L(G) = L. We define G = (Q,−→, Qin, F, Φ)
as follows:

• Q = S ′ × (Atoms(L) ∪ {ε}).
• Qin = {(s′in, ε)}.
• (s, b)−→(s′, b′) iff δ′(s, b′) = s′.
• F ′ = F × Atoms(L).
• Φ(s, b) = b.

Clearly G is an MSG and the MSC language that it defines is L. We need to
show that G is locally synchronized. To this end, let π = (s, b)−→
(s1, b1)−→· · ·−→(sn, bn)−→(s, b) be a loop in G. We need to establish that
the MSC M(π) = b1 ◦ · · · ◦ bn ◦ b defined by this loop is com-connected. Let
w = b1b2 . . . bnb.

Consider the corresponding loop s
b1−→ s1

b2−→ · · ·
bn−→ sn

b
−→ s in C. Since

every state in C is live, there must be words w1, w2 over Atoms(L) such that
w1w

kw2 ∈ lex (L(B)) for every k ≥ 0.

From (2) of Fact 6.5, wk ∈ LEX . This means, by (3) of Fact 6.5, that

6 A trace is said to be connected if, when viewed as a labeled partial order, its
Hasse diagram consists of a single connected component. See [11] for a more formal
definition.

37

w describes a connected trace over (Atoms(L), IA). Further, the underlying
undirected graph of the communication graph of any atom always consists
of a single nontrivial connected component. From these, it is not difficult
to see that the underlying undirected graph of the communication graph
CGM(π) = (P, 7→) consists of a single connected component C ⊆ P and iso-
lated processes. We have to argue that the component C is, in fact, strongly
connected. We show that if C is not strongly connected, then the regular
MSC language L is not B-bounded for any B ∈ N, thus contradicting Propo-
sition 2.4.

Suppose that the underlying graph of C is connected but C not strongly
connected. Then, there exist two processes p, q ∈ C such that p 7→ q, but
there is no path from q back to p in CGM(π). For k ≥ 0, let M(π)k = (E,≤, λ)
be the MSC corresponding to the k-fold iteration M(π) ◦ M(π) ◦ · · · ◦ M(π)︸ ︷︷ ︸

k times

.

Since p 7→ q in CGM(π), it follows that there are events labeled p!q and q?p in
M(π). Moreover, since there is no path from q back to p in CGM(π), we can
conclude that in M(π)k, for each event e with λ(e) = p!q, there is no event
labeled q?p in ↓e. This means that M(π)k admits a linearization v′k with a
prefix τ ′k that includes all the events labeled p!q and excludes all the events
labeled q?p, so that #p!q(τ) − #q?p(τ) ≥ k.

By Proposition 2.4, since L is a regular MSC language, there is a bound B ∈ N

such that every word in L is B-bounded—that is, for each v ∈ L, for each prefix
τ of v and for each channel (p, q) ∈ Ch, #p!q(τ) − #q?p(τ) ≤ B. Recall that
w1w

kw2 ∈ lex (L(B)) for every k ≥ 0. Fix linearizations v1 and v2 of the atom
sequences w1 and w2, respectively. Then, for every k ≥ 0, uk = v1v

′
kv2 ∈ L

where v′k is the linearization of M(π)k defined earlier. Setting k to be B+1, we
find that uk admits a prefix τk = v1τ

′
k such that #p!q(τk) − #q?p(τk) ≥ B+1,

which contradicts the B-boundedness of L.

Hence, it must be the case that C is a strongly connected component, which
establishes that the MSG G we have constructed is locally synchronized.

2

It is easy to see that local synchronicity is not a necessary condition for reg-
ularity. Consider the MSG in Figure 7, which is not locally synchronized. It
accepts the regular MSC language M1 ◦ (M1 + M2)

�

.

Thus, it would be useful to provide a characterization of the class of MSGs
representing regular MSC languages. Unfortunately, the following result shows
that there is no (recursive) characterization of this class.

Theorem 6.6 The problem of deciding whether a given MSG represents a

38

GFED@ABC?>=<89:;M1
++��

=⇒ GFED@ABC?>=<89:;M2kk
��

(p)
_

(q)
_

(r)
_

(s)
_

• //• • //•

• •oo • •oo

M1 M2

Fig. 7. An non-locally synchronized MSG whose language is regular.

(pi1)_
(pa

i1
)

_
(pi2)_

(pa
i2
)

_
. . . (pik−1

)
_

(pa
ik−1

)
_

(pik)_
(pa

ik
)

_

• //•

• //•

• //•

• ____

�

�

//____ •

• //•

• //•

• //•

• •oo

• •oo

• •oo

�

� •_ _ _ _

•oo_ _ _ _

• •oo

• •oo

• •oo

. . .

Fig. 8. The MSC Ma encoding the letter a ∈ A.

regular MSC language is undecidable.

Proof Sketch: It is known that the problem of determining whether the
trace-closure of a regular language L ⊆ A∗ with respect to a trace alphabet
(A, I) is also regular is undecidable [32]. We reduce this problem to the problem
of checking whether the MSC language defined by an MSG is regular.

Let Ã = (A1, . . . , An) be a distributed alphabet implementing the trace al-
phabet (A, I) [11]. We will fix a set of processes P and the associated com-
munication alphabet Σ and encode each letter a by an MSC Ma over P.

39

For each component Ai of Ã, we create 1+|Ai| processes that we will denote by
pi, p

a1
i , pa2

i , . . . , pak

i , where Ai = {a1, a2, . . . , ak}. Suppose now that the letter
a appears in the components Ai1 , Ai2 , . . . , Aik of the distributed alphabet Ã
with 1 ≤ i1 < i2 < · · · < ik ≤ n. The MSC Ma representing a is then given
in Figure 8. It is easy to see that the communication graph CGMa

is strongly
connected. Moreover, if (a, b) ∈ I, then the sets of active processes of Ma

and Mb are disjoint. The encoding ensures that we can construct a finite-state
automaton to parse any word over Σ and determine whether it arises as the
linearization of an MSC of the form Ma1 ◦ Ma2 ◦ · · · ◦ Mak

. If so, the parser
can uniquely reconstruct the corresponding word a1a2 . . . ak over A.

Let A be the minimal DFA corresponding to a regular language L over A. We
construct an MSG G from A as described in the proof of Theorem 6.4. Given
the properties of our encoding, we can then establish that the MSC language
L(G) is regular if and only if the trace-closure of L is regular, thus completing
the reduction. 2

7 Conclusion

We have identified here the notion of a regular MSC language and have devel-
oped the basic theory of these languages by providing automata-theoretic and
logical chracterizations. We have also characterized precisely the subclass of
regular MSC languages definable using the mechanism of HMSCs. Our range
of results shows that the notion of regularity that we have identified here is
a fruitful one. Further, while it bears a pleasant similarity to the theory of
regular Mazurkiewicz trace languages, its theory requires new insights and
techniques due to the implicit presence of potentially unbounded FIFOs.

Our treatment of MSC languages and the related work cited so far have im-
plicitly assumed a linear time framework. The notion of an implementation
(say an MPA) satisfying a requirement specification (say, a bounded HMSC)
is also an existential one; for every MSC in the requirement there exists an
MSC in the implementation and conversely. The formalism of Live Sequence
Charts proposed by Damm and Harel [10] suggests, however, that one could
obtain a more powerful specification language based on MSCs by switching to
a branching-time framework. The recent work of Harel and his collaborators
[15,16] suggests that this way of using MSCs might bear a more direct and
fruitful relationship with implementations than mechanisms such as HMSCs
or sequence diagrams in the UML framework. In light of this, it will be inter-
esting to formulate a suitable branching-time version of the theory reported
in this paper.

40

References

[1] Alur, R., Holzmann, G. J., Peled, D.: An analyzer for message sequence charts.
Software Concepts and Tools 17(2) (1996) 70–77

[2] Alur, R., Yannakakis, M.: Model checking of message sequence charts.
Proceedings of the 10th International Conference on Concurrency Theory
(CONCUR’99), Lecture Notes in Computer Science 1664, Springer-Verlag
(1999) 114–129

[3] Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence graphs.
Proceedings of the 22nd International Conference on on Software Engineering
(ICSE 2000), Association for Computing Machinery (2000) 304–313.

[4] Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of
MSC Graphs. Proceedings Automata, Languages and Programming, 28th
International Colloquium (ICALP 2001), Lecture Notes in Computer Science
2076, Springer-Verlag (2001) 797–808.

[5] Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and
non-local choice in message sequence charts. Proceedings of the 3rd Workshop
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’97), Lecture Notes in Computer Science 1217, Springer-Verlag (1997)
259–274

[6] Bollig, B., Leucker, M., Noll, T.: Generalised regular MSC languages.
Proceedings of the 5th International Conference on Foundations of Software
Science and Computation Structures (FOSSACS’02), Lecture Notes in
Computer Science 2303, Springer-Verlag (2002) 52–66

[7] Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User Guide.
Addison-Wesley (1997)

[8] Büchi, J. R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math. 6 (1960) 66–92

[9] Clerbout, M., Latteux, M.: Semi-commutations. Information and Computation
73(1) (1987) 59–74

[10] Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts.
Formal Methods in System Design 19(1) (2001) 45–80.

[11] Diekert, V., Rozenberg, G. (Eds.): The Book of Traces. World Scientific (1995)

[12] Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical
Computer Science 154(1) (1996) 67–84

[13] Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level
MSCs: Model-checking and realizability. Proceedings of the 29th International
Colloquium on Automata, Languages and Programming (ICALP’02), Lecture
Notes in Computer Science 2380, Springer-Verlag (2002) 657–668

41

[14] Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE
Computer, July 1997 (1997) 31–42

[15] Harel, D., Marelly, R.: Specifying and executing behavioral requirements: The
play-in/play-out approach. Software and System Modeling (SoSyM) (to appear)

[16] Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-out of Behavioral
Requirements. Proceedings Formal Methods in Computer-Aided Design, 4th
International Conference (FMCAD 2002), Lecture Notes in Computer Science
2517 Springer-Verlag (2002) 378–398

[17] Henriksen, J.G., Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: On
message sequence graphs and finitely generated regular MSC languages.
Proceedings of the International Colloquium on Automata, Languages and
Programming 2000 (ICALP’00), Lecture Notes in Computer Science 1854,
Springer-Verlag (2000) 675–686

[18] Henriksen, J.G., Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: Regular
collections of message sequence charts. Proceedings of the Conference on the
Mathematical Foundations of Computer Science 2000 (MFCS’00), Lecture
Notes in Computer Science 1893, Springer-Verlag (2000) 405–414

[19] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva (1997)

[20] Kuske, D.: A further step towards a theory of regular MSC languages.
Proceedings of the Symposium on the Theoretical Aspects of Computer Science,
Lecture Notes in Computer Science 2285, Springer-Verlag (2002) 489–500

[21] Ladkin, P. B., Leue, S.: Interpreting message flow graphs. Formal Aspects of
Computing 7(5) (1995) 473–509

[22] Levin, V., Peled, D.: Verification of message sequence charts via template
matching. Proceedings of the 7th International Conference on Theory and
Practice of Software Development (TAPSOFT’97), Lecture Notes in Computer
Science 1214, Springer-Verlag (1997) 652–666

[23] Madhusudan, P.: Reasoning about sequential and branching behaviours of
message sequence graphs. Proceedings of the 27th International Colloquium
on Automata, Languages and Programming (ICALP’00), Lecture Notes in
Computer Science 2076, Springer-Verlag (2001) 396–407

[24] Madhusudan, P., Meenakshi, B.: Beyond message sequence graphs. Proceedings
of the 21st Conference on the Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’01), Lecture Notes in Computer
Science 2245, Springer-Verlag (2001) 256–267

[25] Mauw, S., Reniers, M. A.: High-level message sequence charts, Proceedings of
the 8th SDL Forum, SDL’97: Time for Testing — SDL, MSC and Trends,
Elsevier (1997) 291–306

42

[26] Mukund, M., Narayan Kumar, K., Sohoni, M.: Synthesizing distributed finite-
state systems from MSCs. Proceedings of the 11th International Conference
on Concurrency Theory (CONCUR 2000), Lecture Notes in Computer Science
1877, Springer-Verlag (2000) 521–535

[27] Mukund, M., Narayan Kumar, K., Sohoni, M.: Bounded time-stamping in
message-passing systems. Theoretical Computer Science, 290(1) (2003) 221–
239

[28] Muscholl, A.: Matching specifications for message sequence charts. Proceedings
of the 2nd International Conference on Foundations of Software Science and
Computation Structures (FOSSACS’99), Lecture Notes in Computer Science
1578, Springer-Verlag (1999) 273–287

[29] Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. Proceedings of the 24th International Symposium on
Mathematical Foundations of Computer Science (MFCS’99), Lecture Notes in
Computer Science 1672, Springer-Verlag (1999) 81–91

[30] Muscholl, A., Peled, D., Su, Z.: Deciding properties for message sequence
charts. Proceedings of the 1st International Conference on Foundations of
Software Science and Computation Structures (FOSSACS’98), Lecture Notes
in Computer Science 1378, Springer-Verlag (1998) 226–242

[31] Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence
charts. In Computer Networks and ISDN Systems — SDL and MSC 28 (1996).

[32] Sakarovitch, J.: The “last” decision problem for rational trace languages.
Proceedings of the 1st Latin American Symposium on Theoretical Informatics
(LATIN’92), Lecture Notes in Computer Science 583, Springer-Verlag (1992)
460–473

[33] Thiagarajan, P. S.: A trace consistent subset of PTL. Proceedings of 6th
International Conference on Concurrency Theory (CONCUR’95), Lecture
Notes in Computer Science 962, Springer-Verlag (1995) 438-452

[34] Thiagarajan, P. S., Walukiewicz, I.: An expressively complete linear time
temporal logic for Mazurkiewicz traces. Information and Computation, Vol.
179, No. 2 (2002) 230-249.

[35] Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.): Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics,
Elsevier Science Publishers (1990) 133–191

[36] Thomas, W.: Languages, automata, and logic. In Rozenberg, G., Salomaa,
A. (Eds.): Handbook of Formal Language Theory, Volume III, Springer-Verlag
(1997) 389–455

[37] Vardi, M. Y., Wolper, P.: An automata-theoretic approach to automatic
program verification. Proceedings of the 1st Annual IEEE Symposium on Logic
in Computer Science (LICS’86), IEEE Computer Society Press (1986) 332–345

43

[38] Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. Informatique
Théorique et Applications 21 (1987) 99–135

44

A Asynchronous Iteration

In this section, we give an automata-theoretic proof that the asynchronous
iteration of a com-connected regular MSC language remains regular. A proof
of this result in terms of grammars appears in [9].

We begin with a simple characterization of asynchronous iteration that follows
from the definition in Section 6.

Proposition A.1 Let L ⊆ M be an MSC language. The MSC M =
(E,≤, λ) belongs to L

�

, the asynchronous iteration of L, iff there is a se-
quence of complete ideals ∅ = I0 ⊂ I1 ⊂ · · · ⊂ In = E such that for each
j ∈ {1, 2, . . . , n}, the partial order Ij \ Ij−1 is isomorphic to some M ′ ∈ L.

The ideals I0I1 . . . In define an L-factorization of M—that is, a factorization
of M into MSCs from L.

A.1 An infinite-state automaton for L
�

Let L be a regular MSC language. From the automata-theoretic character-
ization of Section 3, it follows that there is a B-bounded message-passing
automaton A such that L(A) = L. To construct a (sequential) automaton for
L

�

, our strategy will be to guess a factorization of the input and simulate
A to verify that each factor belongs to L. We first construct an infinite-state
automaton for L

�

for an arbitrary regular MSC language L and then describe
the conditions under which we can restrict the automaton for L

�

to be a
finite-state device.

The new automaton A
�

that we construct uses natural numbers to label the
factors. Since not every process participates in every factor, A

�

records the
sequence of factors that each process p ∈ P participates in and ensures that
the sequence in which the factors are processed is consistent across the system.
In addition, A

�

simulates a copy of A on each factor. Initially, each factor is
labelled by the initial configuration of A. The simulation succeeds if the global
state associated with each factor is a final configuration of A.

More formally, A
�

= (S ′, s′in,−→′, F ′) where each state in S ′ is a pair (µ, ν)
with µ : P → N∗ and ν : N → ConfA such that µ satisfies the following
condition:

• For any pair of processes p and q (not necessarily distinct) and any pair of
distinct labels ` and `′, if ` appears before `′ in µ(p), then `′ does not appear
before ` in µ(q).

45

The function µ records the order in which each process observes the L-factors
of the input word. The function ν keeps track of the current configuration of
A on each factor.

The initial state s′in of A
�

is the pair (µin, νin) where µin(p) = ε for each
process p and νin(`) = (sin, χε) for each ` ∈ N (where ε is the empty word and
(sin, χε) is the initial configuration of A).

A state (µ, ν) of A
�

is in F ′ whenever:

• If ` appears in µ(p) for some process p, ν(`) is a final configuration of A.
• If ` does not appear in µ(p) for any process p, ν(`) = (sin, χε).

Consider states (µ, ν) and (µ′, ν ′) and a letter a such that a ∈ Σp. Then,
(µ, ν)

a
−→′ (µ′, ν ′) provided:

• For q 6= p, µ′(q) = µ(q).
• Either µ′(p) = µ(p) or µ′(p) = µ(p) · ` for some ` ∈ N.
• Let the last label in µ′(p) be `. Then, ν(`)

a
=⇒ ν ′(`) and for `′ 6= `, ν ′(`′) =

ν(`′) (where =⇒ ⊆ ConfA × Σ × ConfA is the global transition relation of
A).

The following is easy to verify from the definition of A
�

.

Theorem A.2 Let A be a message-passing automaton for a regular MSC
language L. Then, the automaton A

�

accepts the language L
�

.

To describe when we can restrict A
�

to a finite-state device, we extend the
definition of A

�

so that each state has one more component. A state of A
�

is
now a triple of functions (µ, ν, τ), where µ : P → N∗ and ν : N → ConfA are
as before. The new component τ : N → 2P specifies the type of each label.

As before, µ records the sequence in which each process observes L-factors
while ν keeps track of the current configuration of each factor. The new com-
ponent τ records the set of processes that participate in each factor.

The states of A
�

are those triples (µ, ν, τ) that satisfy the following conditions:

• For any pair of processes p and q (not necessarily distinct) and any pair of
distinct labels ` and `′, if ` appears before `′ in µ(p), then `′ does not appear
before ` in µ(q).

• If τ(`) 6= ∅ then ` appears in µ(p) for some p ∈ P. Moreover, if ` appears
in µ(p) then p ∈ τ(`).

The initial state s′in of the extended version of A
�

is the triple (µin, νin, τin)
where µin(p) = ε for each process p, νin(`) = (sin, χε) for each ` ∈ N and
τin(`) = ∅ for each ` ∈ N.

46

A state (µ, ν, τ) of A
�

is in F ′ whenever:

• If ` appears in µ(p) for some process p, ν(`) is a final configuration of A.
• If ` does not appear in µ(p) for any process p, ν(`) = (sin, χε).
• If τ(`) = P then ` appears in µ(p) for each p ∈ P .

Consider states (µ, ν, τ) and (µ′, ν ′, τ ′) and a letter a such that a ∈ Σp. Then,
(µ, ν, τ)

a
−→′ (µ′, ν ′, τ ′) provided:

• For q 6= p, µ′(q) = µ(q).
• Either µ′(p) = µ(p) or µ′(p) = µ(p) · ` for some ` ∈ N.
• Let the last label in µ′(p) be `. Then, ν(`)

a
=⇒ ν ′(`) and for all `′ 6= `,

ν ′(`) = ν(`).
• Let the last label in µ′(p) be `. Then τ ′(`) ⊃ {p} and for `′ 6= `, τ ′(`′) = τ(`′).

Moreover, if ` already appears in µ(q) for some q ∈ P, then τ ′(`) = τ(`).
(This captures the fact that when ` is first used, τ(`) records a nondeter-
ministic guess for the processes that will participate in the factor labelled `
and this guess cannot be changed.)

Once again, we can establish that L(A
�

) = L(A)
�

.

A.2 If L is com-connected, L
�

is regular

Recall the definition of a com-connected MSC language from Section 5. The
main result we want to prove is the following.

Theorem A.3 Let L be a regular and com-connected MSC language. Then,
L

�

is regular.

In the previous section, we saw how to construct an infinite-state automaton
A

�

for L
�

from a message-passing automaton A for L. To prove Theorem A.3,
we shall argue that if L is com-connected, A

�

can in fact be cut down to a
finite-state automaton.

Definition A.4 Let G = (V, E) be a directed graph. For X ⊆ V , define
nbd(X), the neighbourhood of X, to be X ∪ {v ′ | ∃v ∈ X : (v′, v) ∈ E}.

2

Proposition A.5 Let G = (V, E) be a directed graph such that all non-
isolated vertices form a single strongly connected component. Let C ⊆ V be
the vertices in this strongly connected component. Then, for any proper subset
C ′ (C, nbd(C ′) has at least one vertex in C \ C ′.

47

Proof: Suppose that C ′ (C but there is no vertex v ∈ (C \ C ′) ∩ nbd(C ′).
This means there is no path from any vertex in C \ C ′ to any vertex in C ′.
This contradicts the assumption that C is a strongly connected component of
G. 2 2

Definition A.6 Consider a state (µ, ν, τ) of the extended automaton A
�

de-
scribed in the previous section. The label ` is said to be dead in (µ, ν, τ) if for
every p ∈ τ(`), µ(p) = w · ` ·w′, where w′ is a nonempty string over N. A label
that is not dead is said to be live. 2

Lemma A.7 Let A be a message-passing automaton for a com-connected
MSC language L. In any state (µ, ν, τ) of A

�

only a bounded number of labels
are not dead.

Proof: Let (µ, ν, τ) be a state of A
�

and let p ∈ P. Suppose that µ(p) is
of the form u0`0u1`1 . . . `kuk`k+1uk+1, where each ui, i ∈ {0, 1, . . . , k+1}, is a
string over N, τ(`0) = τ(`1) = · · · = τ(`k+1) = P and |P | = k. Then, `0 must
be dead.

Recall that for each `, τ(`) records the set of processes that participate in
the factor M` labelled `. Since L is com-connected, τ(`) defines a strongly
connected set of processes in CG(M`).

Consider the graph GM`k
. Let Pk = nbd(p) in this graph. For each process

q ∈ Pk, there is an edge from q to p in GM`k
. Thus, there is at least one action

p?q in the factor M`k
. Since p has progressed from the factor M`k

to the factor
M`k+1

, the corresponding q-action q!p in M`k
must also have occurred already.

Thus, q has also observed the factor `k and `k must appear in µ(q) as well.

Let Pk−1 = nbd(Pk) in GM`k
. By a similar argument, `k−1 must appear in µ(q)

for each q ∈ Pk−1.

In this vein, we can construct Pk−2, Pk−3, . . . such that for each j ∈
{k, k−1, . . . , 1}, Pj−1 = nbd(Pj) in GM`j

and argue that `j−1 must appear

in µ(q) for each q ∈ Pj−1. By Proposition A.5, Pj−1 \Pj 6= ∅ and Pk ⊂ Pk−1 ⊂
· · · ⊆ P . Recall that |Pk| ≥ 2, since p ∈ Pk as well as the witness q such that
q?p ∈ M`k

. Since |P | = k, we must thus have P2 = P . In other words, `1

appears in µ(q) for each q ∈ P2 = P . From Definition A.6, it follows that `0 is
dead in (µ, ν, τ). 2 2

Let (µ, ν, τ) be a state of A
�

. For any process p and any P ⊆ P, there are
at most |P | live labels in µ(p) of type P . Thus, the number of live labels in
µ(p) is bounded by |P| · 2|P| and the number of live labels overall in (µ, ν, τ)
is bounded by |P|2 · 2|P|.

48

A finite-state version of A
�

From this, we can derive a finite-state version
of A

�

when the language accepted by A is com-connected. Instead of using
the infinite set of labels N to name factors, we fix a finite set of labels Γ such
that |Γ| > |P|2 · 2|P|. Thus, a state of A

�

now consists of functions (µ, ν, τ)
where µ : P → Γ∗, ν : Γ → ConfA and τ : Γ → 2P .

A state of A
�

is a triple (µ, ν, τ) that satisfies the following conditions:

• For any pair of processes p and q (not necessarily distinct) and any pair of
distinct labels ` and `′, if ` appears before `′ in µ(p), then `′ does not appear
before ` in µ(q).

• If τ(`) 6= ∅ then ` appears in µ(p) for some p ∈ P. Moreover, if ` appears
in µ(p) then p ∈ τ(`).

• For each p ∈ P, µ(p) contains at most |P | labels of type P for each P ⊆ P.

The last condition ensures that A
�

is finite-state.

In the initial state (µin, νin, τin), µin(p) = ε for each p ∈ P, νin(`) = (sin, χε)
for each ` ∈ Γ and τ(`) = ∅ for each ` ∈ Γ.

Let (µ, ν, τ) and (µ′, ν ′, τ ′) be two states of A
�

and let a ∈ Σp. Then (µ, ν, τ)
a

−→
′ (µ′, ν ′, τ ′) provided we can construct an intermediate triple of functions (µ′′, ν ′′, τ ′′)
such that:

• For q 6= p, µ′′(q) = µ(q).
• Either µ′′(p) = µ(p) or µ′′(p) = µ(p) · ` for some ` ∈ Γ such that ` does not

already appear in µ(p).
• Let the last label in µ′′(p) be `. Then, ν(`)

a
=⇒ ν ′′(`) and for `′ 6= `,

ν ′′(`′) = ν(`′).
• Let the last label in µ′′(p) be `. Then τ ′′(`) ⊃ {p} and for `′ 6= `, τ ′′(`′) =

τ(`′). Moreover, if ` already appears in µ(q) for some q ∈ P, then τ ′(`) =
τ(`).

For p ∈ P and P ⊆ P, suppose that µ(p) is of the form u0`0u1`1 . . .
`kuk`k+1uk+1, where each ui, i ∈ {0, 1, . . . , k+1}, is a string over Γ, τ(`0) =
τ(`1) = · · · = τ(`k+1) = P and |P | = k.

Then, it is the case that `0 is dead in (µ′′, ν ′′, τ ′′) and ν ′′(`0) is a final configu-
ration of A. (Observe that since exactly one process moves on each input, at
most one dead label is generated with each move).

• (µ′, ν ′, τ ′) is obtained from (µ′′, ν ′′, τ ′′) by deleting the dead label `0, if any,
from µ(q) for each q ∈ τ ′′(`0) and then resetting τ ′(`0) = ∅ and ν ′(`0) =
(sin, χε). If there are no dead labels in (µ′′, ν ′′, τ ′′), then (µ′, ν ′, τ ′) is the
same as (µ′′, ν ′′, τ ′′).

49

A state (µ, ν, τ) of A
�

is in F ′ provided:

• If ` appears in µ(p) for some process p, ν(`) is a final configuration of A.
• If ` does not appear in µ(p) for any process p, ν(`) = (sin, χε).
• If τ(`) = P then ` appears in µ(p) for each p ∈ P .

From Lemma A.7, it is easy to argue that if L is com-connected, then the finite-
state version of A

�

accepts L
�

. This completes the proof of Theorem A.3.

50

