An Event Structure Semantics for
General Petri Nets *

P.W. Hoogers | H.C.M. Kleijn P.S. Thiagarajan *
November 1993

Abstract

In this paper we address the following question: What type of event structures
are suitable for representing the behaviour of general Petri nets? As a partial answer
to this question we define a new class of event structures called local event structures
and identify a subclass called UL-event structures. We propose that Ul-event struc-
tures are appropriate for capturing the behaviour of general Petri nets. Our answer
is a partial one in that in the proposed event structure semantics, auto-concurrency
is filtered out from the behaviour of Petri nets. It turns out that this limited event
structure semantics for Petri nets is nevertheless a non-trivial and conservative exten-
sion of the (prime) event structure semantics of 1-safe Petri nets provided in [NPW].
We also show that the strong relationship between prime event structures and 1-safe
Petri nets established in a categorical framework in [W3] can be extended to the
present setting, provided we restrict our attention to the subclass of Petri nets whose
behaviours do not exhibit any auto-concurrency. Finally, we show that Winskel’s
general and stable event structures can be smoothly related to local event structures
and that similarly prime event structures can be related to UL-event structures.

Introduction

Prime event structures can be used to represent the behaviour of 1-safe Petri nets. This
basic result was shown by Nielsen, Plotkin, and Winskel in [NPW]. The “universality”
of their construction which associates a prime event structure with a 1-safe Petri net was
later shown by Winskel [W3] in a categorical setting, and in the process provided strong
evidence that the construction in [NPW] is not merely an ad hoc translation.

*An extended abstract of this paper has appeared in the proceedings of CONCUR’93 under the title:
Local Event Structures and Petri Nets [HKT2].

T Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands

tSchool of Mathematics, SPIC Science Foundation, 92 G.N. Chetty Road, T. Nagar, Madras 600 017,
India

An obvious question that now arises is: when one moves up from 1-safe Petri nets to
general Petri nets, what are the corresponding event structures that one should look for?
The question is interesting because general Petri nets are a very natural generalization of
I-safe Petri nets. They seem to have a nice algebraic structure [W2, MM]. They are also
a very simple kind of multiset rewrite systems. Some previous work in this area [E, MMS]
has essentially proposed prime event structures as possible candidates for representing the
behaviour of Petri nets. However, this entails having to view the tokens as “coloured”
entities, which destroys the possibility of viewing Petri nets as simple multiset rewrite
systems. It also leads to the counter-intuitive result that 1-safe Petri nets and general
Petri nets give rise to the same set of behaviours in terms of event structures. Hence we
are interested in finding a proper generalization of the event structure semantics for 1-safe
Petri nets.

We propose here such a generalization with the help of a new class of event structures,
called local event structures. These event structures are easy to define and require just
a purely local concurrency axiom; no global order theoretic properties are demanded. It
turns out that a subclass of the local event structures can be advocated as a partial answer
to the question: what are the event structures that correspond to the behaviour of Petri
nets? Qur answer is partial in that in the event structure semantics for Petri nets that
is being proposed here, auto-concurrency is filtered out from the behaviour of Petri nets.
Auto-concurrency is the phenomenon by which multiple instances of a transition become
enabled at a marking. This is impossible in a 1-safe Petri net.

To be more precise, we first define the class of local event structures. We then identify
a subclass of these event structures that have a certain unique occurrence property. It
turns out that this subclass is a proper and very generous generalization of the notion of
prime event structures. We then show, as our first main result, how one can associate
one member of this subclass of local event structures with each Petri net. In doing so
we use the set of step firing sequences based on sets rather than the set of multiset firing
sequences of a Petri net. It is in this sense that we filter out auto-concurrency, and hence
the proposed event structure semantics is a restricted one. However, it is also the case
that our event structure semantics for Petri nets is a strict extension of the prime event
structure semantics for 1-safe Petri nets given in [NPW].

Next we turn to the problem of lifting the co-reflection between prime event struc-
tures and 1-safe Petri nets established by Winskel [W3]. It turns out that the category
of Petri nets (under a reasonable choice of behaviour-preserving morphisms) is, due to
auto-concurrency, too rich in terms of objects and arrows to let the desired co-reflection
go through. Our second main result is that the desired co-reflection does go through if we
restrict our attention to Petri nets that do not exhibit any auto-concurrency in their be-
haviour. Such Petri nets will be referred to as co-safe Petri nets here. It is worth pointing
out that co-safe Petri nets constitute a non-trivial extension of the notion of 1-safe Petri
nets. Hence through our second main result we have a complete event structure semantics
for this large subclass of Petri nets.

In Section 1 we introduce local event structures. Then in Section 2, a unique occurrence
property is defined using a new equivalence relation over prime intervals. This leads to the

identification of the subclass of local event structures with the unique occurrence property.
In Section 3, we introduce Petri nets and define the set of multiset firing sequences of a
Petri net, and, as a derived notion, the set of step firing sequences. We then use the set
of step firing sequences to construct a local event structure with the unique occurrence
property.

In Section 4 we prepare the stage for discussing adjunctions by constructing a map
from local event structures to Petri nets. Our map is such that the target of every local
event structure will be a co-safe Petri net. In Section 5 we set up a category of Petri nets
and argue with the help of an example why the co-reflection result of Winskel will not
go through in the present setting. We then show that the desired co-reflection does go
through if we restrict our attention to co-safe Petri nets.

In Section 6 it is shown that there exists a strong relationship between the local event
structures introduced in this paper and Winskel’s general event structures. To this end
functors between the corresponding categories are constructed which constitute a reflection.
Then we show that there is also a reflection between the category of local event structures
with the unique occurrence property and the category of prime event structures.

Finally, the concluding section summarizes the results of the paper and discusses some
related work.

1 Local Event Structures

In this section we introduce local event structures and structure-preserving morphisms
between local event structures.

A local event structure is defined as a family of configurations. This is similar to
the specification of Winskel’s general event structures through families of configurations
[W3]. However, in contrast to Winskel’s event structures, here a family of configurations
is equipped with an enabling relation which specifies locally, for each configuration, the
possible concurrency of events at that configuration. This enabling relation satisfies some
simple axioms.

For an arbitrary set X, we use Pr(X) to denote the set of finite subsets of X. Further-
more, for u € Pr(X), the number of elements in u is denoted by |u|; if |u] = 1 then we
notationally identify v with its only element.

Definition 1.1

A local event structure is a triple ES = (£, C,F) where E is a set of events, C' C Pp(F)
is a non-empty set of (finite) configurations, and FC C x Pp(FE) is an enabling relation
satisfying the following axioms. (In stating the axioms, and in what follows, we let ¢ range
over C' and u range over Pp(F).)

(AO) 0 #c=3Jeccc—ete
(A1) ¢k 0

(A2) cFu= (cNu=0and Vo Cu.(cFvand cUvFu—w)). O

In the rest of this paper we refer to local event structures as L-event structures.

Note that (A0) implies that if § # ¢ € C' then there exists ¢ € ¢ such that ¢ — e € C.
Hence () € C, because C' is non-empty. The axiom (A2) implies that if ¢ - v then cUv € C
for all v C u. Note also that the axiom (Al) could have been replaced by the condition
that the enabling relation I is not empty.

Example 1.2

In Figure 1 three L-event structures ES;, = (F;,C;, k), ¢ = 1,2,3, are depicted. In
depicting an L-event structure (£, C,) we use the following convention. If ¢ F v then we
draw a line between ¢ and ¢ U u in case |u| = 1 and we draw a dotted line between ¢ and
cUuin case |u| >2. O

{ac
{ab} {a,b}
{a} (b} {a} (b} {a}
7 7
ES ES ES

N
N
w

Figure 1: Three L-event structures

We would now like to establish some preliminary properties of L-event structures. Be-
fore doing so, we wish to emphasize that the inclusion relation between configurations
in the present set-up does not carry much information. Consider the L-event structures
depicted in Figure 2.

Clearly the sets of configurations of both these L-event structures (as well as those of the
two L-event structures FS; and ES5 shown in Figure 1) are identical. Thus the reachability
relation between configurations of an L-event structure carries more useful information.

Let ES = (F,C,F) be an L-event structure. Then Cgg C C x C is the least relation
satisfying: if ¢ F u then ¢ CggcUu. Let Cgg= (Cgs)*. Then it is easy to see that the
relation Cgg is a partial ordering relation. In what follows we omit the subscript gg in Cgg
and Cgg if £S is clear from the context.

{ab} {ab}

{a} {b} {a} {b}

~ ~

g g

ES,

Figure 2: L-event structures with the same configurations

Lemma 1.3
Let (E,C,F) be an L-event structure and let ¢ € C' and €1, €2 € ¢ be such that e; # es.
Then

(1) 3¢ e C.d Ccand ((e; € ¢ and ¢ F e3) or (e2 € ¢ and ¢ F e1))
(2) I eC.dCcand (¢; € & ex &).

Proof.

In order to prove (1), we proceed by induction on k = |¢|. If k = 2 then ¢ = {eq, es}
and by (A0), ¢ —e1 b eq or ¢ — ez F e5. In either case the required result follows.

If & > 2 then, again by (A0), there exists e € ¢ such that ¢ —e F e. If € = ¢; or
e = €3 then let ¢ = ¢—e. Otherwise the required ¢’ € (' exists by the induction hypothesis

applied to ¢ — e.
(2) follows immediately from (1) and (A2). O

Lemma 1.3(2) implies that, similar to Winskel’s general event structures [W3], L-event
structures satisfy a coincidence freeness property.

In formulating some other properties of L-event structures we will use the following
notation and terminology.

For an arbitrary set X we let X* denote the free monoid generated by X. The prod-
uct operation is concatenation and the elements of X* are called words or alternatively
sequences (over X). The unit element of X* is the empty word A and Xt = X* — {A}
is the set of non-empty words over X. Elements of Pp(X) will be referred to as steps
(over X) and elements of (Pp(X))T as step sequences (over X). We view (Pp(X))T as a
(free) monoid: the unit element is) € Pp(X) and the product operation is the accordingly
modified usual concatenation operation. Thus pl = 0p = p for all p € (Pr(X))" where pl)
denotes the product of p and 0.

Fora € X and p € (Pr(X))*, we let num,(p) denote the number of times a occurs in p.
Thus num,(0) = 0 and num,(pu) = num,(p)+1ifa € v and num,(pu) = num,(p)ifa & wu.

5

We let |p| denote the number of elements in p, that is |p| = 3,cx num.(p), and alph(p)
denote the set of elements of X occurring in p, that is alph(p) = {a € X | num,(p) > 0}.

Let ES = (F,C,F) be an L-event structure. Then SFSgs C (Pp(E))* is the set of step
firing sequences of ES, and ¢f pg : SFSgs — Pp(FE) is the function which associates with
each step firing sequence the configuration it leads to. They are defined inductively as:

(1) B € SESgs and ¢f go(0) =0

(2) (p € SFSEs and ¢f gg(p) F u) = (pu € SFSEs and ¢f pg(pu) = ¢f gg(p) U u).

If the L-event structure ES is clear from the context, then we may omit the subscript

ES in SFSES and cfES'

The following lemma states some basic observations on the relationship between the
step firing sequences and the configurations of an L-event structure. These observations
will be frequently used in the sequel.

Lemma 1.4
Let (F£,C,F) be an L-event structure. Then

(1) Vp e SES.(¢f(p) € C and ¢f(p) = alph(p))

(2) € = {alph(p) | p € SFS}

(3) Vp,p' € SFS. (alph(p) = alph(p') = (pu € SFS < p'u € SFS))
(4) Yp € SFS.Ye € E.num.(p) < 1.

Proof.

(1) Let p € SES. The proof is by induction on k& = |p|. If & = 0 then p = § and
hence ¢f(p) = 0 € C and ¢f(p) = 0 = alph(p). Now assume that & > 0. Then
there exist p’ € SFS and 0 # u € Pp(F) such that ¢f(p’) F v and p = p'u. Hence
cf(p) = ¢f(p)Uu € C by (A2) and ¢f(p) = alph(p) by the induction hypothesis
applied to p'.

(2) If p € SFS then alph(p) = ¢f(p) € C by (1). Now let ¢ € C. We proceed by
induction on k = |¢|. If & = 0 then ¢ =) and hence p =) € SFS is such that
alph(p) = ¢. Now assume that & > 0. Then by (A0) there exists e € ¢ such that
c¢—e F e. By the induction hypothesis applied to ¢— e there exists p’ € SFS such that
alph(p’) = ¢f (p') = c—e. Then p'e € SES by the definition of SFS and alph(p’e) = c.

(3) Let p,p" € SES be such that alph(p) = alph(p’). It uw = 0 then pu,p'u € SFS by
(Al). If w # 0 then ¢f(p) = ¢f(p’) by (1) and hence pu € SFS iff ¢f(p) & w iff
plu e SES.

(4) Let p € SFS. The proof is by induction on k = |p|. If & = 0 then the claim clearly
holds. Now assume that & > 0. Then there exist p’ € SFS and 0 # v € Pp(F)
such that p = p'u and ¢f (p’) F u. Then num.(p’) <1 for all e € F by the induction
hypothesis applied to p'. Because ¢f(p') Nu = 0 by (A2) and alph(p’) = ¢f(p’) by
(1) we can now conclude that also num.(p) <1 foralle € E. O

Finally in this section, we introduce structure-preserving morphisms between L-event
structures.

Definition 1.5

An LES-morphism from an L-event structure (Fy,Ci,Fq1) to an L-event structure
(Es,Cy,F2) is a partial function f: Ey — F3 such that:
Ve e C1.Yu € Pp(Ey).ckru= fle) b f(u). O

Here and in the sequel we adopt the convention that for a partial function f: X7 — X;
and subsets u; € X7 and uy C Xy, f(u1) = {b € Xy | b = f(a) for some ¢ € uy} and
FHuz) ={a € X1 | f(a) = b for some b € uy}.

This notion of morphism induces in a standard way a corresponding notion of isomor-
phism. Let, for an arbitrary L-event structure ES, id gs denote the identity LES-morphism
of ES which is the identity function on its events. Then an LES-morphism f from ES;
to FSy is an LES-isomorphism iff there exists an LES-morphism ¢ from FES; to ES; such
that g o f = idgs, and fog = idgs,. It is easy to see that two L-event structures
ES; = (F1,C1,F1) and ESy = (Ey, Oy, k) are LES-isomorphic, denoted by ES; = ESs,
iff there exists a bijection f: £y — F3 such that ¢ty u < f(c¢) by f(u).

We conclude with some properties of LES-morphisms which will be useful in later
sections.

Lemma 1.6

Let f be an LES-morphism from (£, Ci,F1) to (F2, Ca,F2) and let ¢ € Cy and ey, €3 € ¢
be such that e; # ey and both f(ey) and f(ey) are defined. Then f(e1) # f(ea).
Proof.

By Lemma 1.3(1) we may assume without loss of generality that there exists ¢ C ¢ such
that e; € ¢ and ¢ 1 e3. By the definition of an LES-morphism we then have f(¢') k2 f(e2)

and so f(ea) @ f(¢) by (A2), and f(er) € f(). O

Lemma 1.7

Let f be an LES-morphism from ES; = (E1,C1,F1) to ESy = (F2,Cs,F3). Then
f(SFSgs,) € SFSgg, (where the homomorphic extension of f to step sequences is also
denoted by f).
Proof.

Let p € SFSgs,. We prove by induction on |p| that f(p) € SFSgs,. If p = 0 then this
is clear, so assume that there exist p’ € SFSgs, and () # u € Pp(F;) such that p = p'u.
Then alph(p’) 1 u. Hence f(alph(p')) Fo f(u) because f is an LES-morphism. Since
f(p') € SFSgs, by the induction hypothesis and f(alph(p’)) = alph(f(p’)) this implies
that f(p')f(u) = f(p) € SFSps,. O

2 The Unique Occurrence Property

In this section we lift the unique occurrence property from the theory of prime event
structures [NPW] to the more general framework of local event structures.

The definition of the unique occurrence property is based on an equivalence relation
over prime intervals, that is, event occurrences. Rather than defining this equivalence
relation directly in the context of local event structures, we define it in the more abstract
setting of step sequences. Then the same idea of equivalence can be used in Section 3 to
define a map from Petri nets to local event structures.

In order to define the equivalence relation and to establish some of its properties, we
use an arbitrary but fixed set X, we let p range over (Pr(X))*, a range over X, and u
range over Pr(X). Furthermore, we fix a set L C (Pr(X))* of step sequences satisfying
the following two properties.

(L1) pue L=pe L

(L2) pu e L = Vv Cu.pv(u—v)e L.

The set of prime intervals of L, denoted by Ply, is given by: Pl;, = {pa | pa € L}. We
sometimes write P/ rather than PI;, if L is clear from the context.

Now let R C PI x PI be an equivalence relation. Then R is said to be L-consistent iff
it satisfies the following conditions (C1) and (C2).

(Cl) (pu € L and a € u) = pa R p(u — a)a.

Note that (C1) is well-defined, because whenever pu € L and a € u, then by (L.2)
pa(u —a), p(u — a)a € L and hence by (L1) also pa € L.

The second condition demands that prime intervals pa, p'a which have R-equivalent pasts
in the sense that the same R-equivalent prime intervals occur in p and p’ should in turn
be R-equivalent. In order to formulate (C2) we adopt the following conventions.

inty, : L — Pp(PI), the function which maps each step sequence to the set of prime
intervals in that sequence, is given inductively by: intr(0) = 0 and intp(pu) = intr(p) U
{pa | a € u} for all pu € L. Note that inty is well-defined, because if pu € L, then also
p € L by (L1) and pa € L for all @ € u by (L.2). If L is clear from the context, then we
may omit the subscript r in inty.

For pa € PI, (pa)r is the equivalence class (under R) containing pa, that is (pa)r =
{p'a" € PI'| p'a’ Rpa}. Let pastp : L — Pp(PI/R) be given by: pastg(p) = {{p'a)r | p'a €
int(p)}.

(C2) pa,p'a € PI = (pastp(p) = pastp(p') = pa R p'a).

Note that in general there may be (infinitely) many equivalence relations which are
L-consistent.

Lemma 2.1

Let K = {R C PI x PI | Ris an L-consistent equivalence relation}. Then K # () and
NK e K.

Proof.

Since PI x PI is clearly an equivalence relation which is L-consistent, we have that
K40,

Now let # = K. Then it is clear that R is an equivalence relation. Suppose pu € L
and a € u. Then pa R p(u — a)a for all R € K because each R € K satisfies (C1). Hence
also pa fx’p(u —a)a.

In order to prove that R satisfies (C2), let pa,p'a € PI be such that pastz(p) =
past 5(p'). It suffices to prove that pasty(p) = pastr(p’) for every R € K. Because in that
case pa R p'a for every R € K and hence pa fx’p’a.

So, let R € K and suppose (p1a1)r € pastp(p). Then there exists pyaz € int(p) such
that (pra1)r = (p2az)r. We then also have that (psaqs)s € pastp(p) = pastp(p’). Then
there exists psas € int(p’) such that (pyaz)ps = (psas)p. Hence also (psas)r € pastp(p).
Moreover, (psaz)r = (psas)r because R C R. This proves that (pia1)r € pastp(p).
Similarly it can be proved that pastz(p’) C pastg(p).

This proves that pastg(p) = pastp(p’) forall R € K. O

Hence there exists a least equivalence relation contained in PI x PI which is L-
consistent. This equivalence relation (denoted as R in the proof of Lemma 2.1) will from
now on be denoted as ~7..

In what follows we write (pa); and past; rather than (pa)~, and past_ respectively.
If ~; is the only equivalence relation under consideration, then we may even omit the
subscript .

Lemma 2.2
Let pyay, paas € PI be such that pyay ~p poas. Then

(1) a1 = as and NUM g, (p1) = numaQ(pz)

(2) prar ~p paag whenever L' C (Pp(X))" is such that L’ satisfies (L1) and (L2) and
LClL.

Proof.

In order to prove (1), define the equivalence relation R C PI x PI by: pa R p'a’ iff
a = a" and num,(p) = numy(p’). It is sufficient to prove that R is L-consistent. Then the
required result would follow from the fact that ~;C R.

Clearly, R satisfies (C1). Let pa, p'a € PI be such that pastp(p) = pastp(p'). We first
want to argue that numg(p’) > numg(p). If num,(p) = 0 then this is trivial, so assume that
numg(p) > 0. Then there exists pia € int(p) such that num,(p1) = numy(p) — 1. Then

9

(pra)r € pastp(p) = pasty(p'). Hence there exists paa € int(p') such that (p1a)r = (p2a)r
which implies that num,(p1) = numy(p2). We now have num,(p') > numq(p2) +1 =
numg(p1) + 1 = numgy(p). Similarly we can prove that num,(p’) < num,(p) and thus
numg(p) = numgy(p’). Consequently pa R p’a which implies that R satisfies (C2).

Now in order to prove (2), let L' C (Pp(X))" be such that L. C L' and L’ satisfies (L1)
and (L2).

Define the equivalence relation R C Pl x Pl; by: pa Rp'a’ iff pa ~p p'a’. Tt is
sufficient to prove that R is L-consistent because then ~;C R.

Clearly, R satisfies (Cl). In order to prove (C2), let pa,p’a € PIp be such that
pastp(p) = pastp(p’). It is sufficient to show that past;.(p) = past;,(p'), because ~p,
satisfies (C2).

Let (psas)rs € past;,(p). Then there exists pyas € intp/(p) = intp(p) with (psas)p =
(paas)rs. Then also (psas)r € pasty(p) = pastp(p'). Hence there exists psas € int(p') =
intr(p") with (psas)r = (psas)r. Then pyas ~p psas by the definition of R. Moreover,
(psas)rr € pastp(p'). This proves that (psas)r € pasty.(p’). Similarly it can be proved
that past;(p') C past;(p) and thus past;,(p) = past;(p'). O

Note that for an L-event structure ES = (E,C,F), SFS is a subset of (Pr(FE))* satis-
fying the conditions (L1) and (L2). Hence we have the equivalence relation ~gpg. In what
follows we write Pl gg, intgs, ~gs, (pe)rs, and past g rather than Plgpg, intsps, ~srs,
(pe)~ps, and past, . respectively.

The unique occurrence property of local event structures is now defined in terms of the
equivalence relation ~gg.

Definition 2.3
An L-event structure ES = (E,C,F) has the unique occurrence property if

(Ul) Ve € E.dpe € Plgg
(U2) Vpie, pae € Plgg. pre ~gg pze. O

From now on L-event structures satistfying the unique occurrence property will be re-
ferred to as UL-event structures.

Thus for an UL-event structure ES there exists a bijective correspondence between its
events and the equivalence classes of its prime intervals under ~pgg. Hence for each event
all its occurrences are the same under ~pg

From the event structures from Example 1.2, ES; is not an UlL-event structure. Both
ESy and ESs are UL-event structures. In £S5, be ~gg, ¢ and ¢b ~gg, b by (C1), and hence
past g, (bc) = past pg, (cb). This implies that bca ~gg, cba by (C2). Then a ~gs, ca ~gs,
cba ~ g, beca ~gs, ba by (C1). Similarly, b ~pgs, ab, and hence past g, (ab) = past g, (ba).
Now abd ~ g, bad by (C2), even though {a,b} is not enabled in .

Next we show that there is a natural way to view prime event structures [NPW, WA4]
as UL-event structures. First we recall the definition of prime event structures from [W4].

10

Definition 2.4

A prime event structure is a triple (I, <, #) where I is a set of events, <C I/ x I is
a partial order, the causal dependency relation, and # C E x E is a symmetric, irreflexive
relation, the conflict relation, satisfying

(Pl) 60#61 S €9 = 60#62
(P2) Ve € E. |eis finite, where e = {e' € F | ¢ <e}. O

Let P = (FE,<,#) be a prime event structure and ¢ C E. We say that ¢ is downward-
closediff Ve, e’ € E.((e € cand ¢ < ¢) = ¢ € ¢). Wesay that cis #-freeiff (cxc)N# = 0.
If ¢ is downward-closed and #-free, then ¢ is called a configuration. In what follows we
only deal with the finite configurations of a prime event structure. Cp denotes the set of
finite configurations of the prime event structure P.

For a prime event structure P = (F,<,#), define pu(P) = (F, Cp,F) where - C
Cp x Pp(E) is given by: ¢ uiff cNu =0 and Vo Cu.cUv € Cp.

Lemma 2.5

Let P = (FE,<,#) be a prime event structure. Then pu(P) = (E, Cp,F) is an L-event
structure.
Proof.

In order to prove that pu(P) satisfies (A0), let § # ¢ € Cp. Let ¢ € ¢ be a maximal
event in ¢ in the sense that for all ¢’ € ¢, ¢ < ¢’ implies that ¢ = ¢/. Then ¢ — ¢ € Cp and
hence ¢ — e F e. This proves that pu(P) satisfies (A0). From the definition of pu(P) it
easily follows that pu(P) satisfies (Al) and (A2). O

Our next aim is to prove that for each prime event structure P, the L-event structure
pu(P) has the unique occurrence property. The first step is to show that two step firing
sequences of pu(P) that lead to the same configuration have the same past (under ~,,p)).

Lemma 2.6

Let P = (F, <, #) be a prime event structure with pu(P) = (E, Cp,F) and let pq, py €
SFES be such that alph(p1) = alph(pz). Then past(p1) = past(pz).

Proof.

The proof is by induction on k& = |alph(p1)|. If k& = 0 then p; = p2 = 0 and the claim
clearly holds. Now assume that & > 0. Then there exist p}, py € SES and) # uy,uz €
Pr(FE) such that p1 = plug, pa = phus, ¢f(p)) b w1, and ¢f(py) F ug. Let e1 € uy and
€2 € ug. Then pj(ur — er)eq, phluz — ez)ex € SFS because pu(P) satisfies (A2). Moreover,
past(py) = past(py(ur — er)er) and past(py) = past(py(uy — e2)ez) because ~,,(p) satisfies
(C1).

If 4 = ey then alph(pi(u1 — e1)) = alph(py(us — e2)) and hence past(pi(u; — e1)) =
past(phy(uz—ez)) by the induction hypothesis. This implies that p(u1—e1)er ~pupy phuz—
ez)eq, because ~,,py satisfies (C2). Thus past(p1) = past(pi(uy — er)er) = past(p|(us —
€1)) U (pi(u1 — er)er) = past(ph(uz — €2)) U (py(uz — e2)€2) = past(ph(uz — €2)ez) = past(pz).

11

Now assume that e; # ez. Then it is easy to see that alph(p;) — {e1,e2} € Cp.
By Lemma 2.5 and Lemma 1.4(2) there exists p € SFS such that alph(p) = alph(p1) —
{e1,e3}. Since pe; € SES and alph(per) = alph(pl(uy — €2)), we have that past(pe;) =
past(py(uz — e3)) by the induction hypothesis. Similarly, past(pez) = past(pj(ur — e1)).
Hence peies ~,u(py ph{us—ez)es and pesey ~ . py pi(ur—eq)eq because ~ ., py satisfies (C2).
Since alph(p) F {e1, e2} we also have that pey ~,,(p) peser and pey ~ . (py peres. Summa-
rizing these results we can conclude that past(p1) = past(p|(u1—eq)er) = past(p)(u;—eq))U
(P (ur—er)er) = past(pez)U(peser) = past(p)U(pes)U(peser) = past(p)U{peies)U(per) =

past(per) U (peres) = past(py(uz — e3)) U (ph(uz — e2)eq) = past(py(ug — e2)ez) = past(py).
0

Theorem 2.7

Let P = (F,<,#) be a prime event structure. Then pu(P) = (£, Cp,t) is an UL-event
structure.
Proof.

By Lemma 2.5, pu(P) is an L-event structure. We must show that pu(P) has the
unique occurrence property as stated in Definition 2.3.

Let e € E. Then |e—e, e € Cp and hence le—e | e. By Lemma 2.5 and Lemma 1.4(2),
there exists p € SFS such that alph(p) = le —e.

Then pe € PI and hence condition (Ul) is satisfied. In order to prove that condition
(U2) is satisfied, we first show that pe ~,,(p) p'e for all p'e € PI. Then by the transitivity
of ~,.(p) we have that also p'e ~,,py p"e for all p'e, p"e € PI.

So let p'e € PI. Then alph(p’e) € Cp and hence alph(p) C alph(p’). We prove that
pe ~pupy p'e by induction on |alph(p')|. If alph(p') = alph(p) then past(p) = past(p’)
by Lemma 2.6. Hence pe ~,,(py p'e because ~,,(p) satisfies (C2). Now assume that
lalph(p')| > |alph(p)|. Then there exists €’ € alph(p’) — alph(p) such that €’ is a maximal
element in alph(p’) under <. Such an e’ must exist because alph(p’) is a finite set and <
is a partial ordering relation. Then alph(p’) — ¢’ € Cp and (alph(p’) —€')U e € Cp. Let
p" € SES be such that alph(p”) = alph(p’) — €’. Then p”e € PI. Because |alph(p”)| <
lalph(p')|, p"e ~pu(py pe by the induction hypothesis. Now alph(p”e’) = alph(p') and hence
past(p”e’) = past(p') by Lemma 2.6. Hence p"c’e ~,,(py p'e because ~,,(py satisfies (C2).
Since alph(p”) F {e,e'} and ~,,(p) satisfies (C1), we also have that p"e’e ~,,p) p"e. We
can now conclude that pe ~,,py p"e ~,upy p'€'e ~,u(p) p'e. This proves condition (U2).
O

As to be expected, not every UL-event structure arises in this fashion. For instance, the
UL-event structure £S5 in Example 1.2 can not be the Ul-event structure associated with
any prime event structure. In Section 6 we will say more about the relationship between
prime event structures and UL-event structures.

12

3 An Event Structure Semantics for Petri Nets

In [NPW] it has been shown how to associate a prime event structure with every 1-safe
Petri net. Here we show how to associate an UL-event structure with every Petri net.
It turns out that for 1-safe Petri nets both constructions agree (upto isomorphism) via
the correspondence between prime event structures and Ul-event structures given in the
previous section.

Definition 3.1
A Petri net is a quadruple N = (S, T, W, M,,,) where

(1) S is a set of places and T is a set of transitions such that SNT = {)
(2) W:(SxT)U(T xS)— Nis a weight function
(3) M,,: S — N is the initial marking of N. O

Given a Petri net N = (5,7, W, M;,) and x € SUT, let *x = {y | W(y,x) > 0} be the
set of pre-elements of x and x* = {y | W(x,y) > 0} be the set of post-elements of .

Observe that the initial marking of a Petri net can be seen as a multiset of places. Also
in defining the dynamics of a Petri net we use multisets. Here, a multiset (over some given
set X) is a function v : X — N. A multiset u is finite if 3° .y u(a) < co. The set of finite
multisets over X is denoted by Mp(X). Note that Mp(X) contains the empty multiset,
denoted by 0, where 0(a) = 0 for all « € X. A multiset u over X with the property that
u(a) <1 for all @« € X, may be identified with the subset {a € X | u(a) = 1} of X. In
particular, if u is such that there is precisely one element @ € X with u(a) =1 and u(b) =0
for all b € X with b # a, then we simply write a for u.

We view (Mp(X))T as a (free) monoid: the unit element is 0 € Mp(X) and the product
operation is the accordingly modified usual concatenation operation. Thus p0 = 0p = p

for all p € (Mp(X))*.

Definition 3.2

Let N = (S, T, W, M;,) be a Petri net. The set MFSy C (Mp(T))* of multiset firing
sequences of N, the set RMy of reachable markings of N, and the multiset transition
relation =>nC {M;,} x MFSy x RMy are the least sets satisfying the following two
conditions.

(1) 0 € MFSy, My, € RMy, and M;, ==y M,

(2) Suppose p € MFSy and M;, ==y M. Furthermore, suppose u € Mp(T) is such
that Vs € S.M(s) > Y,cru(t) - W(s,t). Then pu € MFSy, M' € RMy, and
M,, = x M’ where Vs € S. M'(s) = M(s)+ X cpul(t) (W(t,s) —W(s,t)). O

13

Given a Petri net N = (S,T, W, My,), let SFSy = MEFSy N (Pp(T))*. We refer to
SES N as the set of step firing sequences of N.

Now we will use SFSy rather than M[ESy to associate an UL-event structure with
every Petri net. It is in this sense that our event structure semantics “filters” out auto-
concurrency.

The construction from Petri nets to UL-event structures is based on the equivalence
relation ~gpg, over the prime intervals Plgps, = {pt | pt € SFSxn and t € T'} associated
with SFS . That is, we follow the approach outlined in Section 2. Note that SFS v satisfies
the conditions (L1) and (L2) from Section 2 which implies that ~gpg, can be defined. In
what follows we write Ply, inty, ~n, (pt)n, and pasty rather than Plgps,, intsrs,,
~S5FS s (Pt)~y > and past, respectively.

Using these notions we can now associate with each Petri net NV an L-event structure
nu(N). Then we prove that nu(N) is even an UL-event structure.

Definition 3.3
Let N = (S,T,W, M,,) be a Petri net. Then nu(N) = (F,C,F) where

E={{pt)n | pt € Ply}
C = {pasty(p) | p € SFSN}

FC C x Pp(F) is given by: ¢ b u iff there exists pv € SFSy such that pasty(p) = ¢,
and u={{(pt)n |t €v}. O

Lemma 3.4

Let N = (S, T, W, M;,) be a Petri net. Then nu(N) = (F,C,F)is an L-event structure.
Proof.

Let § # ¢ € C. Then there exists pu € SFSy such that v # 0 and é = past y(pu).
Let ¢t € u. Then p(u —t)t € SFSN. Hence pasty(p(u — 1)) F (p(u — t)t)n. By condition
(C1) we have that pt ~n p(u — t)t. Since num(p1) < numy(p) for all pit € int(p(u — 1)),
we must have that (pt)y & pasty(p(u — 1)) by Lemma 2.2(1). Hence pasty(p(u —t)) =
past y(pu) — (pt)n and thus é — (pt)n F (pt)ny. This proves that nu(N) satisfies (AO).

Since pll € SFSy for all p € SESy, we have that ¢ F), for all ¢ € ', and so nu(N)
also satisfies (A1).

Let ¢ € C'and @ € Pp(FE) be such that ¢ - 4. Let pu € SESy be such that pasty(p) = ¢
and @ = {{pt)ny |t € u}. First we must prove that ¢Na = 0. If (p1t1)n € ¢ = pasty(p),
then numy, (p1) < numy (p) by Lemma 2.2(1). On the other hand, (p1t1)n € @ implies
that numy, (p1) = numy (p) by Lemma 2.2(1). Hence ¢ N4 = §. Now let & C u. Let
v C u be such that o = {(pt)ny | t € v}. Then pv(u —v) € SFSy. Hence ¢ F ¢ and
cUoF {{pvt)y |t €u—v}. Forallt € u—wv,p(vUt) € SFSy and so by condition (C1),
pt ~n pvt. Therefore {{(pvt)n |t € u— v} = 4 — 0. This proves that nu(N) satisfies (A2).
O

14

Example 3.5
Let Ny be the Petri net depicted in Figure 3 with its associated L-event structure
nu(Ny).

{<a><ac>} {<bc>}

: ‘

{<a>} {}

: ~N 7

Y4

N, nu(N,)

Figure 3: A Petri net and its associated L-event structure

For the transition ¢ of N; there are two different events in nu(Ny): (ac)y, and (be)n; .
The L-event structure nu(Ny) has four events and also four different equivalence classes of
prime intervals (under ~,,(n;)). Hence nu(Ny) has the unique occurrence property.

Let N3 be the Petri net depicted in Figure 4. In Ny, @ and b can only occur concurrently
if c occurs first. The transition d can only occur if both @ and b have occurred, but ¢ has not
vet occurred. The L-event structure nu(Ny) is ES3 from Example 1.2 (where the unique
equivalence class corresponding to each transition has been replaced by the transition
itself). Thus, also nu(N3) has the unique occurrence property. O

We now wish to prove that, given an arbitrary Petri net N = (5,7, W, M,,), the L-
event structure nu(N) = (F,C,F) always has the unique occurrence property. To this end
we first show how the set of step firing sequences of nu(N) can be derived from the set of
step firing sequences of N by means of a function seqy which associates with every step
firing sequence of N a step sequence over F.

Define the function seqy : SFSy — (Pp(E))T inductively by: seqy(0) = 0§ and
seqn(pu) = seqn(p){(pt)n | t € u}. If the Petri net N is clear from the context, then
we may omit the subscript x in seqy.

Lemma 3.6

Let N = (S,T,W, M;,) be a Petri net. Then seq(SFSn) = SES).
Proof.

Let nu(N) = (E,C,F). Let p € SFSy. We prove that seq(p) € SFS,,v) and
cf (seq(p)) = pasty(p) by induction on |p|. If p = @ then this is clear, so assume

15

Figure 4: The Petri net N

that p = p'u with p/ € SFSy and § # w € Pp(T). By the induction hypothesis
seq(p’) € SFS,, vy and cf (seq(p’)) = pasty(p'). We also have, by the definition of
, that pasty(p') & @ where & = {{(pt)n | t € u}. Hence seq(p')i € SFS,,v) and
cf (seq(p’)i) = pasty(p’') U G. Since seq(p')u = seq(p) and pasty(p') Ut = pasty(p), we
can now conclude that seq(p) € SFS,, vy and ¢f (seq(p)) = pasty(p).

Now let p € SFS,,(n). We prove by induction on |p| that there exists p € SFSy with
seq(p) = p and pasty(p) = alph(p). If p = @ then p = () is as required, so assume that
p = pt with p/ € SES .y and 0 # @ € Pp(L). By the induction hypothesis there
exists p' € SEFSy such that seq(p’) = p' and pasty(p') = alph(p'). Since pasty(p') F @
there exist p; € SFSy and u € Pp(T) such that pyu € SFSy, pasty(p1) = pasty(p’), and
u = {{pt)ny | t € u}. From pasty(p1) = pasty(p’) and Lemma 2.2(1) it easily follows
that num(p1) = numy(p’) for all ¢+ € T and hence p; and p’ lead to the same marking.
Then we know from pyu € SFSy that also p'u € SESy. Moreover, (p1t)y = (p't)n
for all t € u by condition (C2). Hence seq(p'u) = seq(p){(p't)n | t € u} = p'ii and

~

pasty () = pasty (') U { (1) | £ € u} = alph(s) Ut = alph(p/d). O
The above lemma allows us to characterize int (v as follows.

Lemma 3.7
Let N = (5,1, W, M;,) be a Petri net and let p € SFSy. Then int,,v)(seq(p)) =

{seq(p')(p't)n | p't € intn(p)}.
Proof.

If p = 0 then the claim trivially holds, so assume that p = pyu with p; € SFSx and
0 # u € Pp(1') and suppose that int,,vy(seq(p1)) = {seq(p'){p't)n | p't € intn(p1)}. Then

16

te{(pit)n |t €ul} = {seq(p)(p't)n |

int vy (seq(p)) = int vy (seq(pr)) U {seq(p1)i
p't € intn(p)}. O

Lemma 3.6 implies a close relationship between the prime intervals of a Petri net N
and the prime intervals of nu(N) : Pl,, vy = {seq(p){(pt)n | pt € PIx}. Using Lemma 3.6
and Lemma 3.7 it is shown next that there is also a strong correspondence between the
equivalence classes of prime intervals under ~x and ~,, ().

Lemma 3.8

Let N = (5,7, W, M;,) be a Petri net and let pitq, pat2 € Ply. Then pity ~n patsy iff
seq(p1){prti) N ~uu() s€q(p2)(pata) N
Proof.

If seq(p1){piti) N ~nuwvy s€q(p2)(p2la)n, then by Lemma 2.2(1) (pit1)n = (p2la)n

In order to prove the implication in the other direction, assume that (p1t;1)ny = (pata)n
Define the equivalence relation R C Ply x Ply by: pt Rp't" iff seq(p)(pl)n ~nu(w)
seq(p)(p't')n. Suppose that R is SFSy-consistent. Since ~py is the least equivalence
relation which is SFSy-consistent it follows that ~xyC R. Hence pyt; R poty and thus, by
the definition of R, seq(p1)(p1t1)n ~nuv) s€q(p2)(p2t2)n

In order to prove that R satisfies (Cl), suppose pu € SFSy and t € u. Since ~y
satisfies (C1), we have (pt)n = (p(u —t)t)n. We also have, by Lemma 3.6, that seq(pu) €
SFS vy Combining this with ~,, vy satisfies (C1) leads to seq(p){pt)n ~nuvy seq(p)(t—
(pt)n){(pt)n where & = {{pt')n | t' € u}, because . Since seq(p)(t — (pt)n) = seq(p(u —1)),
we can now conclude by the definition of R that pt Rp(u — t)t. This proves that R satisfies
(C1).

Now suppose pt, p't € Ply are such that pastp(p) = pastp(p’). In order to prove that
pt R p't, we must show that seq(p)(pt)n ~nuvy seq(p’){(p't)n. Because ~,, vy satisfies
(C2), it suffices to prove that past,,n(seq(p)) = past,,(vy(seq(p’)) and (pt)n = (p't)n.

In order to prove that past,,v)(seq(p)) = past,,n)(seq(p’)), let (prl1) wu(y €
pastnu(N)(seq(p)). Then there exists psts € int(seq(p)) such that (p 1t1>nu(N) = </33f3>nu(N).
By Lemma 3.7 there exists psts € int(p) such that sty = seq(ps){psts)n. Then (psts)r €
pastp(p) = pastp(p'). Hence there exists psty € int(p’) such that <p3t3>R = (pat4)r. Then,
again by Lemma 3.7, seq(p4)<p4t4>N € int(seq(p')). Moreover, psts ~uu(N) 5€q(pa){pats) N
by the definition of R. Hence (p 1t1>nu(N) = <seq(p4)<p4t4>N>nu(N) € past,, (v)(seq("}). This
proves that past,,)(seq(p)) C past,,v(seq(p’)). By a symmetric argument we can show
that past,,vy(seq(p')) S past,,vy(seq(p)) and thus past,,, () (seq(p)) = past v (seq(p))-

In order to prove that (pt)y = (p't)n, it suffices to prove that pasty(p) = pasty(p’)
because ~y satisfies (C2). Let (psts)n € pasty(p). Then there exists psty € int(p)
such that (psts)n = (patsa)n. By Lemma 3.7 we now have that pats € int(seq(p)) where
pr = seq(ps) and iy = (psta)n. Hence (pals)nu(n) € PGStnu()(5661()) = past,,) (seq(p’)).
Then there exists /35f5 € int(seq(p’)) such that <p4t4>nu < 5)nu(N)- By Lemma 2.2(1)
ty = t5. By Lemma 3.7 there exists psts € int(p') such that Ps = Seq(p5) and 15 = (psts)n.
Then {5 € pasty(p'), and so (psts)y = t, =15 € pasty(p'). This proves that pasty(p) C
past y(p'). Similarly we have that pasty(p') C pasty(p) and thus pasty(p) = pasty(p').

17

This finishes the proof that R satisfies (C2). Now we can conclude that
seq(p1)(pile)N ~uu(ny seq(p2)(pata)n. O

One of the main results of this paper can now be stated.

Theorem 3.9

Let N = (S,T,W, M,,) be a Petri net. Then nu(N) is an UL-event structure.
Proof.

By Lemma 3.4, nu(N) is an L-event structure. We must verify that nu(N) satisfies the
conditions (Ul) and (U2) specified in the definition of the unique occurrence property.

Let nu(N) = (F,C,F). If (pt)n € F then pt € SFSy and hence pasty(p) F (pt)n.
Hence nu({\f) saAtisﬁes (Ul). Now in order to prove (U2), let prty, paty € Pl (ny be
such that ¢ty = ¢t;. By Lemma 3.6 there exist py,py € SFSy and ty,f5 € T such that
pit1, pata € SFSN, p1 = seq(p1), p2 :Aseq(pz), f = (p1t1)n, and ty = (pat2)N. Since ty =1,
we then have by Lemma 3.8, that pity ~,, vy p2le. O

In [NPW] a map from 1-safe Petri nets to prime event structures is defined, which
associates a prime event structure npw(N) with each 1-safe Petri net N. In the present
setting, a 1-safe Petri net is a Petri net N in which for every M € RMy and every s of IV,
M(s) < 1. In addition we require, similar to [NPW], that a 1-safe Petri net does not have
isolated transitions, that is transitions ¢ with *¢ U ¢* = (.

Now let NPW = puonpw, where pu is the map from prime event structures to UL-event
structures defined in Section 1. Then we have the following result.

Theorem 3.10
Let N be a 1-safe Petri net. Then nu(N)= NPW(N). O

The proof of this result is tedious, but straightforward to obtain by basically using
arguments available in the literature. In particular, [WN] contains a representation result
linking prime event structures to the Mazurkiewicz trace languages. The proof of this
representation result given in [WN] can be easily adapted to serve as the backbone of the
proof of Theorem 3.10.

Thus our event structure semantics for Petri nets, when restricted to 1-safe Petri nets,
agrees completely (upto isomorphism) with the event structure semantics of [NPW] for
1-safe Petri nets. Clearly, the class of 1-safe Petri nets is properly included in the class of
Petri nets. Note that the class of prime event structures (under the map pu) is properly
included in the class of UL-event structures. Hence Theorem 3.9, Theorem 3.10, and
Example 3.5 together assure us that our event structure semantics for Petri nets (even
with auto-concurrency filtered out) is a strictly conservative extension of the basic result

in [NPW].

To conclude this section, we identify the subclass of Petri nets which do not exhibit
any auto-concurrency in their behaviours. This subclass of co-safe Petri nets will play a
role in Section 5.

18

Definition 3.11
A Petri net N is co-safe it MESy = SFSy. O

Note that every 1-safe Petri net is co-safe. The class of co-safe Petri nets is however a
non-trivial extension of the class of 1-safe Petri nets. The Petri net Ny depicted in Figure 4
is co-safe, but not 1-safe. Interestingly enough, co-safe Petri nets also arise as the targets
of the net semantics constructed for the process algebra called Petri Box Calculus [BDH].

This follows from the work of [De].

4 From Local Event Structures to Petri Nets

In [NPW] it is not only shown how to associate a prime event structure with each 1-safe
Petri net, but also a map from prime event structures to 1-safe Petri nets is given. Our
aim is to lift this construction also here; in other words, set up a map from UlL-event
structures to Petri nets. It turns out that the construction we have in mind works for all
L-event structures. Hence we will construct a map from L-event structures to Petri nets.
As a consequence, we will be able to show later that every L-event structure can in fact
be represented as an UlL-event structure.

Given a prime event structure (F, <,#), the causality relation <, the conflict relation
#, and the fact that each event occurs at most once makes it possible in [NPW] to quickly
manufacture a suitable set of conditions. It is then easy to associate, in a canonical
way, a l-safe Petri net with each prime event structure. In the present setting, it is far
from clear what causality, concurrency, and conflict could mean. Fortunately, there is a
fairly well-understood construction, the so-called “regional” construction, by which one
can manufacture places (of a Petri net) out of concurrency models which have a natural

transition relation associated with them. (See, e.g., [ER], [NRT], [WN], [HKT1], [M]).

Definition 4.1
Let £S = (E,C,F) be an L-event structure. A region of ES is a function r : CU E —
N U (N x N) satisfying the following conditions.

(1) Vee C.r(c) € N and Ve € E.r(e) € N x N.
For e € E we write r(e) = ("e,).
(2) cFu=(r(c) > Y., eand r(cUu) =7(c)+ X.c,(€" —"€)).

A region r of ES is non-trivial if Je € E.r(e) # (0,0).
The set of non-trivial regions of £S is denoted by Rgg. O

The map en from L-event structures to Petri nets is defined as follows. Let ES =

(E,C,F) be an L-event structure. Then en(FES) = (Rgs, F, W, M,,,) where

(1) W : (Rgs x E)U (F x Rgs) — N is such that ¥r € Rgg.Ve € E.W(r,e) =
"e and Wie,r)=¢€"

19

(2) My, : Rgs — N is such that Vr € Rgg. My, (r) = r(0).

The Petri net en(ES) is “saturated” in the sense that no new places can be added
without changing its behaviour or duplicating places.

For the L-event structure ES5 from Example 1.2 the Petri net en(FES3) is depicted in
Figure 5 where only some of the infinite number of places of en(F£S3) have been drawn.

Figure 5: The Petri net en(£S3)

The following lemma shows that en(£S) has the same step firing sequences as FES.
Moreover, it turns out that MFS.,(gsy = SFS.,(gs) and so en(ES) is a co-safe Petri net.
While it is fairly straightforward to prove that SISgps € SFS.,(ps), the converse inclusion
requires a more complicated proof showing that KS has enough regions to prevent the
existence of “wrong” step firing sequences in SFS ., gs).

Lemma 4.2

Let BS = (E,C,F) be an L-event structure. Then SFSps = MFS.,(psy = SFS cu(5s)-
Proof.

Let en(ES) = (Rgs, E,W, M,;,). Let for each e € E the function r. : C U E —
N U (N x N) be given by:

’ no_ (171) ife'=e
(1) Ye' € E.r.(¢/) = { (0,0) otherwise

(2) Vee C.re(c) = 1.

20

Then each r. is a non-trivial region of ES, and so it is clear that MFS.,gsy = SFS .. (£s)-

Now suppose p € SFSps. We prove by induction on |p| that p € SFS.,(gs) and
r(alph(p)) = M(r) for all r € Rps where M € RM ., gs) is such that M, :p>en(E5) M.
If p = () then this follows immediately, so assume that p = p'u with u # (. Then
alph(p’) = u. By the induction hypothesis p' € SFS.,(gs) and r(alph(p')) = M'(r) for
all » € Rgs where M, éen(ES) M'. By the definition of a region and the definition of
en(ES), M'(r) = r(alph(p')) > Ycc"€ = Yocy W(r,e) for all r € Rpg. This proves that
p'u € SFS ., (gs). Moreover, if M, :p>en(E5) M then r(alph(p)) = r(alph(p')) + 3. c.(e” —
Te)=M'(r)+ X.ca(Wie,r)— W(r,e)) = M(r) for all r € Rpg.

Conversely, suppose that p € SFS.,gs). We prove by induction on |p| that p €
SFSgs and, for all r € Rgs, M(r) = r(alph(p)) where M € RM,,(gs) is such that
M;, :p>en(E5) M. If p = 0 then this is clear, so assume that p = p'u with p’ € SFS.,(gs)

and) # u € Pp(E). Let M" € RM,,(gsy be such that M;, é>8n(ES) M’. By the induction
hypothesis p’ € SFSgg and, for all r € Rgg, M'(r) = r(alph(p’)). We first prove that
alph(p’) Nu = 0.

Suppose e € alph(p’). Then define r{e) : C U E — N U (N x N) as follows.

’ A (170) ife'=e
(1) Ve € E_r<e>(€) - { (()7()) otherwise.
0 ifecec

(2) Yee C.r(e)(c) = {

1 otherwise.

Claim 1. r(e) € Rys.

Let us assume that Claim 1 holds. Then we have M'(r(e)) = r{e)(alph(p’)) = 0. In
addition we know that W (r(e),e) = 1 and, because p'u € SFS.,(gs), we also know that
M'(r(e)) > Yo, W(r(e),€'). All this leads to the conclusion that e ¢ u. This proves that
alph(p’) Nu = 0.

Now we observe that p = p'u € SFSgg if alph(p’) F u. So denote ¢ = alph(p’) and
assume that ¢ - u does not hold. This leads to a contradiction as we show next.

Define r(u,c) : C UE — N U (N x N) as follows.
(1,0) ifeec

(1,1) ife€eu

0,1

(0,1) otherwise.

(1) Ye € E.r{u,c)(e) = {

(2) Ve € Crlu)(e) = [e + Ju] = 1+ Bt — rlecle),

Claim 2. r(u,c) € Rgs.
If Claim 2 holds, then M'(r{u,c)) = r{u,c)(c) = |u| =1 < |u| = Foen e =

21

Yeew W(r(u, ¢), e), a contradiction with p'u € SFS.,(gs). Thus ¢ F u and hence p = p'u €
SES gs. Moreover, r(alph(p)) = r(cUu) = r(c) + X cule’ =€) = M'(r) + > cu(Wie,r) —
Wi(r,e)) = M(r) for all r € Rgg.

Thus if we prove Claim 1 and Claim 2 then we can conclude that SFSps = SFS.,(gs).

Proof of Claim 1.

To simplify the notation we write r instead of r(e). Suppose ¢’ F v. Since ¢ Nv = {)
by (A2) we then have that r(d Uv) =r(d) —|[vNe| =r(d) + X, (€7 = 7€) and r() =
r(dUv)+|vNe| > |vNel =3 .., €. Henceris aregion of ES which is clearly non-trivial.
This proves Claim 1.

Proof of Claim 2.

In order to simplify the notation, we write r instead of r(u,c) in this proof.

Suppose ¢ € ' and v € Pp(FE) are such that ¢ F v. Since ¢/ Nv = 0 by (A2)
we immediately have that r(¢' Uv) = r(¢/) + 3 .c,(¢" — "e). Now we must prove that
r(d) 2 Yeen "€

Let n = [vN(cUu)| =3 ., e. Then we must prove that v(¢') > n. Set k = |¢' N u|
and j = | Ncfand m = | N(E — (cUu))|. Since cNu =@ and ¢ Nv = 0 it
follows that n < |¢| 4+ |u| — & — j. Moreover, by the definition of r, it is clear that
r(d)=le|+ul—1+k+m—k—j=|c|+|u| —1+m—j. Henceif m + k > 1 we are
done. Therefore we assume in the rest of the proof that m = k£ = 0. In other words, we
assume that ¢ C e. This leads to the equation r(¢) = |¢| + |u| — 1 — |¢/|. On the other

e'cv

hand, n < |e| + |u| —|¢|. If n < |e| + |u] — || then we at once get r(¢’) > n. We now wish
to argue that n = |¢| + |u| — || leads to a contradiction.
To see this, suppose that n = |¢| + |u| — |¢/|. Let v1 = v N e and vy = v Nu. Then from

dNv=>_0and ¢ C cit follows that v; = ¢ — ¢’ and vy = u. Since ¢ F v we also have that
' (vr1Uvg) by (A2). Again by (A2) we now know that (¢/Uwvy) F vg. Since ¢/ Uvy; = ¢ and
vy = u this leads to a contradiction. This proves that n = |¢| + |u| — |¢/| is not possible, so
r(c) > n.

This proves that r is a region of ES. Since u # (), r is also non-trivial. This finishes
the proot of Claim 2. O

From the proof of the above lemma it follows that en(ES) is not just a co-safe Petri
net. In fact en(F£S) has enough places to ensure that it is a locally sequential Petri net.

A locally sequential Petri net is a Petri net N = (5,7, W, M;,) where for each t € T
there exists a “private” place s; € S such that M;,(s;) = 1 and, for each @ € T, W(ss,x) =
Wix,s)=1if & =1t and W(sy, x) = W(x,s;) = 0 otherwise.

Thus in a locally sequential Petri net co-safety is guaranteed by purely structural means.

Recall that our main aim is to associate a Petri net with every UL-event structure. It
turns out that our map en (which acts on all L-event structures), when restricted to UL-

event structures, fits in very well with the map nu from Petri nets to UlL-event structures
given in Section 3.

Let ES = (E,C,F) be an Ul-event structure with nu(en(kS)) = (E,CA',IL) Define

vps : £ — F as follows. Let e € FE. By the unique occurrence property there exists a

22

unique equivalence class (pe)ps. Now let vps(e) = (pe)cn(ps). Note that by Lemma 4.2,
SFS s € SES . (ps), and so vgs(e) is well-defined by Lemma 2.2(2).

Theorem 4.3

Let ES be an UL-event structure. Then vgg an LES-isomorphism from FES to
nu(en(£S)) and so ES = nu(en(ES)).
Proof.

Let ES = (E,C,F) and nu(en(ES)) = (E,C,F) and let ¢ € ¢ and u € Pp(E).

Suppose ¢t u. Let p € SFSgg be such that alph(p) = ¢. Then pu € SFSgg and hence
pu € SFSen(ES) by Lemma 4.2. This implies by the definition of nu that pasten(ES)(p)liﬁ
where 4 = {(pe)cn(rs) | € € u}. In order to prove that vEg(c)livEg(u) we must prove that
vgs(c) = past,,gs)(p) and vgs(u) = .

Suppose e; € ¢ with pyey € Plgg such that vgs(e1) = (pre1)en(ms). From ey € alph(p)
it follows that there exists piey € intps(p) = int.,ps)(p). Moreover, by the unique oc-
currence property (pie1)gs = (pie1)gs and hence, by Lemma 2.2(1) and Lemma 4.2, also
(pre1)en(Es) = (pP1€1)en(Es)- Since (pie1)en(rs) € pasten(ES)(p), this proves that vgg(er) €
past g (0)

Now suppose (pie1)en(ns) € pasten(ES)(p). Then there exists pley € int.,(ps)(p) =
intgs(p) such that (pre1)en(ms) = (pLe1)en(ms). Hence ey € alph(p) = ¢ and vps(er) =
(pie1)en(rs)- This proves that past,, gs)(p) C ves(c) and hence vps(c) = past,, gs)(p)-
It easily follows that vgs(u) = 4. Hence vES(c)livES(u). This proves that vgs is an
LES-morphism from ES to nu(en(ES)).

In order to prove that vgs is an LES-isomorphism, suppose vES(c)livES(u). Then there
exists pv € SFS ., (gs) such that vps(c) = pasten(ES)(p) and vgs(u) = {{pe)cn(ms) | € € v}.
This implies that ¢ = alph(p) and v = v. Moreover, pv € SFSgs by Lemma 4.2 and hence
¢ F u. Since vgg is a bijection, we can conclude that vgg is an LES-isomorphism. O

Once again this result mirrors a property established for prime event structures in

INPW].

5 Universality of the Constructions

The back-and-forth constructions established in [NPW] between 1-safe Petri nets and prime
event structures were later proved by Winskel [W3] to be the “right” ones. He achieved
this by equipping both classes of objects with suitable behaviour-preserving morphisms and
showed that the constructions of [NPW] smoothly lift to a pair of functors which constitute
a co-reflection. Our aim here is to explore to what extent we can mimic this categorical
result in the present, much richer setting. We show that due to auto-concurrency we can
not obtain a co-reflection between the categories of UL-event structures and Petri nets
defined in this section. We do however get a co-reflection for the subcategory of co-safe
Petri nets. This is the main result of this section. A consequence of this result is that

23

the category of UL-event structures is a full co-reflective subcategory of the category of
L-event structures.

Let us first introduce the various categories. We have already defined morphisms for
L-event structures, which leads to the following definition.

Definition 5.1

Let LES be the category which has L-event structures as its objects and LES-morphisms
as its arrows. The identity morphism associated with an object is the identity function on
its events; composition of LES-morphisms is composition of partial functions.

Let ULES be the full subcategory of LES the objects of which are UL-event structures.
O

As for Petri nets, previous research [W2, M] shows that the notion of morphism for
Petri nets formulated in the next definition is the appropriate one in the present context.

Definition 5.2

PN is the category which has Petri nets as its objects and PN-morphisms as its arrows.
A PN-morphism (8,7n) : (S1,Th, Wi, My) — (S2, Tz, Wa, M) consists of partial functions
B85 — St and n: Ty — Ty such that

(1) Vsy € Sy. (B(s5) is defined = My(sz) = Mi(B(s2)))
(2) Vi € Ty (y(t) is undefined = 8-1(*,) = B-1(1,*) =)
(3) Vi1 € Tv. (n(tr) is defined =

(3a) B71(*t1) = *y(t1) and B71(11°) = y(t1)* and

(3b) Vs € *n(ty). Wa(s2,n(t1)) = B(s2),t1) and
(3c) Vs2 € n(ta)*. Wa(n(t1), s2) ti, B(s2)))-

The identity morphism associated with an object is the pair of identity functions on places
and transitions; composition of PN-morphisms (31, 71) from Ny to Ny and (3, 72) from N,
to N5 is the PN-morphism (/4 0 32,15 0 91) from N; to N3 (where o denotes composition
of partial functions). O

Wl(
Wl(

Example 5.3
The pair of functions (3,n) indicated in Figure 6 is a PN-morphism from N3 to Ny.
O

PN-morphisms are behaviour-preserving in the following sense [M].

Lemma 5.4
Let N;, i = 1,2, be Petri nets and let (3,7) be a PN-morphism from N; to Ny. Then
n(p) € MESy, for all p € MFSy,. O

24

Figure 6: A PN-morphism (/,7)

In a later part of this section we will use the fact that the Petri net en(FES) associated
with an L-event structure ES in Section 4 has no isolated places and is S-simple.

A Petri net (9,7, W, M;,) is S-simple if Vs1, 2 € S. (M, (81) = M;n(s2) and
Ve T . (W(t,s1) = W(t,s9) and W(sy, 1) = W(sa,1)) = 81 = 89).

For such a Petri net, a PN-morphism is completely determined by its transition function,
which follows from another result by [M].

Lemma 5.5
Let (f1,n) and (f2,m) be a pair of PN-morphisms from Ny to Ny where Ny has no
isolated places and is S-simple. Then gy = ;. O

We are looking for a co-reflection between ULES and PN in which the left adjoint
would act as en on the objects of ULES and the right adjoint would act as nu on the
objects of PN

To achieve this, we would like to extend the map nu to become a functor from PN
to ULES in such a way that prime intervals are preserved. This means that whenever
(3,n) is a PN-morphism from N to N and (pt)y is an event of nu(N), then n(t) is defined
iff nu((B,n))((pt)n) is defined. Unfortunately, this is not possible. Consider, e.g., the
PN-morphism (8,7n) from N3 to Ny in Example 5.3. The UL-event structure nu(N3) has
two events, (a)n, = (ba)n, and (b)n, = (ab)n,. Also the UL-event structure nu(N4) has
two events, (¢)n, and (cc)n,. Even though both n(a) and n(b) are defined, there exists
however no LES-morphism f from nu(Ns) to nu(Ny) in which both f({a)n,) and f((b)n,)
are defined.

The problem is that in a PN-morphism transitions which can occur concurrently, may
be mapped to the same transition, leading to auto-concurrency. As a consequence, step
firing sequences of the first Petri net may be mapped to multiset firing sequences of the
second Petri net. For this reason we restrict our attention to co-safe Petri nets in the rest
of this section.

25

Definition 5.6
Let PN'S be the full subcategory of PN the objects of which are co-safe Petri nets.
O

In what follows the map nu defined in Section 3, when restricted to co-safe Petri nets,
is extended to a functor from PNS to ULES. Then the map en defined in Section 4 is
extended to a functor from LES to PN'S. Once these functors are defined we can prove

the desired co-reflection between ULES and PN'S.

From Lemma 5.4 we already know that for co-safe Petri nets prime intervals are pre-
served under PN-morphisms. In the following lemma it is proved that for co-safe Petri nets
also equivalence of prime intervals is preserved under PN-morphisms.

Lemma 5.7

Let N; = (S, T;, Wi, M;), ¢ = 1,2, be co-safe Petri nets and let (3, 7) be a PN-morphism
from Ny to No. Let t € T be such that n(t) is defined and let pt, p't € Ply,. Then pt ~y, p't
implies 1(p)n(t) ~n, n(p)n(t).

Proof.

Define R C Pln, x Ply, by: pit1 R patq iff (11 = t2 and 5(¢y) is undefined) or (n(#1) and
n(t2) are defined and n(p1)n(t1) ~n, 7(p2)n(t2)). Note that R is an equivalence relation.
Suppose R is SFS n,-consistent. Then since ~p, is the least equivalence relation which is
SFS n,-consistent, it follows that ~y, C R. Hence pt ~y, p't implies pt R p't and thus, by
the definition of R, n(p)n(t) ~n, n(p')n(t). Thus it is sufficient to prove that R satisfies
the conditions (C1) and (C2).

Suppose pru € SFSy, and t1 € u. If (t1) is undefined then we immediately have that
pitiRp1(u — t1)t1, so assume that n(?1) is defined. Then n(pu) € SFSy, by Lemma 5.4
and n(t;) € n(u). Since ~y, satisfies (C1), it then follows that n(p1)n(t1) ~n, n(p1)(n(u)—
n(t1))n(t1). Moreover, by Lemma 5.4 and the fact that N, is co-safe we have that
n(p1)(n(u) —n(t1)) = n(pr(u — t1)). This yields pit; R p1(u — t1)t1 by the definition of
R. Thus R satisfies (C1).

Now suppose ot’,0’'t’ € Ply, are such that pastp(o) = pastp(c’). If n(t') is unde-
fined then we immediately have that ot’ Ro't’, so assume that 5(t') is defined. Suppose
pasty, ((0)) = pasty, (n(o’)). Then since ~y, satisfies (C2) we know that 5(o)n(t') ~n,
n(c")n(t') and hence ot’ Ro't’. Thus in order to prove that R satisfies (C2), it is sufficient
to prove that pasty, (n(c)) = pasty, (n(a’)).

Let (pit1)n, € pasty,(n(c)). Then there exists paty € int(o) such that n(t;) is de-
fined and (p1t1)n, = (n(p2)n(t2))n,. Then also (pata)r € pastp(c) = pastp(o’). Hence
there exists psts € int(o’) such that (pat2)r = (psts)r. Since n(ts) is defined this implies
that 7(t3) is also defined and (y(p2)n(t2))n, = (n(ps)n(ts))n,. Moreover, (n(ps)n(ts))n, €

pasty, (n(c’)) by the definition of past. Hence (pit1)n, € pasty,(n(o’)). This proves that
pasty, (n(c)) C pasty,(n(c’)). Similarly we have pasty,(n(o’)) C pasty,(n(c)) and thus
pasty, (n(o)) = pasty, (n(0’)). O

Now we can extend the map nu to a functor, also denoted by nu, from PN'S to ULES.

26

Let N7 and Ny be a pair of co-safe Petri nets and let (3,7) be a PN-morphism from
N1 to Ny. Suppose nu(Ny) = (F1,Ci,F1) and nu(N2) = (F2,Ca,F2). Then we define
nu((f,n)) to be the partial function from FE; to Fy given by:

Y{pt)n, € Er.nu((B,0))((pt)n,) = { ?;(ii???f)im i)ftg((;)vviisssndeﬁned

Note that by Lemma 5.7 nu((3,7n)) is well-defined.

Lemma 5.8

Let Ny and Ny, be co-safe Petri nets and let (3,7) be a PN-morphism from N; to N,.
Then nu((S,7n)) is an LES-morphism from nu(Ny) to nu(Nz).

Proof.

Let nu(Ny) = (F1,C1,F1) and nu(Ng) = (E2, Co,b2). Let nu((3,n)) be denoted by f.
Given ¢y @ we have to prove that f(¢) by f(@). So suppose ¢ by @. Then there exists
pu € SFSy, such that ¢ = pasty (p) and @ = {{pt)n, | t € u}. By Lemma 5.4 we have
that n(p),n(pu) € SFSn,. Hence by the definition of k5 pasty, (n(p)) F2 {{(n(p)t')n, | ' €
n(u)}. Now pasty, (n(p)) = {(p2t2)n, | patz € int(n(p))} = {{n(p1)n(t1))n, | prts € int(p)
with 7(t1) defined } = f(pasty, (p)) = f(¢). Furthermore, {(n(p)t')n, | ¥ € n(u)} =
{(n(p)n(t))n, | t € u with n(t) defined} = f(a). And so f(¢) |—2 f(u) as required. O

From the definition of nu it easily follows that nu preserves identities and respects
composition. Hence the following result follows from Theorem 3.9 and Lemma 5.8.

Theorem 5.9
nu is a functor from PN'S to ULES. O

Next the map en is extended to a functor - also denoted by en - from LES to PNS.
Then we show that this functor is in fact full and faithful.

In order to define en on arrows, we first need the following notion of the inverse image
of a region. Given an LES-morphism f from ES; = (E1,C1,t1) to ESy = (Ey, Cy,F2) and
a region r of ES,, define f~!(r): Cy U E; — N U (N x N) by:

(1) e Cr. f1(0)(e) = r(f(e)
@ vee oo ={ U

Lemma 5.10

Let f be an LES-morphism from ES; = (£, C1,F1) to ESy = (Ey, Ca,F2) and let r be
a region of ES,. Then f~'(r) is a region of ES;.
Proof.

Suppose ¢ 1 u. By the definition of an LES-morphism we have that f(c¢) Fy f(u). Since
r is a vegion of ES, this implies that r(f(c)) > X.gsw) e and 7(f(c) U f(u)) = r(f(c)) +

Zeef(u)(eT—Te). Hence by Lemma 1.6, f~'(r)(c) = r(f () > Yeesu) €= Zegu f_l(T)le and
£ eUn) = r(F(eUn)) = r(F(0) + g€ ") = F1)0+ Eugulel =17 00e)

a

)) if f(e) is defined

otherwise.

27

Note that in general, f~'(r) as defined above need not be a non-trivial region of ES;.

The arrow-part of en is now defined as follows. Let ES; = (FE1,Cq,F1) and ES, =
(B3, Cq,F2) be a pair of L-event structures and let f be an LES-morphism from ES; to
ES;y. Then en(f) = (8s,ns) where ny = f and (s : Rgs, — Rpgs, is given by:

undefined otherwise.

Vr € Rps,. B(r) = { f=(r) if f~'(r) is non-trivial

Lemma 5.11

Let f be an LES-morphism from ES; = (F1,Ci,b1) to ESy = (Fy,Cab2). Then
en(f) = (Bs,n5) is a PN-morphism from en(ES,) = (Rgs,, E1, W1, M) to en(ESs) =
(Rgs,, F2, Wa, My).

Proof.

Let r € Rgs, be such that 3;(r) is defined. Then My(r) = r(0) = f~(r)(0) =
M,(f~*(r)). This proves condition (1) in the definition of a PN-morphism.

If ty € FEy is such that ns(¢;) is undefined, then f(#1) is undefined, and therefore
F7Hr)(t) = (0,0) for all r € Rpg,. Assume ry € ﬂ;l(%l) U ﬂ;l(tl'). Then B¢(rq) =
f7Hr2) € Rps, and [71(r2) (1) = By(r2)(tr) = (Wi(By(ra), t1), Wits, B4(r2))) # (0,0), a
contradiction. This implies that ﬂ;l('tl) = ﬂ;l(tl') = (), so (B¢,ny) satisfies condition (2)
in the definition of a PN-morphism.

Finally, assume that t; € Fy issuch that n¢(t1) = f(t1) is defined with n¢(t1) = t5. Then
7)) = r(f(t1)) = ("t2, 1) for all r € Rgg,. Hence r € *ty if and only if f~'(r) € *#y,
that is r € ﬂ;l('tl). Similarly it can be proved that ﬂ;l(tl') = 1,*. Moreover, for all
r € *ty, Wi(Bs(r),t1) = Wa(r,ty) and, for all r € t3°, Wi(ty, Bs(r)) = Wa(tz,r). This

proves condition (3) in the definition of a PN-morphism. O

Now we are ready to prove that en is a functor, which is full and faithful. That en is full
means that for any two LES-objects ES; and ES, and for any arrow (3,7n) from en(F£S1)
to en(ESs), there exists an arrow f from ES; to ESs such that en(f) = (5,n). That en is
faithful means that different arrows between LES-objects are mapped to different arrows
between their images.

Theorem 5.12

en is a full and faithful functor from LES to PN'S.
Proof.

In order to prove that en is a functor from LES to PANS, it is by Lemma 4.2 and
Lemma 5.11 sufficient to prove that en preserves identities and respects composition.
Clearly en preserves identities. Assume that f; is an LES-morphism from ES; to ES,
and f; 1s an LES-morphism from FES; to ES3. We have that 55,0, = fa0 fi =5, 0.
Because en(ES) is S-simple we have by Lemma 5.5 that en(fs 0 fi) = (Brofi» Nfhofy) =
(6f1 o 6f2777f2 © 77f1) = (6f2777f2) © (6f1777f1) = en(f2) © en(fl)'

In order to prove that en is full, let £S; = (F1,Cy,F1) and ESy; = (FEs,Cq,b3) be
L-event structures and let (3,n) be a PN-morphism from en(FES1) to en(ESz). We first

28

prove that 5 is an LES-morphism from FES; to ES,;. Suppose ¢ Fy u. Let p € SFSgg,
be such that alph(p) = ¢. Then pu € SFSgg, and hence we also have, by Lemma 4.2,
that pu € SFS.,(gs,). By Lemma 5.4 we then have that n(pu) € SFS,,(ps,). Again
by Lemma 4.2 we now have that n(pu) € SFSgs,. Hence alph(n(p)) b2 n(u). Because
alph(n(p)) = n(c) we can now conclude that n(c) k2 n(u). This proves that n is an LES-
morphism from ES; to ES;. Since en(ESy) is S-simple Lemma 5.5 can be applied and so
en(n) = (S,n). This proves that en is full.

Finally, if f and ¢ are LES-morphisms from ES; to ES; such that f # ¢ then also
en(f) # en(g) by the definition of en. Hence en is faithful. O

Next we show that en o ¢ and nu form a co-reflection with en o7 as the left adjoint,
where 2 is the inclusion functor from ULES to LES. In what follows we write ES and f
rather than ¢(ES) and i(f) for ULES-objects ES and ULES-arrows [respectively.

In order to facilitate the proof of this result we first define the PN-morphisms which
turn out to form the co-unit of the adjunction. To do this the following regions of the
L-event structure associated with a co-safe Petri net are defined.

Let N = (S,T,W, M,,) be a co-safe Petri net with nu(N) = (E,C,F) and let s € S.
Define rs : C U E — N U (N x N) by:

(1) ¥p € SFSy.7s(pasty(p)) = M(s) where M € RMy is such that M;, ==y M
(2) Y(pt)n € E.rs((pt)n) = (W (s, 1), W(t,s)).

From Lemma 2.2(1) it easily follows that part (1) in the definition of r; is well-defined.

Lemma 5.13

Let N = (S,7,W, M;,) be a co-safe Petri net and let s € S. Then r; is a region of
nu(N).
Proof.

Let nu(N) = (E,C,F). Suppose ¢ = 4. Then there is pu € SFSy is such that
¢ = pasty(p) and & = {{pt)y |t € u}. Let M, M’" € RMy be such that M,, £ v M and
M;, =x M’. Then rs(€) = M(s) > 3 ,ca Wis, 1) =2, (pt)v and ry(¢Uu) = M'(s) =
M(s) + Zieu (Wt s) = Wi(s, 1)) = r(&) + Zye ((pt)N" =" (pt)ny). O

Given a co-safe Petri net N = (5, T, W, M;,) with nu(N) = (£,C,F) and en(nu(N)) =
(Rypuwvy, £, W, M;,), we define foldg : S — R,y and foldy : . — T by:

Ts if r, 1s non-trivial
undefined otherwise.

(1) Vs € S. foldg(s) = {

(2) ¥{pt)y € E. foldy((pt)x) = 1.

29

Lemma 5.14

Let N = (S,T,W, M;,) be a co-safe Petri net with nu(N) = (F,C,F) and en(nu(N)) =
(Rpuvy, &, W,Mm) Then (foldg, fold;) is a PN-morphism from en(nu(N)) to N.
Proof.

Suppose s € S is such that fold4(s) is defined. Then Mm(folds(s)) = Mm(rs) =rs(0) =
M;,,(s) which proves condition (1) in the definition of PN-morphism.

Because fold; is a total function, condition (2) in the definition of PN-morphism triv-
ially holds.

In order to prove condition (3), suppose (pt)y € E. If s € folds' (*(pt)y) then we
must have that r; € *(pt)y, that is W(rs,<pt>N) > 0. This implies that "(pt)y > 0
and hence Wi(s,t) > 0. This proves that s € *t = *fold;({pt)n). On the other hand,
it s € foldT(<pt>) = °t, then "(pt)n = Wi(s,t) > 0. Thus ry is non-trivial and
W(rs, (pt)n) = "{pt)x > 0. Then r, € *(pt)y and hence s € fold3'(*(pt)n). Moreover,

W (s, foldr({pt)n)) (1) = W(r5,<pt>N) = W(folds(s),<pt>N). Similarly it can be
proved that fold3((pt)x*) = foldy((pi)n)* and W(fold({pthn).) = W({pth. folds(s).
This proves condition (3) in the definition of PN-morphism. O

Now we can prove the main result of this section.

Theorem 5.15

enoi: ULES — PNS and nu : PNS — ULES form a co-reflection with en o7 the
left adjoint and the arrows vgg as unit.
Proof.

Let ES = (I/,C,F) be an Ul-event structure, let N = (S, T, W, M;,) be a co-safe Petri
net, and let f be an LES-morphism from ES to nu(N) = (E C, l—) We must show that
there is a unique PN-morphism (3,n) from en(ES) = (Rgs, F, WES,M) to N such that

the following diagram commutes.

ES . en(ES)
nu(en(ES)) i
f (g,)
(o)
» v
nu(N) N

Define (,7n) by (,n) = (foldg, foldy) o en(f). Hence 8 : S — Rpgg is such that for
all s € 5, B(s) = () if f=(rs) is non-trivial and 3(s) is undefined otherwise. The
function n : £ — T is such that for all e € FE, n(e) = undefined if f(e) is undefined
and n(e) = tif f(e) is defined with f(e) = (pt)n. Because (foldg, fold;) and en(f) are

30

PN-morphisms by Lemma 5.14 and Lemma 5.11 respectively, and because the composition
of PN-morphisms is again a PN-morphism, the pair (3,7) is a PN-morphism.

The next thing to prove is that nu((3,n))ovgs = f. Let e € E. Then f(e) is undefined
iff n(e) is undefined iff (nu((3,7n)) o vgs)(e) is undefined. So assume that f(e) is defined.
Let p € SFS s be such that pe € SFSgg. By the unique occurrence property p exists. By
Lemma 4.2 we then have that also p, pe € SFS.,gs) and hence Lemma 5.4 implies that
n(p),n(pe) € SFSn. Furthermore, by Lemma 1.7, f(p), f(pe) € SFS)

We first prove, by induction on |p|, that alph(f(p)) = pasty(n(p)). If p =0 then this
is clear, so assume that p = p'u with p’ € SFSgs and 0§ # u € Pp(FE).

Then alph(f(p)) = alph(f(p')) U f(u) and pasty(n(p)) = pasty(n(p')) Ui where i =
{(n(p"n(e))n | € € u with n(e’) defined }. By the induction hypothesis, alph(f(p’)) =
pasty(n(p')). From f(p'u) € SES,,(v) we have that alph(f(p’))lif(u). On the other
hand, from n(p'u) € SFSy we have that pastN(n(p’))liﬁ. It is now sufficient to prove that
f(u) = 4. By the definition of -, alph(f(p’))lif(u) implies that there exists pju; € SFSn
such that alph(f(p')) = pasty(p1) and f(u) = {{p1e1)n | €1 € u1}. Let €' € u be such that
f(€') is defined. Then there exists e; € uy such that f(e’) = (pre1)n. Then e; = n(e’) by
the definition of n. Since pasty(p1) = alph(f(p")) = pasty(n(p’)) and ~y satisfies (C2),
we must now have that (n(p")n(e’))ny = (pre1)n. This proves that f(u) = ¢ and we can

conclude that alph(f(p)) = pasty(n(p)).
From f(pe) € SFS,, vy we know that alph(f(p)) f(e). Then there exists paes € SFSy

(
such that alph(f(p)) = pastN(pz) and f(e) = (paea)n. Then ez = n(e) by the definition of
n. Since pasty(p2) = alph(f(p)) = pasty(n(p)) and ~x satisfies (C2), we now have that
(p2e2)nv = (n(p)n(e))n. This implies that (nu((53,7)) 0 ves)(e) = nu((8,1))({pe)en(ps)) =

(n(p)n(e))n = (p2e2)n = f(e) what had to be proved.

Finally, in order to prove that (3,7) is the unique PN-morphism from en(ES) to N
such that nu((3,n))ovgs = f, assume that (', n’) is any PN-morphism from en(FES) to N
such that nu((8',7n')) ovgs = f. Then for all e € F, n(e) is undefined iff f(e) is undefined
iff n'(e) is undefined. Now let e € E be such that 5'(¢) is defined. Let p € SFS.,(gs) be
such that vgs(e) = (pe) cn(rs)-

Then (n(p)n(e))n = nu((B,m)) o vps(e) = f(e) = nu((B',n')) o vgs(e) = (n'(p)n'(e))n.
Now Lemma 2.2(1) guarantees that n(e) = n’(e). This proves that n = n’. We can now
conclude by Lemma 5.5 that 3 = ' because en(FES) is S-simple.

This proves that en o: and nu form an adjunction with en oz as the left adjoint and
the arrows vgg as unit. By Theorem 4.3 the arrows vgg are LES-isomorphisms and so the
adjunction is even a co-reflection. O

It is easy to verify that the arrows (foldg, fold;) form the co-unit of the adjunction
between ULES and PN'S. Each Ul-event structure ES is isomorphic to the UL-event
structure nu(en(FES)) by Theorem 4.3. Hence for each co-safe Petri net N, en(nu(N))
yields an UL-event structure which is isomorphic to the UL-event structure yielded by N.
The Petri net en(nu(N)) has a number of other interesting properties. It is saturated
with respect to the places and each transition can occur exactly once. Hence the Petri

31

net en(nu(N)) may be viewed as a “behavioural unfolding” of N. The associated “fold

morphism” is (fold g, fold).

As a consequence of Theorem 5.15 each L-event structure can in fact be represented as
an Ul-event structure in a canonical way.

Corollary 5.16

1t ULES — LES and nuoen : LES — ULES form a co-reflection with ¢ the left
adjoint and the arrows vgg as unit.
Proof.

Let ES be an UL-event structure, let £S’ be an L-event structure, and let f be an
LES-morphism from ES to nu(en(ES’)). It must be proved that there is a unique LES-
morphism ¢ from ES to ES’ such that the following diagram commutes.

ES . en(ES) ES
nu(en (ES))
f en(g) g
#nu(en(@)
g ' '
nu(en(ES)) en(ES) ES

By Theorem 5.15 there exists a unique PN-morphism (3,7) from en(ES) to en(ES’)
such that nu((4,n)) ovgs = f. Then because en is full and faithful there exists a unique
LES-morphism ¢ from ES to ES' such that en(g) = (3,7) and hence nuoen(g)ovgs = f.
O

In the beginning of this section we argued that it is not possible to obtain a co-reflection
between ULES and PN. Hence we restricted the category PA by cutting down on the
objects. Another possibility is to cut down on the arrows of PN .

Definition 5.17

(1) Let N = (5, T, W, W,,) be a Petri net. Then coy € T xT is given by: tcont' &t £t/
and Jpu € MFSy. (u(t) > 0 and u(t') > 0).

(2) Let (8,n) be a PN-morphism from Ny = (51, Ty, Wy, My) to Ny = (S, Ty, W, My).
Then (3,7) is co-injective if for all t,t" € Ty, if n(t) and n(t') are both defined and
tcon, U, then n(t) #n(t). O

Definition 5.18
Let PNC be the subcategory of PN the objects of which are Petri nets and the arrows
of which are co-injective PN-morphisms. O

32

From Lemma 5.4 we immediately have that if (3, 7) is a co-injective PN-morphism from
N1 to Ny, then n(p) € SFSy, for all p € SFSy;.

Note also that by Lemma 5.4 PA'S is a subcategory of PNC.

It is easy to see that the proof of the co-reflection between ULES and PN'S still goes
through with PNC instead of PN'S (where nu is extended to a functor from PNC to

ULES in the obvious way). Hence we also have the following result.

Theorem 5.19
enot: ULES — PNC and nu : PNC — ULES form a co-reflection with en o ¢ the

left adjoint and the arrows vgg as unit. O

6 Relationship to other Classes of Event Structures

In this section we study the relationship between the event structures introduced in this
paper and some of the well-known classes of event structures that have appeared in the lit-
erature. The motivation is to show that though our event structures have been formulated
mainly in order to capture the behaviour of Petri nets, they might be of some independent
interest. In particular, they appear to be smooth generalizations of some well-understood
classes of event structures.

We will first consider the class of event structures formulated by Winskel in [W3] in the
spirit of Information Systems. This class of event structures will be referred to here as W-
event structures. We will first exhibit a natural functor from W-event structures to L-event
structures and then show that this functor has a left adjoint. In fact this adjunction turns
out to be a reflection. We then show that this reflection can be further extended to be
a reflection between L-event structures and an important subclass of W-event structures,
called stable W-event structures. Finally, we show that a similar reflective relationship
can also be established between UL-event structures and prime event structures. The
corresponding functor from prime event structures to UL-event structures is an extension
of the map pu defined in Section 2.

First the category of (general) event structures from [W3] is defined.

Definition 6.1

WES is the category of W-event structures specified as follows.
An object of WES is a W-event structure W = (E,C) where F is a set of events and
C C Pp(F) is a non-empty set of (finite) configurations such that

(Wl) 0 #£c=3Fe€cc—ecel

(W2) e¢T = cUd € C (where ¢ T ¢ iff there exists ¢’ € C such that ¢ C ¢’ and ¢ C ¢”).

An arrow of WES is a WES-morphism [: (F1,C1) — (FEy, Cy) which is a partial function
f: Ey — F5 such that

33

(1) Yee Cy. f(e) € Oy

(2) Ye € C1.Vey, e € c. if €5 # ey and f(er) and f(ey) are both defined, then f(er) #
f(ez)-

The identity morphism associated with an object is the identity function on its events and
composition of arrows is composition of partial functions. O

For a W-event structure W = (E, (), define we(W) = (F,C,F) where FC C' x Pp(F)
is given by: cFu iff cNu =0 and Vo Cu.cUv € C.
For a WES-morphism f, define we(f) = f.

Lemma 6.2
Let W be a W-event structure. Then we(W) is an L-event structure.

Proof.

Follows easily from the definitions. O

Note that not every L-event structure arises in this fashion (see, for instance, the L-
event structures S, and ES5 depicted in Figure 1).

Lemma 6.3

Let f be a WES-morphism from W; = (Eq,Cy) to Wy = (F2,C3). Then we(f) is an
LES-morphism from we(W;7) = (E1, Cy,F1) to we(Wsy) = (Ey, Ca, F2).
Proof.

Suppose that ¢ 1 u. Then ¢cNu =0 and cUu € C. Hence f(c)N f(u) = 0 by condition
(2) in the definition of WES-morphism. Moreover, ¢ Uv € C; for all v C u and so by
condition (1), f(cUv) = f(e) U f(v) € Cy for all v C u. Hence f(c) by f(u). O

Lemma 6.2 and Lemma 6.3 now lead to the following result.

Theorem 6.4
we is a Tunctor from WES to LES. O

The map ew from LES to WES is defined as follows. For an L-event structure ES =
(E,C,F), define ew(ES) = (F, C’) where ' is the least subset of Pr(FE) containing C' which
satisfies (W2).

Note that ew(FES) is well-defined, because both Pp(E) and N{C’' C Pp(E) | C C '
and C’ satisfies (W2)} satisfy (W2).

For an LES-morphism f, define ew(f) = f.

Lemma 6.5)
Let S = (E,C,F) be an L-event structure. Then ew(ES) = (F,C) is a W-event

structure.

34

Proof.

In order to prove that ew(FES) satisfies (W1), let § # ¢ € C. It ¢ € O, then there
exists e € E such that ¢ — e F e because ES satisfies (A0). Hence ¢ — e € C c (. So
assume that ¢ € C'. Then by the minimality of C there exist c1,69 € C with ¢ T ¢z such
that ¢ = ¢; Uy, |e1| < |e|, and |ez] < |e|. Thus || > 2. Assume that for all ¢ € C' with
1 < |¢| < |c|, there exists an ¢ € E such that ¢ — ¢ € C. Then there exist e1,...,¢, € E
with n = |¢;| such that ¢; = {eq,...,¢,}, and {eq,...,¢;} € C for all 0 < i < n. Because
le1]| < |e] and |ez] < |e] there exists a largest integer & such that £ € {1,...,n} and ¢} & c,.
Hence exy1,...,¢, € ¢3. Then, by the definition of C’, {e1,..,eh1} Uy = c— e € C.
This proves that ew(ES) satisfies (W1).

From the definition of ew(ES) we immediately have that ew(FES) satisfies (W2). O

The following lemma is used in proving in Lemma 6.7 that arrows of LES are mapped
by ew to arrows of WES.

Lemma 6.6

Let ES = (F,C,F) be an L-event structure with ew(FES) = (F, C’) Then ¢ € C implies
that there exists ¢ € ' such that ¢ C c.

Proof.

Let ¢ € C. If ¢ € C then the claim holds trivially, so suppose that ¢ € ¢ — C. Now
assume to the contrary that there exists no ¢ € ¢ such that é Ce Let ¢ =C —{d €
C'|éC). Then C C (' b) "Tnc = 0. Suppose
o, ¢1, ¢y € C" are such that ¢; C ¢y and ¢y C co. O satisfies (WZ) and so ¢; Uy € C. By
g Ucy Cep € CMand ¢ € ¢y we have ¢ € ¢ Ucy. Hence ¢; U ey € C'. This leads to the
conclusion that C’ satisfies (W2), a contradiction with the minimality of C'. Thus there
exists ¢ € ' such that c Ce. O

Lemma 6.7

Let f be an LES-morphism from ES; = (£, C1,F1) to ESy = (L3, Cz, F3). Then ew(f)
is a WES-morphism from ew(ES:) = (F1, Cl) to ew(FSy) = (Fa, Cg)
Proof.

Let ¢ € (. By condition (1) in the definition of WES-morphism, f(¢) € C should
hold. We prove this by induction on |¢|. If ¢ € Cy, then by (Al) ¢ k1 0. Since f is an
LES-morphism, we have in this case f(¢) F2 0 and so f(c¢) € Cy C (5. Now assume that
le] > 1 with ¢ € C’l — (/1. Then by the minimality of C’l there exist ¢1, ¢y € C’l such that
¢ =cyUey, |er] < e, and |ey| < |e|. Hence f(c1), f(ez) € Cy by the induction hypothesis.
By Lemma 6.6 there exists a ¢ € (4 such that ¢ C ¢. We then have as above that
fd)ye Cy C Cy. Thus f(cl),f(cz),Af(c’) € (5 and fler) € f(¢) and f(e2) € f(¢'). Then
fler) U fe2) = f(e) € Oy because Cy satisfies (W2).

That condition (2) in the definition of a WES-morphism is satisfied by f can be seen
as follows: let ¢ € () and €1,€5 € ¢ be such that e; # ey and f(ey) and f(ez) are both
defined. Again Lemma 6.6 guarantees the existence of a ¢ € (4 such that ¢ C ¢/. Then

Lemma 1.3(1) gives f(e1) # f(eq). O

35

Lemma 6.5 and Lemma 6.7 yield the following result.

Theorem 6.8
ew is a functor from LES to WES. O

Now we prove that ew and we form an adjunction. The co-unit of this adjunction is
given by the identity arrows idy for each W-event structure W. Hence the adjunction is
a reflection. Note that the co-unit is well-defined because ew(we(W)) = W.

Theorem 6.9

ew : LES — WES and we : WES — LES form a reflection with ew the left adjoint
and the identity arrows idy as co-unit.
Proof.

Let £S = (F,C,F) be an L-event structure, let W = (£’,C’) be a W-event structure,
and let ¢ be a WES-morphism from ew(ES) = (F, C’) to W. Then we must prove that
there exists a unique LES-morphism f from ES to we(W) = (E',C’,}') such that the
following diagram commutes.

ES ew(ES)
ew(f)
1f g
\
ew (we(W))
Y Td
we(W) w

Since ew is the identity on arrows, it is sufficient to prove that ¢ is an LES-morphism

from ES to we(W). Suppose ¢ - u. Then cNu =0 and cUv € C, for all v C u by (A2).
Since ¢ is a WES-morphism from ew(ES) to W we now have that cUv € C' C C implies
g(c)Ug(v) € €', for all v C u, and g(c) N g(u) = 0. Hence g(c) F g(u). O

Our next aim is to prove that there is also a reflection between LES and the category
of stable W-event structures [W3].

Definition 6.10
SWES, the category of stable W-event structures, is the full subcategory of WES the
objects (FE, ') of which satisfy

(W3) eTd=endeC. O

36

In order to prove the desired reflection between LES and SWES, we first show that
there is a reflection between WES and SWES.

First a map ws from WES to SWES is defined.

Given a W-event structure W = (E (), define C) C Pp(E) with ¢ > 0 inductively
by: C© = C and, for i > 1, 00 = ¢~V U{cUc cﬂc’|cc € C=Y with ¢ T ¢ in
OG-}, Now define ws(W) = (F, C) where €' = Uiso €

For a WES-morphism f, define ws(f) = f.

As the following example illustrates it is not sufficient to simply add in a given W-event
structure W configurations to ensure that (W3) is satisfied. Whereas W already satisfies
(W1) and (W2), adding configurations to ensure that (W3) is satisfied may destroy the
condition (W2).

Example 6.11
Let W = (E,C) be the non-stable W-event structure depicted in Figure 7.
{ab,c} {a,b,d} {a,cd} {b,c,d}

%X%M

{ab} {aC} {bd} {cd}
{ad}

\/J/

Figure 7: A non-stable W-event structure

For this W-event structure {b} € CV) because {a,b} T {b,d}. Similarly {a,c} T {¢,d}
implies that {c} € CM. Now CM = C U {{b},{c}} satisfies (W3), but it does not
satisfy (W2) anymore. Since {b} T {e} we have to add {b,c}, thus obtaining C®) =

DU {{b,c}}. C? satisfies (W2) and (W3) and so C) = €= for all ; > 3. Hence
C'=CU{{b}.{c},{b,c}}. O

Lemma 6.12)
Let W = (E,C) be a W-event structure. Then ws(W) = (F,C) is a stable W-event

structure.

Proof.
In order to prove that ws(W) satisfies (W1), let §) £ ¢ € C. Let k > 0 be minimal such
that ¢ € C®). We prove by induction on k that there exists e € ¢ such that c—e € C*) C (.

37

If £ = 0 then ¢ € €' and since W satisfies (W1), there exists e € ¢ such that c—e € C' =),
Now suppose that & > 1. Then by the minimality of k there exist ¢, ¢; € C¥Y with
c¢1 T ¢y such that ¢ = ¢ Uey or ¢ = ¢ N ¢z. By the induction hypothesis there exist
€1,...,6, € B with n = |¢y| such that ¢; = {e1,...,e,} and {eq,..., e} € CU=D for all
0 < ¢ < n. By the minimality of &, ¢; # ¢ and ¢ # c.

First assume that ¢ = ¢;Ucy. Let m be the largest integer such that m € {1,...,n} and
em & ¢y. Hence €,,41,...,6, € ¢;. Then, by the definition of C®, {ey,... 1} Ucy =
c— e, € CW,

Now assume that ¢ = ¢; Ney. Let m be the largest integer such that m € {1,...,n} and
em € €. Hence €,,41,...,6, & ;. Then, by the definition of C®), {ey, ... e 1} Ney =
c— e, € CW,

This proves that ws(W) satisfies (W1). From the definition of ws(W) we immediately
have that ws(W) satisfies (W2) and (W3). O

Lemma 6.13

Let f be a WES-morphism from Wi = (E1,Ch) to W = (B, Cs). Then ws(f) is a
WES-morphism from ws(W;) = (Fy,Cy) to ws(Ws) = (Ey, Cy).
Proof.

Let ¢ € Cy. It must be proved that f(c¢) € C, and that f is injective on c.

Let £ > 0 be minimal such that ¢ € Cl(k). We prove by induction on k that f(c¢) € Cz(k) -
Cy and that f is injective on ¢. If k = 0 then ¢ € 'y and hence f(¢) € Uy = CQ(O). Since
f1s a WES-morphism from W; to Ws, f is injective on ¢. Now assume that & > 1. Then
there exist ¢g, c1,c3 € Cl(k_l) with ¢ € ¢y and ¢; C ¢ such that ¢ = g U ey or ¢ = ¢ N ey,
By the induction hypothesis f(co), f(c1), f(c2) € Cz(k_l) and f is injective on ¢p. Hence f
is also injective on ¢. Now f(e1) C f(co) and f(c2) € f(co) and so by the definition of Cz(k)
it follows that f(c; Ucy) = f(e1)U f(ez) € C8F and fey Ney) = fer) N fle) € CP. This
proves that f(c) € CQ(k). O

Lemma 6.12 and Lemma 6.13 yield the following result.

Theorem 6.14
ws 1s a functor from WES to SWES. O

As the next theorem shows ws is the left adjoint to the inclusion functor ¢ from SWES
to WES. The co-unit of this adjunction is given by the identity arrows idw for each
stable W-event structure W. Hence the adjunction is a reflection. Note that the co-unit
is well-defined because ws(W) = W for each stable W-event structure W.

Theorem 6.15
ws : WES — SWES and 1 : SWES — WES form a reflection with ws the left adjoint

and the identity arrows idy as co-unit.

38

Proof.

Let W = (E,C) be a W-event structure, let W’ = (E’,C") be a stable W-event struc-
ture, and let ¢ be a WES-morphism from ws(W) = (F, C’) to W’. Then we must prove
that there exists a unique WES-morphism f from W to W’ such that the following diagram
commutes.

w ws(W)
Sws(f)
I f g
<
ws W)
v idy
w w

Since ws is the identity on arrows, it is sufficient to prove that ¢ is a WES-morphism
from W to W’. This however follows immediately from the observation that ¢ C ¢'. O

The reflections from Theorem 6.9 and Theorem 6.15 can now be composed which yields
the following result.

Theorem 6.16
wsoew : LES — SWES and we o1 : SWES — LES form a reflection with ws o ew

the left adjoint and the identity arrows idy as co-unit. O

Finally in this section, we show that the relationship between UL-event structures and
prime event structures can also be expressed as a reflection between the corresponding
categories.

It is easy to show that prime event structures have the following property.

Lemma 6.17
Let P = (E,<,#) be a prime event structure. Then the following statements are
equivalent:

(1) —(e1#tes)
(2) lelu lez € CP

(3) dc € Cp.{e1,e2} Ce. O

39

Definition 6.18

PES is the category which has prime event structures as its objects and PES-morphisms
as its arrows.
A PES-morphism f: (1, <1,#1) — (F2, <s,#2) is a partial function f : £y — F; such
that

(1) fle) is defined = Lf(e) € f(Je)
(2) (f(er) and f(eq) are defined and f(e1)#2f(e2)) = e1#1es
(3) (f(e1) and f(eq) are defined and f(ey) = f(e2)) = (e1#1€2 or €1 = e3).

The identity morphism associated with an object is the identity function on its events;
composition of PES-morphisms is composition of partial functions. O

An alternative characterization of PES-morphisms is stated in the next lemma, which
is straightforward to prove (see also [WN]). This characterization in terms of the finite
configurations is used as a definition for PES-morphisms in, e.g., [W1, WN].

Lemma 6.19
Let P = (F1,<1,7#1) and Py = (F2, <s,#32) be prime event structures and let f :
Ey — F, be a partial function. Then f is a PES-morphism iff

(17) Ve e Cpl.f(c) € Cp,

(2’) Ve € Cp.Vey,eq € c.if €1 # ez and f(eq) and f(ey) are both defined, then f(eq) #
f(ez)- O

In Section 1 the map pu is defined which maps each prime event structure to an UL-
event structure. In order to extend this map to a functor, define for a given PES-morphism

f,pu(f) = f.

Lemma 6.20

Let f be a PES-morphism from P, = (E1, <y, #1) to P» = (F2, <s,#32). Then pu(f) is
an LES-morphism from pu(P;) = (E1, Cp,,F1) to pu(P) = (Ey, Cp,,).
Proof.

Suppose that ¢ 1 u. Then ¢eNwu = § and cUu € Cp. So by condition (2’) in
Lemma 6.19, f(¢) N f(u) = 0. We also have that ¢ Uv € Cp, for all v C u. Thus by
condition (1’) in Lemma 6.19, f(cUwv) = f(c) U f(v) € Cp, for all v C u. Consequently,

fle)Fz fu). B
The following result now follows immediately from Theorem 2.7 and Lemma 6.20.

Theorem 6.21
pu is a functor from PES to ULES. O

40

For an L-event structure ES = (FE,C,F), define up(ES) = (F,<,#) where <C F x E
is such that e; < ey iff Ve € C.(es € ¢ = €1 € ¢) and # C E x FE is such that e;#ey iff
Vee C.(er €c=ex & c).

For an LES-morphism f, define up(f) = f.

The map up thus defined is a functor from ULES to PES as we show in the following
lemmas.

Lemma 6.22

Let ES = (F,C,F) be an L-event structure which satisfies condition (Ul) in the def-
inition of the unique occurrence property. Then up(ES) = (F,<,#) is a prime event
structure.

Proof.

Clearly, # is irreflexive and symmetric and < is reflexive and transitive. In order to
prove that <is anti-symmetric, suppose e, ¢ € F are such that ¢; < ey and e; < 7. Then
for all c € C, e; € ciff e € ¢. By condition (Ul) in the definition of the unique occurrence
property there exists ¢ € C' such that e; € ¢ and hence by Lemma 1.3(2) e; = e3. This
proves that < is a partial order.

In order to prove that up(ES) satisfies (P1), suppose eg#e; < ey, If ¢ € C is such that
€o € ¢, then e; € ¢ by the definition of # and hence ey € ¢ by the definition of <. Thus
coftes.

Now in order to prove that up(ES) satisfies (P2), let e € E. Then by condition (Ul) in
the definition of the unique occurrence property, there exists ¢ € (' such that ¢ € ¢. Then
le € ¢ and hence |e is finite. O

Example 6.23
Let ESg and ES7 be the L-event structures depicted in Figure 8.

{a,c} {b,c} {d,e}

{a) (b} td}
s g
ES ES

6 7

Figure 8: L-event structures K.Sg and F 57

41

Define f by f(a) = f(b) = d and f(c¢) = e. Then f is an LES-morphism from ES¢ to
ES7. Since {c} € Cyp(msy) while f({c}) = {e} & Cup(s,), Lemma 6.19 implies that up(f)
is not a PES-morphism from up(ESe) to up(£S7). O

As this example shows, arbitrary LES-morphisms are not preserved under up. LES-
morphisms between L-event structures with the unique occurrence property are however
preserved under up.

Lemma 6.24

Let f be an LES-morphism from FES; = (F1,C1,F1) to ESy = (F2,Cs,F3) where
ESy and ES; are UL-event structures. Then up(f) is a PES-morphism from up(£S;) =
(Eh Sl,#l) to up(ESg) = (E2, Sz,#z)-

Proof.

In order to prove condition (1) in the definition of PES-morphism, let e € £; be such
that f(e) is defined and suppose e’ € | f(e). It must be proved that ¢ € f(le). If
¢’ = f(e) then we are done, so assume that ¢ # f(e). Let p € SFSgg, be such that
pe € Plgg,. By condition (Ul) in the definition of the unique occurrence property such p
exists. Then alph(pe) € C; and hence f(alph(pe)) € Cy because f is an LES-morphism.
Since f(e) € f(alph(pe)) this implies that e’ € f(alph(p)) because € <y f(e) and e’ # f(e).
Let €” € alph(p) be such that f(e”) =¢'. If e’ <y e, then € = f(e") € f(le).

In order to prove that ¢” <; e, define R C Pl gg, X Plgg, by: pies R paexiff (e = ez # €
or (e = ey = e and (e” € alph(p1) & €” € alph(ps)))). Assume that R is an equivalence
relation which is SFS gg,-consistent. Then ~gg, C R because ~pgg, is the least equivalence
relation which is SFS gg,-consistent. Since pe € Plgg,, €” € alph(p), and ES; has the
unique occurrence property it then follows that e” € alph(py) for all pre € Plgg, . Hence
e € ¢ for all ¢ € Cf such that e € ¢ and thus ¢” < e.

Consequently, what remains to be proved is that R is an equivalence relation which
satisfies (C1) and (C2).

Clearly, R is an equivalence relation. In order to prove that R satisfies (C1), suppose
pru € SFSEs, and eq € u. If €5 # e then it is clear that pye; R p1(u —eq)eq, so assume that
er = e. If ¢” ¢ u then it is clear that preq R pi(u—eq)e;. We now show that e” € u leads to
a contradiction. To see this, suppose that €’ € u. Since alph(pie1) € Cy and f is an LES-
morphism, we must have that f(alph(pie1)) = alph(f(p1)) U f(e) € Cy. Combining this
with ¢’ <y f(e) and ¢’ # f(e) yields that ¢’ € alph(f(p1)). On the other hand, we also have
that alph(p1) F1 €” and hence by the definition of LES-morphism f(alph(p1)) 2 f(€”).
This leads to a contradition, because f(e”) =€’ € alph(f(p1)) = f(alph(p1)). We can now
conclude that e” € u is not possible. This proves that R satisfies (C1).

Now in order to prove that R satisfies (C2), let pieq, paexr € Plgg, be such that
pastp(p1) = pastp(ps). If e1 # e then we immediately have that pie; Rpaer. If €5 = e,
then preq R peer because pastp(p1) = past z(p2) implies that also alph(p1) = alph(ps). This
proves that R satisfies (C2).

Thus R is an equivalence relation satisfying (C1) and (C2) which completes the proof
of condition (1) in the definition of PES-morphism.

42

In order to prove condition (2), let e1,e5 € Ey be such that f(eq) and f(ey) are defined
and —(e;#1€3). Then by Lemma 6.17 there exists ¢ € Cy such that eg, ez € ¢. Since f is
an LES-morphism f(¢) € Cy and hence —(f(e1)#2f(e2)) by the definition of #-.

Finally, condition (3) in the definition of PES-morphism follows easily from Lemma 1.6
and Lemma 6.17. O

The following result now follows immediately from Lemma 6.22 and Lemma 6.24.

Theorem 6.25
up is a functor from ULES to PES. O

Now we prove that up and pu form an adjunction. The co-unit of this adjunction is
given by the identity arrows idp for each prime event structure P. Note that the co-unit
is a PES-isomorphism because P = up(pu(P)) for each prime event structure P. Hence
the adjunction is a reflection.

Theorem 6.26

up :ULES — PES and pu : PES — ULES form a reflection with up the left adjoint
and the identity arrows idp as co-unit.
Proof.

Let ES = (E,C,F) be an Ul-event structure, let P = (E', <',#’) be a prime event
structure, and let ¢ be a PES-morphism from up(ES) = (F,<,#) to P.

We must prove that there exists a unique LES-morphism f from ES to pu(P) =
(E',C",F) such that the following diagram commutes.

ES up(ES)
()
I f g ‘
‘\‘
up(pu(P)
; ido
pu(P) P

Since up is the identity on arrows, it is sufficient to prove that ¢ is an LES-morphism
from ES to pu(P). Suppose ¢ - u. Then cNwu =0 and cUv € C C Cyypg), for all v Cu
by (A2). Since g is a PES-morphism from up(ES) to P we now have by Lemma 6.17 that
g(c)Ug(v) € Cp for all v Cu and g(c) N g(u) = 0. Hence g(c) F' ¢g(u). O

43

Discussion

In this paper we have proposed an event structure semantics for the general class of Petri
nets. We have achieved this by identifying a new class of event structures called UL-event
structures which turn out to be a proper and very generous generalization of the well-
known prime event structures. Qur event structure semantics is also a strictly conservative
extension of the classic prime event structure semantics for 1-safe Petri nets constructed in
[NPW]. Our results are restricted in that we use set-based event structures and only step
firing sequences of Petri nets, thus effectively “filtering” out auto-concurrency. It should
be noted however that even without auto-concurrency, due to a multiplicity of tokens,
intuition concerning basic notions such as causality, concurrency and conflict break down
for Petri nets. Hence working out a satisfactory event structure semantics even in this
restricted setting turns out to be a non-trivial task.

We have also shown that the behaviour of Petri nets, when auto-concurrency is filtered
out, is strongly related to the larger class of L-event structures. In particular, the map
en associates a Petri net en(ES) = N with each L-event structure ES so that SFSgs =
MFSNn(= SFSy). Thus the behaviour of N will be as rich as that of ES. Since L-event
structures are not required to satisfy any global properties, this result suggests that the
behaviour of Petri nets is also equally unstructured in a global sense.

The key technical idea introduced in this paper is condition (C2) used for identifying
prime intervals. Once this idea is available, the means for going back and forth between
L-event structures and Petri nets is established. More importantly, it leads to an, in our
opinion, intuitively satistfactory event structure semantics for a variety of “problematic”
examples. In case of 1-safe Petri nets it is sufficient to demand (C1) and a simplified
version of (C2), see, e.g., [NPW, WN].

Turning now to the “universality” of our constructions, it turns out that we can not
mimic the pleasant co-reflection between prime event structures and 1-safe Petri nets in
this setting. The problem is that due to auto-concurrency, PN is too rich in terms of
objects and arrows. We have shown that by cutting down on the objects, i.e. considering
co-safe Petri nets, we can obtain a co-reflection between U LES and PAN'S. One pleasant
consequence of this result is that we have a complete event structure semantics for the
class of co-safe Petri nets.

One can easily lift the notion of L-event structures to handle (finite) multisets by
allowing multisets of events as configurations and by allowing multisets of events to become
enabled at a configuration. In this way an adjunction can be obtained between the resulting
category of event structures and the category of all Petri nets. The details can be found
in [H]. The trouble with this more general approach is that this adjunction is not a co-
reflection. To solve this problem it seems that we must somehow find a way of distinguishing
between multiple occurrences of the same transition due to auto-concurrency on the one
hand and due to causality on the other hand. It is not at all obvious at present how this
can be achieved.

Also [MMS] proposes an extension of Winskel’s results to general Petri nets. To this end
unfoldings of Petri nets are defined and by an adjunction related to occurrence nets, and

44

therefore to prime event structures. This adjunction is an extension of the corresponding
co-reflection of Winskel. A central feature of [MMS] is that tokens are treated as coloured
entities. As a result, one is forced to record which tokens were used in the occurrence of a
transition, and thus a great deal of conflict is injected into the semantics. This is even the
case for Petri nets which do not have any shared places, where conflicts may be introduced
between different occurrences of the same transition. Such a colouring of tokens is often
undesirable, see, e.g., [BD]. An approach similar to [MMS] is followed in [E] where also
occurrence nets are used to describe the behaviour of Petri nets. Hence in both approaches
1-safe Petri nets and general Petri nets have the same expressive power in terms of event
structures, whereas our semantics is a strictly conservative extension of the event structure
semantics of 1-safe Petri nets.

The classes of L-event structures and UL-event structures introduced in this paper seem
to be of independent interest. In particular, we have shown that prime event structures
may be viewed as Ul-event structures and Winskel’s general event structures and their
stable subclass may be viewed as L-event structures, but not as UL-event structures. The
relationship between prime event structures and UL-event structures, and the relationship
between L-event structures and Winskel’s general and stable event structures are stated
in terms of reflections in a categorical framework. Note that by composing the functors
between PAN'S and ULES and the functors between ULES and PES, we also have functors
between PA'S and PES. Since both the functor from ULES to PN'S and the functor from
ULES to PES are the left adjoint of the corresponding adjunctions, this does however not
yield an adjunction between PN'S and PES.

Another important class of event structures is formed by the flow event structures [BC].
In [B] it has been shown that the class of flow event structures is included in the class of
stable event structures. Hence our results also show how to view each flow event structure
as an L-event structure (which is not necessarily an UL-event structure).

Prime event structures with binary conflicts as we have used here correspond to the
behaviour of 1-safe Petri nets. Their domain theoretic characterization has been given in
[NPW]. Flow event structures yield the same class of domains [B]. Winskel has shown
[W3] that stable event structures yield the same class of domains as prime event structures
with arbitrary conflicts. The domains corresponding to W-event structures have been char-
acterized in [Dr], see also [W3]. For L-event structures and UL-event structures however,
it is not yet clear how one should go about obtaining a domain theoretic characterization.

Acknowledgments

The authors would like to thank Mogens Nielsen for many helpful suggestions.
The authors acknowledge support from the ESPRIT BRA No. 6067 CALIBAN, and

the Dutch National Concurrency Project REX sponsored by NFI.

45

References

[BD] Best, E., and Devillers, R., (1987), Sequential and concurrent behaviour in Petri
net theory, Theoretical Computer Science 55, 87-136.

[BDH] Best, E., Devillers, R., and Hall, J., (1992), The Box Calculus: a new causal algebra

with multi-label communication, Lecture Notes in Computer Science 609, 21-69.

[B] Boudol, G., (1990), Flow event structures and flow nets, Lecture Notes in Computer
Science 469, 62-95.

[BC] Boudol, G., and Castellani, 1., (1988), Permutation of transitions: an event struc-
ture semantics for CCS and SCCS, Lecture Notes in Computer Science 354, 411-427.

[De] Devillers, R., (1993), Construction of S-invariants and S-components for refined
Petri Boxes, Lecture Notes in Computer Science 691, 242-261.

[Dr] Droste, M., (1989), Event structures and domains, Theoretical Computer Sci-
ence 68, 37-47.

[ER] Ehrenfeucht, A., and Rozenberg, G., (1990), Partial (Set) 2-structures; Part II:

State spaces of concurrent systems, Acta Informatica, v. 27, 343-368.

[E] Engelfriet, J., (1991), Branching processes of Petri nets, Acta Informatica, v. 28,
575-591.

[H] Hoogers, P.W., Forthcoming PhD thesis.

[HKT1] Hoogers, P.W., Kleijn, H.C.M., and Thiagarajan, P.S.; (1992), A trace semantics
for Petri nets, Lecture Notes in Computer Science 623, 595-604.

[HKT2] Hoogers, P.W., Kleijn, H.C.M., and Thiagarajan, P.S., (1993), Local event struc-
tures and Petri nets, Lecture Notes in Computer Science 715, 462-476.

[MM] Meseguer, J., and Montanari, U., (1990), Petri nets are monoids, Information and
Computation 88, 105-155.

[MMS] Meseguer, J., Montanari, U., and Sassone, V., (1992), On the semantics of Petri
nets, Lecture Notes in Computer Science 630, 286-301.

[M] Mukund, M., (1992), Petri nets and step transition systems, International Journal
of Foundations of Computer Science Vol. 3 No. 4, 443-478.

[NPW] Nielsen, M., Plotkin, G., and Winskel, G., (1981), Petri nets, event structures and
domains, Part I, Theoretical Computer Science 13, 85-108.

[NRT] Nielsen, M., Rozenberg, G., and Thiagarajan, P.S., (1992), Elementary transition
systems, Theoretical Computer Science 96, 3-33.

46

Winskel, G., (1984), Categories of models for concurrency, Lecture Notes in Com-
puter Science 197, 246-267.

Winskel, G., (1987), Petri nets, algebras, morphisms, and compositionality, Infor-
mation and Computation 72, 197-238.

Winskel, G., (1987), Event structures, Lecture Notes in Computer Science 255,
325-392.

Winskel, G., (1988), An introduction to event structures, Lecture Notes in Com-

puter Science 354, 364-397.

Winskel, G., and Nielsen, M., (1992), Models for concurrency, to appear in
S. Abramsky, D.M. Gabbay, T.S.E. Maibaum eds., Handbook of Logic in Com-

puter Science.

47

