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Abstract

We extend labelled transition systems to distributed transition systems by labelling the transition
relation with a finite set of actions, representing the fact that the actions occur as a concurrent
step. We design an action-based temporal logic in which one can explicitly talk about steps. The
logic is studied to establish a variety of positive and negative results in terms of axiomatizability
and decidability.

Our positive results show that the step notion is amenable to logical treatment via standard
techniques. They also help us to obtain a logical characterization of two well known models for
distributed systems: labelled elementary net systems and labelled prime event structures.

Our negative results show that demanding deterministic structures when dealing with a “non-

interleaved” notion of transitions is, from a logical standpoint, very expressive. They also show that
another well known model of distributed systems called asynchronous transition systems exhibits
a surprising amount of expressive power in a natural logical setting.
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0 Introduction

Transition systems are a simple and unifying model for representing the behaviour of distributed
systems. They are used to provide the operational semantics of various process algebras such as
CCS [Mil]. A number of other models of distributed systems such as elementary net systems [Thi,
prime event structures [Win] and Petri nets [Rei] also have transition systems asssociated with
them in a natural way to explain their operational behaviours. Consequently, a variety of logics
that have been proposed to reason about the behaviours of distributed systems are based on models
built out of transition systems [Pnu, ES, HM]. A classic and powerful example of such logics is the
propositional p-calculus [Koz].

The transition systems that are used in such applications are, however, sequential. A (labelled)
transition in these transition systems is a triple (s, a, s’) denoting that the system can perform the
(single) action a at the state s and, as a result, enter the state s’. Thus it is the so-called interleaved
behaviours of distributed systems that are represented by such transition systems.

It has been observed by various researchers [BC, DM, NRT] that concurrency can be more
explicitly represented by enriching the transition relation, for instance by putting more information
on the labels of transitions. One of the simplest ways of doing so is to consider transitions of the
form (s,u,s’) where u is a finite set of actions. The idea is that the set of actions in u can occur
independently of each other (not necessarily simultaneously) at the state s and when they have all
occurred, the resulting state is s'.

The aim of this paper is to study the logical consequences of admitting such an enriched transi-
tion relation. In order to focus attention on the notion of steps we design a “minimal” action-based
temporal logic in which one can explicitly talk about steps and which is just about rich enough to
make life interesting. We use “step-based” transition systems as Kripke frames to construct models
for this logic. We then bring out the logical properties of the step notion by establishing a variety
of positive and negative results in terms of axiomatizability and decidability.

To bring out the specific results, the rest of the paper is organized as follows. In the next section
we introduce distributed transition systems which are transition systems based on concurrent steps.
In the literature some other types of transition systems have also been called distributed transition
systems [DM, Sta]. We first explain the conditions imposed on our distributed transition systems
which ensure that the notion of a step indeed captures concurrency in a faithful fashion. We then
show how two well-known models of concurrency, namely, prime event structures and elementary
net systems, give rise to distributed transition systems in a natural way.

In Section 2, the logical language is introduced and its semantics is defined in terms of models
whose underlying Kripke frames are distributed transition systems. We then propose a complete
axiomatization of the valid formulas of this logic. The completeness proof is based on standard
filtration techniques borrowed from research on PDL (Propositional Dynamic Logic) [KP]. A
consequence of the completeness argument is that the satisfiability problem for this logic is decidable
in nondeterministic exponential time. On the other hand, we have a deterministic exponential time
lower bound.

In Section 3 we establish the somewhat surprising result that our logic cannot separate the class
of models based on (distributed transitions yielded by) prime event structures from the general class
of models. As a result, the axiomatization in Section 2 is complete for the restricted class as well.



Using the well-known relationships between elementary net systems and prime event structures
[NPW] we then show that similar results can also be established for the subclass of models based
on elementary net systems.

Starting from Section 4 we begin to study subclasses of distributed transition systems and
establish a sequence of (predominantly negative) results about subclasses of distributed transition
systems. Section 4 shows that the set of valid formulas over the class of deterministic models can
be axiomatized in a simple (and finitary) fashion. The completeness argument is quite involved;
the reason being, as we show in Section 5, that validity is not decidable. Here and in subsequent
sections we make heavy use of the negative results based on domino problems due to Harel [Har85].

The results established so far are based on distributed transition systems over an infinite alpha-
bet set. Due to the unusual mixture of modalities in our logic, there is a good deal of difference
between finite and infinite alphabets. This is especially so in the presence of determinacy. This is
brought out in Section 6. We show that the satisfiability problem over the class of deterministic
models is X1-hard, if we restrict the set of actions to be a finite set (but containing at least two
elements!). As a result, validity over this class of models is not axiomatizable. In the next section
we show that the satisfiability problem over the class of finite deterministic models is r.e.-hard and
hence not decidable. Once again, an easy consequence is that validity over this class of models is
not axiomatizable.

The proof techniques that we develop to establish our results indicate that various generaliza-
tions are possible. On the positive side, the results of Section 2 and Section 3 go through with
some additional machinery — even if we replace steps (i.e. finite sets) with finite multisets or finite
pomsets [Pra86] as labels of transitions. On the negative side, it turns out the various undecidabil-
ity results go through if we use, instead of deterministic distributed transition systems, transition
systems based on traces [Maz]. These additional negative results are presented in Section 8. The
lesson to be drawn here is that in the presence of concurrency (as captured by steps) it is not only
determinacy but even a kind of partial commutativity property (implied by the presence of steps)
which makes the logic very expressive.

In Section 9 we point out how the study that we have carried out can also be done for a natural
generalization of PDL. We also sketch briefly how a more powerful modality based on the notion
of steps can lead to a finitary axiomatization of validity over the general class of models. In the
concluding section, we discuss related literature in more detail.

A logic for distributed transition systems was first studied in [LRT], where only a finite alphabet
was considered. Theorem 6.5 was proved in that paper. The high undecidability of the logic for
deterministic distributed transition systems over a finite alphabet (Theorem 6.10) was proved in
[Parikh)].

1 Distributed transition systems

In this section we introduce distributed transition systems which will serve as the frames for our
logic. We will show how such transition systems arise in the study of two well-known models of
distributed systems.

Recall that a (sequential) transition system is a triple T'S = (S, X, —) where S is a set of states,



¥ is a set of actions and — C S x 3 x S is the (labelled) transition relation. If (s,a,s’) € — then
the idea is that the action a can occur at state s and, as a result, the system assumes the state s’.

The essential feature of a distributed transition system is that the transition relation is general-
ized to (s,u,s’), where u is a finite set of actions. The actions in u are interpreted as a concurrent
step. This means that further conditions have to be placed on the transition relation.

We will use the notation gp(X) for the powerset of a set X and g, (X) for the set of finite
subsets of X.

Definition 1.1 A distributed transition system (dts) is a triple DTS = (S, 3, —) where

1. S is a set of states
2. X is a set of actions

3. = C 8 X ppin(X) x S is the step transition relation satisfying for all s,s" in S:

(a) s s iff s =4

(b) for all u € pgin(X), if s5s' then there exists a function f : p(u) — S such that f(0) =
s, f(u) = s and for every vi C vy C u such that vo — vy # wu, it is the case that

F01)2= f (v2).

The function f is said to be a u-cube. We will let F[u, X] denote the set of functions from p(u)
into the set X. As in the above definition, we will often write s—s' instead of (s, u,s') € —. The
letters u,v with or without subscripts will range over ¢, (3). For a € 3, we will also write 4

instead of ﬂ)

Figure 1 is a graphical representation of an {a,b,c}-cube. The nodes of the graph represent
the states of the system. The edges, labelled by actions from ¥, reflect the transition relation —.
To avoid cluttering up the pictures, when we show a concurrent step, we do not display all the
smaller substeps but only the actions (steps of size 1). This convention is followed in Figure 1 and
all subsequent figures. Where 3 is clear from the context, we will often display a dts as just an
ordered pair (S, —) and call it a dts over X.

Suppose s—s' in a dts. Then the idea is that the actions in u can occur at s with no order
over their occurrences; and when they have all occurred, the resulting state is s’. We say that the
step u is enabled at s. The existence of the u-cube guarantees that this mutual independence of
the actions in u at s holds at all the states reached through a part of the step for the “residual”
substeps.

It is important to note that clause (3.b) in the definition of a dts is merely an implication.
The existence of a u-cube does not guarantee the existence of a concurrent step. Figure 2 shows
all the actions required for an {a,b} step, but there is no concurrent step in the picture. All the
inductively smaller substeps of a concurrent u-step may exist, but this may be accidental. It is the
u arrow that shows that the substeps form part of a concurrent step.
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This is a characteristic of partial order models of distributed systems in which concurrency is
not identified with nondeterministic interleaving. In fact it is possible at the same state to have a
concurrent step as well as an interleaving of the step performed but leading to two different states.
This is illustrated in Figure 3. We will show later how this arises in some typical partial order
models of concurrency.

Further, the u-cube guarantees more than the fact that a step can be broken up into all possible
substeps. To bring this out let us consider replacing clause (3.b) in the definition by:

e For all s,s' in S, for all u € gy, (X), if s5s' then there exists a function f in F[u, S] such
that f(#) = s and f(u) = s’ and for every v C u, it is the case that s f(v)—>ss'.

For the transition system in Figure 4, we can consistently have an {a,b, ¢} step between sy and
Sabe if we accept this weaker condition (and fill in all the intermediate substeps), but there is no
{a,b,c}-cube f in the sense of Definition 1.1, since f(b) cannot be assigned a suitable value.

An important notion in transition systems is that of reachability. Given the transition system
TS = (S,%,—), we define the reachability set of sy € S, denoted Ryg(sg), as the least subset of
S containing sg satisfying:

If s € Rrs(sg),a € ¥ and s—>s', then s’ € Ryg(so).

We write R(sg) if the underlying transition system is clear from the context.
TS = (S, —,s0) is said to be a pointed dts if (S,—) is a dts, sg € S and S = Rpg(sq).

In this paper, we only consider countable dts’s, that is, in T'S = (5,3, —), S, ¥ and — are all
at most countable.

We have chosen the strong definition of dts’s after examining a number of partial order models
of distributed systems. We will consider two such models: event structures and net systems.
Our presentation will be brief and the interested reader is referred to [Win, Thi, NRT] for more
background material.

A prime event structure is a triple ES = (F, <, #) where

F is a set of event occurrences

e < C F x E is a partial ordering relation called the causality relation.

# C E X E is an irreflexive and symmetric relation called the conflict relation.

# is inherited via < in the sense that e;#es and ey < e3 imply e F#eg for every eq, eq, eg in
E.

Figure 5 is an example of an event structure. The squiggly lines represent the “minimal” elements
of the # relation. The causality relation is shown in the form of the associated Hasse diagram.
The # relation is then uniquely determined by the last part of the definition above. In this event
structure, e; # eg because e; # eg < eg.



Figure 3: A nondeterministic dts

Figure 4: A non-cube



Events which are not ordered by < and not in conflict are interpreted as being concurrent.
Formally for the event structure ES = (E,<,#), we define cogg C E x E as:

e1 copg ey iff not (ep < e or es < ey or e;#es)

We will drop the subscript if the event structure £S is understood from the context. For example,
in Figure 5, eg co e7.

An event structure is said to be finitary if every event has at most a finite number of events
causing it. For formalizing this idea and for defining the notion of a state it will be convenient to
adopt the following notation.

Let ES = (E, <,#) be an event structure and X C E. Then |X is defined to be
{'|Jee X e <e}

In case X = {e} we will write |e instead of [{e}. Now ES is finitary iff Je is finite for every e in F.
In this paper we consider only finitary event structures.

For an event to occur in a computation all the events that cause it must have occurred. No
two events that are in conflict can both occur in a computation. These considerations lead to the
following notion of “state” for an event structure.

Let ES = (E,<,#) be an event structure. Then x C F is a configuration iff

(i) z=lz (downward closed)
(i) (zxz)N# =10 (conflict-free)

Let Cpg denote the set of finite configurations of the event structure ES = (E,<,#). The
occurrence of an event or a finite set of concurrent events causes the configuration to change, in effect

giving a transition system. Define now the step transition relation —gg C Cgg X pfm(E) x Cgg
of ES (over E) as

ez’ iff ' =2zUwu, 2Nu=0and Vo Cu:zUv is a configuration
Proposition 1.2 (Cgg, E, —pgg) is a dis.

Proof: It suffices to verify that (Cgg, E, —ggs) satisfies the step condition. For convenience, we
will write = pg as — through the rest of the proof.

Clearly s iz = o for every =,z in Cgg. So assume that v # () and z—z'. Define
fe .7:[u, CF)S] by:
fw) =2 Uw, for all v C u.

Clearly f is well-defined and f()) = 2 and f(u) = 2'. Tt is easy to verify that f is in fact a u-cube.
O

Note that the dts produced by the event structure is deteministic. In applications, one often
works with labelled event structures. We can also associate with the labelled event structure a dts
over the label set. This observation will help establish one of the results of this paper (Section 3).
Let X be a set of labels. A Y-labelled event structure is a quadruple ES = (E, <, #, ¢) where



e (E,<,#) is an event structure called the underlying event structure of ES.

e ¢: E — 3 is the labelling function.

The labelling function ¢ can be extended pointwise to finite subsets of F.

We assume that the notions we have so far developed for event structures are transported to
labelled event structures via their underlying event structures in the obvious way. A slight hitch
is that in associating a dts over Y with a Y-labelled event structure, concurrent steps have to be
defined using multisets rather than sets. We would like to stick to the simpler notation of sets,
which we do in this paper, using “concurrency preserving” labelling functions. However, our results
do not depend upon this and can be generalized if required.

Let ES = (E,<,#,¢) be a Y-labelled event structure. Then ¢ is said to be concurrency
preserving in case e; cogg eo implies ¢(e1) # ¢(ez) for every ey, es in E. Suppose ES is labelled
preserving concurrency. Let

def
TSks = (Cgs, X, =gs) where =pgg = {(m,¢(u),x') \ (z,u,z') € —ESs}-

Proposition 1.3 T'Sgs is a dts over 3.

Proof: Follows easily from the fact that (Crg, = rg) is a dts over E. O

Henceforth, by a “labelled event structure” we shall mean a finitary event structure with a
concurrency preserving labelling function.

Next we wish to show that elementary net systems which are a basic model in net theory also
give rise to dts’s.

An elementary net system is a tuple N = (B, E, F, ¢;;;) where

e Ny = (B,E,F) is called the underlying net of N. B is a set of conditions and E a set of
events (disjoint from B). The flow relation F' C (B x E) U (E x B) satisfies:

Vee BUE:3ye€ EUB: (x,y) € For (y,z) € F.

e ¢, C B is the initial case.

For e in E we let *e denote the set of pre-conditions and e® the set of post-conditions of e,
defined as:

e © (b (be) € F}
e* ¥ e (e,b) € F).

For a subset of events X C F, *X and X ® are defined by taking the pointwise union.
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Figure 6 is an example of an elementary net system. We have used the conventional graphical
notation for nets  conditions are represented by circles, events by boxes and the flow relation by
directed arcs. The “marked” conditions denote the initial case c;;,.

A state of a net system usually called a case consists of a subset of the conditions holding
concurrently. An event can occur at a case iff all its pre-conditions hold and none of its post-
conditions do at the case. When an event occurs all its pre-conditions cease to hold and all its
post-conditions begin to hold. A step of events can occur at a case — as a concurrent step — if each
of them can occur individually and their F-neighbourhoods are pairwise disjoint. These ideas can
be formalized as follows:

Let N = (B, E,F) be a net. Then Indy C E x E is given by:
e1 Indy eg iff (e Uer®) N (PeaUes®) = 0.
The step transition relation —x C p(B) X pin(E) X p(B) is given by:

u - / /
c—c iffc—c =%u, ¢ —c=u®*and Vej,eg Eu:e; =egor ey Indy ey

Note that if ¢ C B and *e C ¢ but ¢®* Nc¢ # (), then e is not enabled at c.

Let N = (B, E, F,c¢;,) be an elementary net system and —  the step transition relation of the
underlying net N = (B, E, F). Then Cy is the state space of N and it is the least subset of p(B)
containing ¢;, and satisfying:

If c € Cyr and (c,u,c’) € = then ¢’ € Cy.

Let — A be —n restricted to Car X g rin(£) x Cur.
Proposition 1.4 (Cyr, E, =) is a dts over E.

Proof: Suppose (c,u,cd’) €—=y. Define f € Flu,Cxr] by f(v) = (cUv®) — *v, for every v C u.
Now it is easy to verify that Definition 1.1 is satisfied. O

As in the case of event structures, the dts associated with a net system is deterministic,
and it will be useful to consider labelled net systems. A Y-labelled elementary net system
N = (B, E,F,ci,,¢) is defined analogously to a labelled event structure. Our labelling function
will be required to preserve concurrency.

Let N = (B, E, F,c¢;,) be a net system. Then coyy C E x E is given by:
cony = {(e1,e2) | e1 # ez and Je, € Cr : (¢, {er,e2}, ) € =}
Notice that conr C Indy, and in general this inclusion is proper.
We can now define the structure

TSy = (Cn, X, =) where =y = {(c,¢(u),c) | (c,u,c) € =n}.
Proposition 1.5 T'Sy is a dts over 3.

Thus elementary net systems also lead to dts’s in a natural way.
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2 A logic for distributed transition systems

In this section we introduce the logic which will be the focal point of our study. With distributed
transition systems playing the role of Kripke frames, we first develop the semantics of the language.
We then provide a complete axiomatization of the set of valid formulas and show that the logic is

decidable.

Fix a countably infinite set of atomic propositions P = {pg,p1,...} and a countably infinite al-
phabet of atomic actions ¥. The formulas of our language Step-TL (temporal logic with concurrent
steps) are specified inductively as:

e Every member of P is a formula.

e If o and 3 are formulas then so are ~a,a V 3, O and (u)a, for u € p g (X).

We let o, 3,7,d with or without subscripts range over formulas. When u is a singleton, say
u = {a}, we write (a)« instead of ({a})a.

A model is a pair M = (T'S,V) where T'S = (S,—) isa dts over ¥ and V : S — p(P) is a
valuation function.

Let M = ((S,—),V) be a model, s € S. Then the notion of « holding at the state s in the
model is denoted by M, s = « and is defined inductively as follows:

e M,s=piff pe V(s).

e M,s = ~aiff M,s f=a.

M,s=aVpiff M,s =aor M,s | p.

M, s = Oa iff there exists s’ € R(s) such that M, s' |= a.

M, s = {(u)a iff there exists s’ such that s—=s' and M, s’ |= .

The derived connectives of propositional calculus such as A, > and = are defined in terms of
~ and V in the usual way. We let True stand for the formula pg V ~pg and False for ~True.

The derived modalities O and [u] are given by:

def
Oa € ~Ona

[u]a def ~(u) ~
It can be easily checked that
M, s = Da iff for every s’ € R(s), M,s' | «

. u
M, s = [u]a iff for every s’ such that s—s': M,s' =«

12



The formula « is satisfiable if M, s = a in some model M = ((S,—),V) with s € S. « is valid in
the model M if M, s = a for every s € S. a is valid (denoted = @) if « is valid in every model M.

Step-TL can be used to express a variety of properties concerning the occurrence patterns of
actions in a dts. A typical safety property would be O[{a1, as}]False stating that at no reachable
(global) state can the actions a; and ay occur concurrently. Clearly liveness properties can also
be stated in the usual fashion. For example if the dts models an elementary net system then
OO (a)True expresses the fact that from every reachable case (state) it is possible to obtain a case
at which the action a is enabled.

We now propose an axiomatization of the set of valid formulas.
Axiom System ND

Axiom schemes

o

) All the substitutional instances of the tautologies of PC
O(a 2 B) > (Oa > OB)

Oa > [u]a A DO«

ful( > B) > (Ju]a > [W]B)

a= (Do

Inference rules

(MP) «, a>f (TG) «
Jé] Oa

PN
vvgv

Let I' = {vi,...,7%} and a € I'.

(Step) Y1 V..V
was V(AW A W)

f c .7:[11, 1’\] vCu vCo' Cu
f(w)=a

As usual, by a thesis we will mean a formula a which is derivable in a finite number of steps
from the axioms using the inference rules. This is denoted by F a. « is said to be consistent if ~«
is not a thesis. The finite set of formulas {a, ..., ay,} is consistent if their conjunction a1 A... Aay,
is. A set of formulas is consistent if every finite subset of it is.

Most of our axiom schemes and inference rules are standard or easy adaptations of standard
ones [Kro, Pnu]. Characteristic of our system are the axiom scheme (A4) and the inference rule
(Step). The former specifies that each state can be reached from itself through the empty step.
Moreover the empty step performed at a state leads back to the same state.

Note that (Step) represents a finite presentation of an infinite set of inference rules: one for
each set of formulas I'. In essence (Step) says that if (u)a holds at a state s in the model M, then
there exists a state s’ such that a holds at s’ and there is a u-cube from s to s’. (Think of " as a
finite set of “descriptions” of states of a dts.)

Consider the following simple way of stating this:

(u)a > /\ (v){(u —v)a

vCu

This formula would be a thesis in our system. It merely states that a step can be arbitrarily broken
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up into substeps. However there is more to the semantics of the — relation, as we observed in
Section 1. It demands the existence of a function which fixes once and for all the “state of affairs”
that might prevail at the intermediate states occurring in the u-cube. Specifically, if each of the
states in the u-cube satisfy one among a set of properties then the function must fix a specific
property for each intermediate state in the u-cube. In particular note that, due to nondeterminism,
for each v C u there might be several v-successors at s and the function must determine which
belongs to the u-cube in question.

We can use a finite set of inference rules for our axiomatization, but then the inference rule
(Step) is replaced by an infinite set of axiom schemes [LRT]. Let I' = {y,..., 7%} and a € I'.

(AStep) (u)a A /\ [W](y1 V...Vy) D \/ (/\ (v) /\ (v —v)f(v'))
vCu f c .7:[11 1’\] vCu vCv' Cu
o " ?
fu)=a
Observe that the step axioms and rules have a consequent that is double exponential in the size
of the antecedent.

We do not know whether it is possible to axiomatize this logic with a finite set of inference
rules and a finite set of axiom schemes. However, we can so axiomatize a logic in a more expressive
language; see Section 9.2.

Note that the axiom system in itself does not force models to be distributed transition systems
tree models (with action-labelled edges) could suffice, and the axioms would then provide closure
conditions on the models. However, we are primarily interested in dts’s which arise naturally in
concurrency theory and we study this logic in an attempt to characterize dts’s (in the sense of
standard modal logic [HC]).

Theorem 2.1 (Soundness) IfF a then | a.

Proof: We will only verify the soundness of the inference rule (Step). The soundness of the
axioms and the other inference rules is easy to check.

So suppose the disjunction of a set T" of formulas 1, ...,y is valid, « € I'. Let M = ((S,—),V)
be a model and s € S such that M, s = (u)a.

Hence there is an s’ with a holding and a u-cube g from s to it. We define the required function
f € Flu,T] as follows.

Suppose v C u. M,g(v) =1 V...V 7. Hence some formula in I" must be satisfied at g(v). To
be specific, let f(v) be the formula y; where j is the least index in {1,...,k} such that M, g(v) |= ;.
Finally, let f(u) = a.

The soundness of the axiom now follows easily from s—>¢g(v) and g(v)>—g(v') for every v C
v’ C u. O

The following theses and derived inference rules will be required for proving completeness.

Theses

14



(1) [ula A (W) > (u)(a A )
(T2) DOaA<OB>O(anp)
(T3)  [ul(a A B) = [ula A [u)f
(T4) O(aAp)=DaAn0p
(T5)  (u)(aAB) > (uya A (u)
(T6) (u)(aVp)=(u)aV (u)p
(T7)  Olavp)=20aVvop
(T8) <O(anp)>Oandp
(T9) Oa > [u]0a

(T10) Oa > a

Derived rules

(u@) « (DR1) ad>f (DR2) a«a>p
[u]a (uyaw > (u)f Sa > Of

The derivations are quite easy (see for instance [Bur]) and hence we omit them.

The closure of a formula will play a crucial role in the completeness proof.

Definition 2.2 Let a be a formula.

1. CL'(«) is the least set of formulas containing « which satisfies:

(a) If ~3 € CL'(«x) then B € CL'()

(b) If B1V B2 € CL'() then B, B2 € CL'(a)
(c) If (u)B € CL'(a) then € CL' ()

(d) If 0B € CL' () then € CL'(c)

2. CL(«), the closure of «, is given by:

def

CL(a) % OL/(a)U{~B]| B € CL' ()}

3. An atom generated by « is a mazimal consistent subset of CL(c).
4. AT () is the set of atoms generated by .

5. Voc(a), the (closure) vocabulary of «, is given by:

Voc(a) = | J{u | there is a (u)3 € CL()}

It is easy to check that there exists a constant ¢ > 0 such that if « is of length n then CL(«)
is of size at most c¢n and hence AT () is of size at most 2°".

The completeness proof will consist of showing that every consistent formula is satisfiable. For
the rest of the section, fix a consistent formula «y and an action d € X — Voc(ag). Note that d
exists because Voc(ayg) is finite and ¥ isn’t.
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For convenience, we will assume the parameter oy and write CL, AT and Voc. Clearly CL is
nonempty and since «q is consistent, AT is nonempty. Further, each atom is nonempty since the
empty set is not maximal (one can always consistently add «yg). For every atom w, we let @w denote
the conjunction of the formulas contained in it. For a nonempty set W = {wq,...,w} C AT, w
denotes the formula wy V ...V wg. The next result can be obtained by applying the machinery of
propositional calculus [Kro).

Proposition 2.3 Let w,w' € AT.

1. Ifa € w then - w > «
2. (W A « is consistent and o € CL) iff « € w.
3. @ Aw' is consistent iff w=uw'.

4.+ AT.

The set AT can be used to construct a model for oy. The underlying dts T'Sy = (AT, —) can

be defined as:

. {(w,u,w') | @ A (u)w' is consistent and u C Voc}

U{(w, {d},w') | @ A Ouw' is consistent}
Recall that d € ¥ — Voc.

Lemma 2.4 TS is a dts over Voc U {d}.

Proof: wSw' iff & A ((2])1/1)\’ is consistent iff, by axiom (A4), w A w' is consistent. By Proposition
2.3(iii), this holds if and only if w = w'.

Next suppose that w—w’. We must establish the existence of a u-cube from w to w' in T'Sj.
First note that, by the definition of —, either u C Voc or u = {d}. If u = {d}, the function is
obvious, so suppose u C Voc. Then w A (u)ﬂ? is consistent. Let AT = {wn,...,wy}. Since w' € AT
and - AT by Proposition 2.3(iv), we can apply (Step) to get a function f in Flu,{w1,..., wg}]
such that f(u) = w' and the following formula is consistent:

oA N () N\ (0 =0 ()

vCu vCo' Cu

Using axiom (A4) and Proposition 2.3(iii), observe that f(}) must be @. Consider v C v' C
u. We have (v)({(0)f(v) A (v' —v)f(v')) is consistent. By the derived rule (uG), the formula
(@) f(v) A (v — v)f(v') is consistent. Using (A4), we see that f(v) A (v" — o) f(v') is consistent.

Now define g € Flu, AT] by g(v) = w; such that w; = f(v). It is easy to observe that g satisfies
the conditions for a u-cube from w to w'. O

The next intermediate result is useful in the proof of completeness.
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Lemma 2.5 Let w,w' € AT and u C Voc U {d} such that w=w'. If Oa € w' then Oa € w.

Proof: Suppose w—w', w' C Voc. Then @ A <11,)1/1)\’ is consistent. Applying (A2), @ A o' is
consistent.

Alternately, if wiw)’, then again @ A Ow' is consistent.

By part (i) of Proposition 2.3, w' o Oa. By (DR2), we get Sw' O<Ca, and by axiom
(A2), it follows that F Ow' > Ga. Hence w A Qa is consistent. Since Oa € w', it is in CL and
using Proposition 2.3(ii), we get Ca € w. O

Define now the model My = (T'Sy, Vy) where for every w € AT, Vo(w) = w N P. Since «y is
consistent, it must belong to some atom wy in AT, hence by the following lemma it is satisfiable
in M[].

Lemma 2.6 VG € CL:VYw € AT : My, w = B iff f € w.

Proof: We proceed by induction on the structure of 8. If 8 € P or § is of the form ~a or a; V ag
the proof is routine. Hence assume that 3 is of the form (u)a.

Suppose (u)a € w. Then w A (u)a is consistent by part (ii) of Proposition 2.3. This implies
that (u)c is consistent and by derived rule (uG), a is consistent. Then the set W = {w' | o € w'}
of atoms is nonempty and by PC, - a > W. By (DRI1), we can then deduce that - (u)a > (u)W.
Thus w A (u)W is consistent. By thesis (7°6), there exists w' € W such that @ A (u)w' is consistent.
By definition of —, we then obtain w-5w'. Since a € w', it must be the case that M,w' = a by
the induction hypothesis. Hence M, w |= (u)a.

Next suppose that M,w = (u)a. Then there exists w' € AT such that w-—w' and M,w' = a.
By the induction hypothesis, a € w'. By definition of —, @ A (u)w’ is consistent. Thesis (T'5)
implies @ A (u)« is consistent. Since (u)a € CL, we get (u)a € w from part (ii) of Proposition 2.3.

Now consider the case where [ is of the form Ca. Suppose Ca € w. Then w A O« is consistent.
Hence Oa and « are consistent. Define W = {w' | & € w'} as above. Again, using the derived rule

(DR2) and thesis (T'7), we will get w' € W such that @ A Ow' is consistent. Consequently ww'.
Using the induction hypothesis, M, w' = « and therefore M, w = <a.

Finally suppose that M,w = ©a. Then there is a w' € R(w) such that M,w' = «. By the
induction hypothesis, @ € w', and by thesis (7'10), Ca € w'. By repeated application of Lemma
2.5, we now get Ca € w, as required. O

Theorem 2.7 (Completeness) If = « then - «.

Proof: As observed earlier, Lemma 2.6 at once implies that every consistent formula is satisfiable.
O
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Observe that we can in fact obtain a model based on a pointed frame by taking T'S; =
(Rrs,(wg),—,wp) in the above construction. Hence the completeness result holds for models
based on pointed transition systems as well. We can in fact extract a more important result. By
soundness of the axiom system, if «v is satisfiable then it is consistent. The proof of the completeness
theorem then guarantees that it has a model of size at most 2" where ¢ > 0 is a constant and n is
the length of a. Hence we have:

Theorem 2.8 (Decidability) Satisfiability in our logic is decidable in nondeterministic exponen-
tial time.

The standard filtration technique [FL] can also be applied to get a direct, model-theoretic proof
of decidability [Parikh].

A remark about the upper and lower bounds. It is easy to see that the Fischer-Ladner lower
bound of deterministic exponential time for PDL [FL] will also hold for our logic. The same proof
goes through except for the fact that the [-*] of page 207, line 12 [FL] must be replaced by O.
As for the upper bound, PDL has been shown by Pratt [Pra80] to be decidable in deterministic
exponential time. However, unlike PDL, our models are built from (hyper-)cubes corresponding to
the relation —. Such cubes can be exponential in the size of the formula and it is not obvious that
guessing them can be avoided.

3 Event Structures and Net Systems

The soundness and completeness theorems of the previous section can be together viewed as a
logical characterization of the class of distributed transition systems. We mean this in the spirit
of a result such as “S4 is sound and complete w.r.t the class of partial orders” in modal logic
[HC]. Here we wish to show that our axiomatization also characterizes finitary event structures
and elementary net systems.

As shown in Section 1, there is a natural way of associating a dts T'Sgg with every 3-labelled
event structure. Similarly there is a dts TSy associated with every 3-labelled elementary net
system. It is easy to see that there are dts’s which cannot be generated by event structures or net
systems.

For instance, let a, b, c be three distinct letters in . Figure 7 shows a dts which can not be
isomorphic (in the obvious sense) to a dts associated with a Y-labelled event structure. The events
corresponding to the {a, c}-cube are dependent on the a and ¢ events performed in state sy, which
are in conflict. In an event structure, concurrent events cannot be dependent on conflicting ones.

A similar claim can be made for dts’s associated with elementary net systems.

On the other hand, let SAT, SATEgs and SATng be the set of formulas satisfiable by models
based on all dts’s, those based on dts’s associated with labelled event structures and those based
on dts’s associated with labelled net systems respectively. We show in this section that SATgg =
SATngs = SAT. That is, (satisfiable) formulas of our logic can be satisfied by dts’s associated with
event structures and net systems.

To prove this result, we make use of the standard notion of bisimulation [Park].
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Definition 3.1 Let T'S; = (S;,—), @ = 1,2, be two dts’s over X.. Then a step bisimulation
between them is a relation R C S1 x S9 such that s1 R so implies:
o If 5151 s} then there exists sy € Sy such that so—9 sh and s} R sb.

u - u
o If s9—9 s, then there exists s| € Sy such that s—1 s} and s} R sb.

Proposition 3.2 Let M; = ((S;, =), Vi), i = 1,2 be two models and R a step bisimulation between
(S1,—1) and (S, —2) such that sy R so implies Vi(s1) = Va(sa) for every si,s9. Then for every
a and every (s1,s2) € R,

Ml, S1 |: (6] Yﬁ MQ, 59 ‘: .

Proof: We can first show that s; R s9 implies:

o If s € Ryg, (s1) then there exists s} € Ryg,(s2) such that 8| R .

o If ) € Rrg,(s2) then there exists s| € Ryg, (s1) such that s R sb,.

Then structural induction on a will give the result. For instance, one can follow the proof of
the p-morphism theorem in [HC]. O

Lemma 3.3 Let T'S = (S, —, s0) be a countable pointed dts over ¥.. Then there exists a labelled

event structure ES and a step bisimulation R between TSps = (Cps,=grs) and TS such that
@ R S0-

Proof: Fix a countably infinite set of events E and fix an enumeration of pfm(E) XSXprin(X)xS.

Since E , 2 and § are countable such an enumeration exists. We will inductively construct an infinite
sequence (ESy, Ry), (ES1, R1), ... such that for every i > 0,

1. ES; = (E;, <;,#i, ¢i) is a finite labelled event structure whose events are members of E.

2. E; CEiy1, <in1 [Ei=<i, #in1[Bi =4 and ¢i1[E; = ¢i.

3. If e; cops; ea then Vj <i:ey € E; iff eg € Ej.

4. R, C Cgs, x S with the property 0 R; so, R; is a function and R; = R;11[(Cgg, x S).

We will abbreviate Cggs, by Ci, =gs;, by =, etc. The tuple (¢, s, u,s') is a requirement for

(ES;,R;) if c € C;, ¢ R; s and s—s' in T'S. The requirement is live if there is no ¢’ € C; such that
c=,;,c and ¢ R; §'.

The “limit” of this sequence will be (ES, R), the event structure and bisimulation required by
the lemma.
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Set ESy = (0,0,0,0), so that TSy = ({0},=) where == {(0,0,0)}. Set Ry = {(0,s0)}
Clearly (ESy, Ry) satisfies the inductive conditions.
(

Assume that (ES;, R;) have been defined for ¢ > 0 satisfying the required properties.

If there are no live requirements at stage i, set (ES; 11, Ri+1) = (ES;, R;). Otherwise pick the

~

live requirement (c, s,u, s') with the least index in the enumeration of pgin(E) X S X pgin(X) x S

we have fixed. Note that u # () because s L implies rg, cand ¢ R; §'. Let u = {ay,a9,...,an}.
Pick Y = {ei1,eq,...,e,} from E — E;. Since E is countable and F; is finite, we can always find
such a Y.

Define ESit1 = (Eit1, <it1,#it1, ¢ix1) by

def

Fiy1 = B;UY
<in € < UexY)U{(ee) [e€ Y}
def
#it1 = #iU((Bi—c) xY)U(Y x (E; —¢))
def ) aj, fore=e;,1<j<n
diri(e) = ! ! !

¢i(e), fore€ E;
First observe that the inductive conditions (1), (2) and (3) hold. We have
coir1 = co; U{(e,e') | e,e' €Y, e # €'}

ES;;1 is finite and Y-labelled (preserving concurrency), but we have to verify that it is an event
structure.

<;41 is clearly reflexive. It is transitive because ¢ is downward closed. Since <; was antisym-
metric, <;y1 is antisymmetric by definition.

To prove conflict inheritance, let e #;11 ¢ <;11 €. Suppose €’ € Y. Then, by definition of
<it1, either ¢ = ¢”, in which case we are done, or ¢ € ¢. But then, e must be in E; and not in c.
Hence e #;.1 €” by definition.

Suppose that " € E;. Now €' must be in E;. If e is also in E;, since ES; is an event structure,
we have e #; ¢” and hence e #;.1 €”. Otherwise, e is in Y. Hence ¢’ € E; — ¢, whence €' & ¢ as
well. By definition, (e,e”) € #;41.

This completes the construction of £S;;;. Finally observe that
Ciy1 =CiU{cUy|yCY}
Since s—s', let f be a u-cube defined by it. Let

Riy1=R;U{(cUy, f(dir1(y))) |y CY}

By taking the componentwise union of the (ES;, R;)’s, we obtain the required pair (ES, R).
ES is finitary since each event in it comes from some ES;, j > 0 which is finite, and since
<; [E; =<;, fori > j, the “past” of each event is finite. We use inductive condition (3) to
establish that R is a step bisimulation.

In one direction, suppose ¢ R s and ¢ =g ¢. Then there is a set of concurrent events y such
that ¢ = cUy and ¢(y) = u. By (3), there is a minimum j > 0 such that y C E; 1 — E;. Let
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(c,s,v,s") be the requirement chosen at ES; to obtain ESj;; and f : p(v) — S be the chosen
v-cube. By definition of C; 1, it must be the case that Jvg : vgUu C v :c =cUwgy, ' =cUvyUu.
Then ¢ R f(vy), ¢" R f(vogUw) and f(vg)—f(vg Uwu) in TS.

For the other direction, suppose s;-—s3 and ¢ R s1. Since (c, s1,u, s3) is a fulfilled requirement,
there exists a ¢ such that ¢ R s and ¢ =pg ¢ O

Theorem 3.4 SAT = SATgs.

Proof: One direction is trivial. For the other, suppose @ € SAT. Then there is a countable (in
fact, finite) pointed model M = (T'S,V), T'S = (S, —, s¢) such that M, sy = «. By the previous
lemma, there is an event structure ES with a step bisimulation R C Cgg x S such that ) R sg.
The proof of the lemma also establishes that R is a function, hence we can define Vgg(c) = V (s),
where ¢ R s. Let Mgs = (T'Sgs, Vgg). By Proposition 3.2, Mgg,} |E a. Hence o € SATgg. O

Thus we have that satisfiability over the class of dts’s generated by event structures is also
decidable in nondeterministic exponential time and the axiom system of Section 2 is sound and
complete for this class.

We can similarly characterize the state space of elementary net systems. The crucial step is
again provided by establishing a step bisimulation. In this case, we can use the work of [NPW] and
provide a bijection.

Lemma 3.5 Let ES = (E,<,#,¢) be a labelled event structure. Then there exists a labelled net
system N = (B, E, F,ci,, ) and a bijection h : TSgs — TSy such that for every configuration
HAS CES'7

x =ps t' iff h(z) S h(a').

Proof: Set B = B;; U B. U By where

e Biu—{le}} | ec B)
o Bo={(e1,e2) | e1 <ea, e1 #ea}

o By = {{e e} |e#e}.

Next set F' = Fjy U F- U Fy where

o Fig={({e},e) | {e} € Bia}
o Fo ={(e1,(e1,€2)),((e1,e2),e2) | (e1,e2) € B}
o F# = {({6,6’},6), ({eael}ael) | {eael} € B#}
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Finally set ¢;,, = B;g U B#.
Then N = (B, E, F, ¢y, ¢) is a labelled net system. To see this, we need to verify that
Claim : e; Indy ey iff €1 cogg es.

We leave the verification of this claim to the reader, as well as that of the fact that h : Crg — Cus

defined by

h(z) def (cinUx®) —"*z.

is the required bijection. O

Theorem 3.6 SAT = SATng.

Proof: One direction is trivial. For the other, by Theorem 3.4, SAT C SATgg. The bijec-
tion h defines a step bisimulation. By defining a valuation function and using Proposition 3.2,
SATrs C SATys. |

4 Deterministic distributed transition systems

In this section we begin the study of deterministic dts’s from the vantage point of our logic. We
begin by introducing terminology that will be used throughout the rest of the paper. As before, by
a dts we will mean a dts over ¥ where X is a countably infinite set of actions.

Definition 4.1 Let TS = (S, %, —) be a dts.

1. TS is said to be deterministic if

u, Uu, . .
Vs, 81,52 € S,Yu € ppin(X) : s—s1 and s—sy implies s = so.

2. The model M = (T'S,V') is said to be deterministic if T'S is.

3. «is said to be deterministically satisfiable if there exists a deterministic model M = ((S,—), V)
and s € S such that M,s = a.

4. « is said to be deterministically valid if M, s |= « for every deterministic model M = ((S,—), V)
and every s € S. We write =pe; o to denote that « is deterministically valid.

5. DSAT and DVAL denote the set of deterministically satisfiable and deterministically valid
formulas respectively.

Deterministic dts’s arise naturally in a number of ways. Let ES = (E, <, #) be a finitary event
structure. Then (Cgg, —gs) is a deterministic dts over E. Similarly, if N = (B, E, F,¢;;,) is an
elementary net system then (Cpr, —ar) is a deterministic dts over E. For ¥-labelled event structures
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and net systems one can place well motivated restrictions on the labelling functions to ensure that
the associated dts’s over 3 are deterministic. We will not go into details here.

It turns out that, from a logical point of view, determinacy adds a great deal of expressive
power. One of our aims is to bring this out in a number of ways in this and subsequent sections.

First we consider the simple-looking formula O({z,y})True. Any deterministic model of this
formula must contain the grid N x N shown in Figure 8. (A formal proof is provided in the next

section.) We have omitted the set arrows {T—y>} in the picture.

Secondly, we can point out that for the class of deterministic models, there is no hope of getting
“equivalent” deterministic models based on event structures or net systems (in the sense of the
translation theorems of the previous section). To see this, observe that the formula ({a,b})True A
({b, c})TrueA[{a,c}|False A[b]({a,c})Trueis in DSAT because we can find a deterministic model
for it, based on the dts shown in Figure 7. However, we know that the dts cannot be generated by
an event structure. The bisimulation technique of Section 3 is not of use because we are restricted to
deterministic systems. Hence the class of deterministic dts models strictly includes those based on
finitary prime event structures. Once again, a similar claim can be made for deterministic models
based on elementary net systems.

Another piece of evidence supporting the view that determinacy is very expressive is provided
by the axiomatization of DV AL which we present now.

Axiom System D

Axiom schemes

(A0) All the substitutional instances of the tautologies of PC
(A1) O(a > B) > (Oa > OpB)

(A2) Oa > [u]a A DO«

(43)  [ul(e > B) > ([u]a > [u]B)

(A4) a= (D)«

(A5) (uya D (v){u—v)a, forov Cu

(A6) (u)a D [u]a

Inference rules

(MP) a,a>f (TG) «

Jé] O

The characteristic axiom of this system is the determinacy axiom (A6). In its presence the rule
(Step) of Section 2 can be replaced by the much simpler (A5) of the present system. It can be
shown that (Step) is a derived inference rule in the axiom system.

We let Fp a denote the fact that « is a thesis of the system D. In this section we will, for
convenience, write - « to mean Fp a and say « is consistent to mean that it is consistent w.r.t.
the system D. From the definitions, we easily have:

Theorem 4.2 (Soundness) IfFp « then =pe; .

The completeness argument will be a lot more involved than the one presented in Section 2. A
simple reason is that the “filtration” technique used in the earlier proof will produce, in general,
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nondeterministic models. A deeper reason is that, as we will prove in the next section, DVAL is
not a recursive set.

We will use the following theses and derived rules:
Theses

1) [ A {u)f > ()@ A )

OaAOB D O(aAf)

[u](a A B) = [u]a A u]g

O(aAp) =0aA0p

Ua D «

Oa O [u]0a

(u)True > (v)True, forv Cu

(uya > w){u —v)a, forv Cu

(u)True A [ula > [v][u — v]a, forv Cu

W N

o ~J O

HERER="==S
8\/\/\/8‘/\/\/\/

Derived rules
(u@) « (DR1) a>f (DR2) a>f
[u]a (uyaw > (u) 8 [u]a  [u]B

The derivations are straightforward and we once again omit the details.

A number of new notions will be needed for the completeness proof. The dts (S, X, —) is said
to be:

o sequential iff Vs,s' € S : Vu € pin(X) : s—>s' implies [u| < 1.

e finite iff both S and — are finite sets.

o acycliciff Vs, s’ € S: s € R(s') and s’ € R(s) implies s = 5.

If a pointed dts T'S = (S, —, sg) is acyclic then sq is said to be the root of T'S.

Now assume that TS is acyclic and has root syp. Then we can define the function depthrg :
S — N as follows:
depthrs(sg) =0

depthys(s) = max{depthys(s') | (s',a,8) € =} +1

We will omit the subscript and refer to the depth function when the dts on which it is defined is
understood. We say that a rooted acyclic dts is graded if depth(s') = 1+ depth(s) for every (s, a,s')
in the transition relation. Informally, every path from the root to a state s must be of equal length
in a graded dts.

Next we need the notion of a thin u-cube. Let TS = (S,%,—) be a dts and s,s’ € S. Then a
thin u-cube (from s to s') is a function f € Flu, S] which satisfies:

e f(0)=sand f(u) =5
e Vo Cu:Va€u: flv—{a})>f(vU{a}).
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Note that the existence of a u-cube implies that of a thin u-cube. The converse, in general, is not
true.

By an MCS, we mean a maximal consistent subset of the set of all formulas of Step-TL (that
is, a consistent set which is not properly included in any consistent set). Of course, consistency is
now relative to the axiom system D.

Definition 4.3 A chronicle structure is a pair CH = (T'S,T) where T'S = (S, —) is a deter-
ministic sequential dts and T is a map (called the chronicle) which assigns an MCS to each s in

S.

1. Let ag be a formula. T is said to be ap-coherent in CH iff Vs,s' € S:
(a) If a € Voc(ap), 55" and [a]o € T(s) then a € T(s').
(b) If s € R(s) and O« € T(s) then a € T(s').

2. A live successor requirement for «g in CH is a pair (s,(a)True) where s € S,a €
Voc(o), (a)True € T(s) and there is no s' € S such that s-s'.

3. A live future requirement for o in CH is a pair (s, Oa) where s € S, Oa € T(s)NCL(ayp)
and for all ' € R(s),a ¢ T(s").

4. Let ag be a formula. CH is said to be ag-perfect iff T' is ag-coherent in CH and the following
conditions hold:

(a) There exists sy € S such that g € T (sp).

(b) There are no live successor requirements for ag in CH.

(¢) There are no live future requirements for aqg in CH.

As before, we omit the parameter g when clear from the context. The following observation
about ag-coherent chronicles will prove useful later.

Proposition 4.4 Let T be ag-coherent in the chronicle structure CH = (T'S,T) where T'S = (S, —
). Let s € S and u C Voc such that (u)True € T(s) and there exists a thin u-cube from s to s' for
some s' in S. Then {« | [ula € T(s)} C T(s).

Proof: The proof proceeds by induction on size of u.

base: |u| = 0. Then u = () and hence s = s’ and the result follows by Axiom A4.

step: |u| = k > 0. Let a € u and [ula € T(s). By definition of thin cubes, f(u — {a})>f(u)
and there exists a thin (u — {a})-cube between s and f(u — {a}). It suffices to prove that
[ala € T(f(u—{a})) as the result would then follow by c-coherence of T. Now (u)True € T'(s) and
hence by thesis (1'7), (u — {a})True € T(s) as well. Then thesis (T'9) gives [u — {a}][a]a € T'(s).
By induction hypothesis, we get [a]a € T'(f(u — {a})), as required. O

Now we show that a model can be “pulled out” from an «g-perfect chronicle structure. This
technique is due to Burgess [Bur].
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Lemma 4.5 Suppose «q is a consistent formula and CH = (T'S,T) is ag-perfect. Then «py €
DSAT.

Proof: Let T'S = (S, —). Define TS = (S,=) by

o def U{(s,u,s") | u C Voc, (u)True € T(s)

and there is a thin u-cube from s to ' in T'S}

Claim : 7S’ is a dts.

Whenever s=s', we need to show that there is a u-cube between s and s'. If s’ then |u| < 1
and there exists a thin u-cube from s to s’ in T'S. Since |u] < 1 and — C =, there is a u-cube
from s to s’ in T'S" as well.

Otherwise (u)True € T(s),u C Voc and there is a thin u-cube f between s and s’ in T'S.
Then for every v; C v9 C u, there is a thin v;-cube between s and f(v1) and a thin (vy — vq)-cube
between f(v1) and f(v2). Since (u)True € T'(s), by thesis (T'8) [vi](ve — v1)True € T(s) and hence

by Proposition 4.4, (vy — v1)True € T(f(v1)). Thus, by definition of =, f(v;)"%="f(vs). Clearly
f is a u-cube between s and s’.

Claim : 7S’ is a deterministic dts.

Suppose s=s; and s=sy. If |u| < 1, the result follows by determinacy of T'S. Otherwise let f
be a thin u-cube between s and s; and g a thin u-cube between s and so. We show by induction
on v that f(v) = g(v). The base case is trivial. For the induction step, let ' = f(v — {a}) =
g(v —{a}),a € u. We have s'% f(v) and s'%g(v). By determinacy of T'S, we have f(v) = g(v) as
required.

Thus T'S" is a frame. Define the model M = (T'S’, V') by V (s) def T(s)NPNCL. Then M is a
model based on a deterministic dts.

Since C'H is ag-perfect, there exists sg € S such that ag € T'(sg). The following claim proves
that M, sy = ag and hence that oy € DSAT.

Claim : Vye CL:Vse S:yeT(s)iff M,s = 1.

The proof is by induction on the structure of ~.

Base: When v € P, the result follows by definition of V.

Step: The cases where 7y is of the form ~§ or §; V o are routine.

Case v = (u)a: Suppose (u)a € T'(s). Ast «a > True, by rule (DR2), (u)True € T(s). Further
by axiom (A6), [u]a € T(s). Since CH is ag-perfect, there exists s € S such that there is a thin
u-cube from s to s’. By Proposition 4.4, « € T'(s'). By the induction hypothesis, M,s’ |= «a.
Further, by definition of =, s=s'. Thus M, s |= (u)a.

Suppose M, s |= (u)a. Let s’ € S such that s=s' and M, s’ = . By the induction hypothesis,
a€T(s). If (uya € T(s), we are done. Otherwise, [u]~a € T'(s). If |u| <1, we get ~« € T'(s') by
ap-coherence of T, since u C Voc. Otherwise (u)True € T(s) and there is a thin u-cube between s
and s’. Again by Proposition 4.4, we get ~a € T(s'), contradicting consistency of T'(s').
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Case v = Oa: Suppose Ca € T(s). As CH is ag-perfect, there exists s’ € Ryg(s) such that
a € T(s'). By the induction hypothesis, M, s’ = «a and hence M, s = <a.

Suppose M, s E Ca. Let ' € Rrgi(s) such that M,s" | a. By the induction hypothesis,
a € T(s'"). If Ga € T(s), we are done. Otherwise, O~x € T'(s). Since Ryg(s) = Ryg(s), by
ag-coherence of T', we get ~a € T'(s"), contradicting the consistency of T'(s'). a

Thus, given a consistent formula ag, we need to construct an ag-perfect chronicle structure.
The following results will prove to be useful in the construction.

Proposition 4.6 Let A be an MCS such that Oa € A. Then there exists an MCS B such that
{8|0B€ A} C B and o € B.

Proof: LetI'={p |08 € A} U{a}.

Consider a finite subset of ', say I = {3, ..., Bk, a}. Then {0fF,...,008,Ca} C A and A is
an MCS, hence OB A ... AOF A Ca € A. By thesis (T'3), we get O(B1 A ... A Bg) ANOa € A, By
thesis (7'4), the formula O(B1 A...ABk Aa) is in A and is consistent. By rule (T'G), B1A...ABp AN
is consistent, that is, I is consistent. Since any arbitrary finite subset of T" is consistent, so is T'.
Let B be any MCS such that I' C B. B is the required MCS. O

Proposition 4.7 Let A be an MCS such that (a)a € A, for some a € ¥.. Then there exists an
MCS B such that {§ | [a] € A} C B and o € B.

Proof: Similar to that of the above Proposition. O

Lemma 4.8 Let o be a consistent formula. Then there exists an ag-perfect chronicle structure.

Proof: Fix S = {50, 51, ..} a countable set.

We define a sequence of chronicle structures CHy = (T'Sg, Tk), k > 0, where T'Sy = (Sk, —k),
such that the following conditions hold:
(A) TSy is a finite, pointed, acyclic, graded deterministic dts with root $p,
(B) T} is an ag-coherent chronicle in C Hy,
(C) —=k=—k+41 [Sk and T}, = Tjy1[ Sk

We will use depthy, to denote the function depthrg,. Further for all k, we define =, C (Si x
Voc) x (Sk x Voc) as follows:

(s,a)=g(s",b) iff
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a # b,
depthy(s) = depthy(s'),

there exists s € Sy such that ({a,b})True € Ty(s"), "%y s and "%, s, and

o (s,{a)True) and (s', (b)True) are live successor requirements in C Hy,.

Define = to be (=¢)*. = is irreflexive and symmetric. = is the equivalence relation we will
use. The idea is that when we satisfy any successor requirement, in order to ensure determinacy,
we satisfy all equivalent successor requirements.

The construction proceeds by induction on k. For the base case, set T'Sy = (Sg, —¢), where
Sy {So} and —¢ ef {(80,0, 50)}. Since ay is consistent there exists an MCS A such that ag € A.

Set Ty(s0) 4f A, Tt can be easily checked that CHy = (T'Sy,Ty) is a chronicle structure satisfying
the conditions (A), (B) and (C).

Inductively let CHy = (T'Sk,T;) be given satisfying the inductive conditions. If C Hy has no

live requirements, set C'Hy 1 def CHy. Otherwise pick a depthg-minimal live requirement (s,).

That is, for every live requirement (s', 8) in CHy, depthy(3) < depthg(s').

Case v = Ga: We have a future requirement (s, Oa). Since G € T'(3), there exists an MCS B
such that {8 | OB € T'(s)} U{a} C B, thanks to Proposition 4.6. Since T'Si, is finite, Sy C S. Pick

€8 — Sy Define Sk+1 def Sk U {s}. Further — is finite, hence ¥ ©f Voc U {a | 351,89 € Sy :
8151 89} is finite. Thus ¥j, C . Pick d € ¥ — . Define

i1 o U{(5,{d}. ), (3,0,5)}.

Extend Ty to Ti41 by setting Ti11(S) = B. Now T'Sk1 = (Sk+1, —k+1) and CHy 1 = (T Skv1, Tt1)-
It is easy to check that C'Hy,4 is a chronicle structure satisfying conditions (A), (B) and (C).

Case v = (a)True: We have a successor requirement (S, (a)T'rue) which is depthy-minimal.
Since (a)True € Ty(S), by Proposition 4.7, there exists an MCS B such that {3 | [a]g € A} C B.
Again since T'Sy, is finite, we can pick § € S — S, and let Sk+1 def Sk U{s}. Define

— k1 o — U{(5,0,5)} U{(s,b,3) | (s,b)=k(5,a)}

Extend T}, to Ty by letting Ty 1(8) = B. Now T'Sk11 = (Sk11, ~ks1) and CHiy 1 = (T'Sgi1, Ti1)-
We now show that C'Hy4 is a chronicle structure satisfying conditions (A), (B) and (C).

Clearly T'Syy1 is a finite, sequential dts. Further the restriction of =5, and T;y; to S yields
— and Ty, as required. Note that Rpg,  (5) = {8}. Since Sp41 — Sy = {5}, we thus see that
T'Sy41 is acyclic. Since 5 € Rrs,,,(50), T'Sk41 is pointed with root s5. Determinacy of T'Skq

follows from the observation that s —b>k+1 5 only when (s, (b)True) is a live successor requirement
in CHk

To show that T'Sy 1 is graded, let s —b>k+] s'. If s and s’ are both in S; we are done since T'S},
is graded. By the earlier observation, we know that s # 5. Thus let s € S, and s’ = 5. We have

s i>k+1 s and need to show that depthg1(8) = 1+depthyi1(s) = 1+depthi(s). Now, by definition
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of the depth function, depthi1(S) > 1 + depthi1(s). So suppose depthi1(S) > 1+ depthy(s).
Then there exists s’ € S;1 and a € ¥ such that 5’51 § and depthy,1(5) = 1+ depthy1(s'). By
construction, we must have s’ € Sy and (s',a)=g(5,a)=k(s,b) and hence depthy(s') = depthy(s)
giving a contradiction.

We have shown that C'Hj, indeed satisfies conditions (A) and (C). To show «gy-coherence of
Tk 1, consider b € Voc such that si>k+1s’ and [bla € Tg11(s). We need to show that a € T4 1(s').

It suffices to consider the case when s € Sy and s’ = 5. We have (s, b)=(5,a). Let s1,92,...,5j-1
Sk and ay,as,...aj_1 € Voc such that

(5,a) = (s0,a0)=k(51,01) =k - - - =p(85-1,05-1)=x(85,a5) = (s,0).

We show by induction on i that {8 | [a;]0 € Tk(s;)} C Tx41(S) = B. The base case, when i = 0,
comes about by choice of B. Let i > 0 and suppose that [a;]3 € Ty(s;). Let s” € Sy such that
({a;_1,a;})True € T(s") and "% s;_1, s""5' s, The existence of such an s” is guaranteed by
the third condition in the definition of =;. By ag-coherence of Ty, (a;_1)[a;]3 € Ti(s"). By thesis
(T8), [{ai—1,a;}]B € T(s"). Since ({a;_1,a;})True € Ty(s"), by thesis (T'9), [a;][a;—1]8 € Tk(s").
By ag-coherence of Ty, [a;—1]0 € Tk (s;—1). By the induction hypothesis on i, § € B, as required.

Further, if Da € Ty(s), by thesis (7'6), [b]0a € Tk(s). We have just shown that in that case,
Oa € B and by thesis (T'5), a € B as well. Thus T is ap-coherent and the inductive construction
of CHy1 is complete.

Define CH & (T'S,T) where T'S o (S,—) by

g def U Sk, — def U —k, and T(s) =Tg(s), for s € Si.
k>0 k>0

T is well-defined since Ty, = Ty1[Sk, for all k. Notice that a “fresh” action d outside Voc is used
to satisfy all future requirements and that once a successor requirement (s, (a)T'rue) is satisfied,
no further a transitions can be added. Hence T'S is a deterministic dts. It is easy to verify that T
1S ag-coherent.

Towards showing that C'H is «g-perfect, observe the following;:

Claim 1: Let u C Voc. If s, 51,50 € S such that there are thin u-cubes f and g respectively
from s to s1 and s to s9, then for every v C u, f(v) = g(v).

The proof is by induction on u, using determinacy of T'S.

Claim 2: For every s € S and a € Voc, if (a)True € T(s) then there is an s’ € S such that
s—s.

Let kK = min{j | s € S;}. Note that for every s’ € S — Sy, depthrs(s’) > depthrgs(s). Since
TSy, is finite, let m = |{s’ € Sy | s’ # s,depthy(s’) < depth(s)}|. Either (s, (a)True) is not a live
successor requirement in CHy_ ., (in which case we are done) or it is a depthy_,,-minimal successor
requirement in T'Sg,,. Let there be n such minimal requirements in C'Hg,,,. Surely none of them
can be live in CHy .1, and we are done.

Claim 3: Let s € S,u C Voc and (u)True € T(s). Then there exists s’ € S such that there is
a thin u-cube from s to s'.
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The proof is by induction on |u|. The base case, when u = (} is trivial. For the induction step,
let v = {aq,...,a,}. By the induction hypothesis we can assume, for every i € {1,...,n}, an
s; € Sg with a thin (u — {a;})-cube f; from s to s;. Since (u)True € T(s), by thesis (T'8), for every
i, [u—{ai}]{a;)True € T(s). By ag-coherence of T and the fact that (u — {a;})T'rue € T'(s) (using
T7), Proposition 4.4 assures us that (a;)True € T(s;). By the previous claim, for every i, there
exists s such that ;s

Let k be one less than the least j such that one of the s} € S;. Clearly, for all i, (s;, (a;)True)
is a live successor requirement in CHg. Now consider two thin cubes, f; a thin (u — {a;})-cube to
si and f; a thin (u — {a;})-cube to s;, i # j. Let v = u — {a;,a;}. By Claim 1, f;(v) = f;(v) = s"
(say). Now f; defines a thin v-cube from s to s”. Further since (u)True € T(s), by thesis (T'8),
[v]({ai,a;})True € T(s) and by agp-coherence of T and Proposition 4.4, ({a;,a;})True € T(s").
Further, s”%si and s”%s'j. Hence (s;,a;)=k(s;,a;). Since we know that s; € Sgi1 — Sk, the
chosen live successor requirement at stage k must be equivalent to (s;,a;) and hence (s;,a;). By
construction, for every i, s,;%kg § = s;. We now define the thin u-cube f from s to § by:

Flo) { fio), v Cu e

S, v = U.

It can be easily shown that C'H is ag-perfect. O

Theorem 4.9 (Completeness) If =pe a then Fp a.

5 Undecidability

In this section and the subsequent sections, our emphasis will be on negative results. Specifically,
we shall show that the satisfiability problem for our logic becomes undecidable when some natural
restrictions are placed on the class of permissible models.

We first consider deterministic distributed transition systems over a countably infinite alphabet
31. We begin by showing that deterministic satisfiability is undecidable, or in other words, that the
set DSAT is not recursive.

Various versions of the colouring problem [Parikh] will be used to establish our negative results.
Colouring problems correspond to tiling problems (see [Har85]) and in this section the colouring
problem that we consider (called simply CP) corresponds to the so-called origin constrained tiling
problem in [Har85].

An instance of CP is a triple A = (C, R,U) where C = {c¢g,¢1,...,¢} is a finite non-empty set
of colours and R, U : C' — (p(C) — 0) are the “right” and “up” functions.

A solution to A is a colouring function Col : N x N — C which satisfies:

1. Col(0,0) = ¢q.

2. V(i,j) e Nx N, Col(i+1,j) € R(Col(i,5)) and Col(i,j+ 1) € U(Col(i, j)).
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It follows easily from [Har85] as shown in [Parikh] that CP is X{-complete and hence undecid-
able.

We now reduce each instance of CP to a membership problem for DSAT. In other words,
we shall uniformly encode each instance A of CP into a formula aa such that A has a solution
iff ap € DSAT. In order to capture the effects of functions R and U, we reserve two actions
z and y respectively in . We reserve k + 1 atomic propositions in P to denote the colours in
C = {co,c1,-..,c}. For notational convenience, these atomic propositions will also be written as

CosCly. .., Ck.

Definition 5.1 Let A = (C, R, U) be an instance of CP, where C is a nonempty finite set {cg,...,ck}.

5
def
Then apn = /\ «;, where
=1

o ay ™ O{x,y})True.

k
® (3 déf O /\(C7 = /\ NCJ)
=0

i

The intended meaning of the conjuncts of aa should be clear. The important formula is a9
which, in the presence of determinacy, encodes the “grid” N x N (as we saw in Figure 8).

Lemma 5.2 Let A = (C,R,U) be an instance of CP. If A has a solution, then an € DSAT.

Proof: Let Col: N x N — C be a solution to CP. Define now T'S = (S, —) as follows:

S = N x N.

= {((i,5), {=}, G +1,5) | (3,j) € Nx N}
U{((5:4), {u}, (6,4 +1)) | (i,5) € N x N}
u{((i. ), {T yhG+1j+1) | (i,§) € Nx N}
U{((3.5),0, (. 5)) | (i,j) € N x N}

Then it is clear that T'S is a deterministic dts over Y. Next define V' : § — p(P) as

V(i,j) def {Col(i,j)}. Let M = (T'S,V). Then it is straightforward to show that M, (0,0) = aa.
O

The converse of this lemma is more difficult to prove. We first prove an intermediate result.
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Lemma 5.3 Let M = (T'S,V) be a model where TS = (S, —) is a deterministic dts over . Let
s € S such that M, s = ({z,y})True and let 8" € S. Then the following statements are equivalent:

1. s{m—’yﬁs'.

2. Js, € 5 555,54

3. ds, €8 si)syim'.

Proof: From the definition of a dts, it follows that (1) implies (2) and (3). So now suppose that

(2) holds. Since M, s ‘7 ({x yHTrue, there exists s” € S such that s
s1 € S, we have s5s;-5s". But T'S is deterministic, hence s; = s,. But then s,-2s' and s,-%s"
and again by determinacy of T'S, we get s’ = s”. Therefore (1) holds. Similarly we can show that
(3) implies (1). O

Hence, for some

Lemma 5.4 Let A = (C,R,U) be an instance of CP such that an € DSAT. Then A has a
solution.

Proof: Let M,sy = aa, where M = (T'S,V), TS = (S,—) is a deterministic dts over ¥ and
sp € S.

Towards constructing a colouring function for A, we adapt the following strategy: we first
compute the colours on the diagonal in N x N and then inductively fill out larger and larger
squares. For each point on the grid, we associate a state in R(sg); this is sufficient since the
formula ag A ay A as is satisfied at that state and hence the colouring function can be easily “pulled
out”.

The diagonal function Diag : N — R(sg) is defined inductively:

e Diag(0) L .

e Diag(m + 1) ef s, provided Diag(m ){w’y}s.

Since M, s |= ag, for every s € R(sg), s has an {z, y}-successor and hence Diag is total. Determi-

nacy of TS ensures that Diag is well-defined. We have Diag(i ){—>}qu(7 + 1), for all 4, directly

from the definition.

In what follows, let 4, j, m and n range over N. We now construct a sequence of function pairs
{(¥y, Colyy) }>0 with Wy, {0,...,m} x {0,...,m} = S and Col,, : {0,...,m} x{0,...,m} =
C such that the following conditions are satisfied at every stage m,m > 0:

(Cl) CO]m(0,0) = C

(C2) W, (i, )50, (i + 1,5) [0<i<m,0<j<m)]
(C3) U, (,5) 2 (i, 5+ 1) 0<i<m,0<j<m]
(C4) W,(i,1) = Diag(i) 0<i<m)]
(C5) Colp(i+1,7) € R(Colp(i,j)) [0<i<m,0<j<mj
(C6) Colp(i,j+1) € U(Colm(i,7)) [0<i<m,0<j<m]

32



Set (0, 0) © 50 and Coly(0,0) © . Clearly conditions C1 and C4 are satisfied and the rest
of the conditions are satisfied vacuously.

Assume that inductively we are given W,,,, Col,,. V., 11, Col,,+1 are now defined, in five steps:

Step 1: Set
U1 (i,5) © Wi (i, 5) [0 < i <m, 0<j < m] and

Colmi1(i,5) E Colpn(i,5) [0 < i <m, 0<j<ml.

This ensures that W, restricted to {0,...,m} x {0,...,m} is ¥, and a similar statement holds
for Col,,. Further, this guarantees that Col,, 1 satisfies condition C1.

Step 2: Set V,,11(m + 1,m + 1) def Diag(m + 1). This ensures C4 for W,,;; and that
\Ijm-l—l(mam) {T—’y)} \Ijm-l—l(m + lam + 1)

Step 3: We now define ¥, 1(m + 1,j), for 0 < j <m, by induction on m — j. For the

base case, we have j = m. We have W, 1(m,m) o) U1 (m 4+ 1,m + 1) by Step 2. Hence

there exists s, € R(sg) such that \Pm+](m,m)isy£>\llm+1(m + 1,m + 1). By determinacy of

TS, s, is unique. Define W, 1(m + 1,m) def sy. Since WU, satisfies C2, by Step 1, we have

Uit (m,m—1)5T,, 1 (m,m). Now, by Lemma 5.3, we get U, 1 (m,m—1) teu Vi1 (m+1,m).

For the inductive step, we have j < m. By induction hypothesis, we can assume W, 1 (m, j) w Uya1 (m4+

1,7+ 1). By similar reasoning as above, we determine ¥,,1(m + 1, 5). Thus, the (m + 1)"* row is
completely defined, and W, satisfies condition C2.

Step 4: The definition of Wy, 1 (i,m + 1), for [0 <4 < m] proceeds in the same manner as in
Step 3, except that we now appeal to the fact that W, satisfies C3 and inductively ensure that

U1 (i, m) tou) U,11(i +1,m+1). Thus, the (m + 1) column is completely defined, and ¥,
satisfies condition C3.

Step 5: We now define Coly,11(7,7), for i > m or 5 > m to be simply the colour ¢, where
c €V (W41(i,7)). Since Wy 119(4,7) € R(s0), a3, ag and a5 ensure that Coly, 11 (i, 7) is well-defined
for these values and that Col,,11 satisfies conditions C5 and C6.

This completes the inductive construction of ¥,,, 11 and Coly,11. Finally define Col : N x N —

C by Col(i, j) def Coly(i,7), where m = max{i,j}. It is easy to verify that Col is a solution to A.
|

Theorem 5.5 Deterministic satisfiability is undecidable.

Proof: By the earlier Lemma 5.2 and Lemma 5.4, any instance A of CP has a solution iff the
formula ap € DSAT. Since CP is undecidable, so is membership in DSAT. O

Actually, the proof of Lemma 5.4 is more elaborate than necessary. We have chosen this method
to emphasize that it is not determinacy as such, but a weaker property implied by determinacy
which yields undecidability. This property is specified in Lemma 5.3 and it can arise in a natural
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way even in the absence of determinacy. In particular, the partial commutativity of actions, as it
occurs in the theory of trace languages, gives rise to the same phenomenon. The reader can verify
that the undecidability proof goes through for a (possibly nondeterministic) dts T'S = (S, %, —)
which satisfies, for some a,b € X,

. a b a,b
for every sg, s1,89 € S, if sg—s1—>s9 then S()L;SQ.

Such transition systems occur in the theory of trace languages [Maz| and we shall show in
Section 8 how the satisfiability problem for an appropriate logical language is undecidable.

6 DTS’s over Finite Alphabets

So far we have considered dts’s over 3, where 3 is a countably infinite alphabet set. We now turn
to a natural variant, namely the class of dts’s over finite alphabets.

Due to the mixture of temporal and step operators in our logical language Step-TL, there is
a significant difference between the finite and infinite alphabet cases. This is so because formulas
of the form $a can be more easily satisfied when the alphabet is infinite. (The same observation
holds for any action-indexed temporal logic.)

We first introduce some useful terminology for the finite case. For convenience, we consider
only finite nonempty subsets of > as our finite alphabets.

Let A be a finite nonempty subset of X. A dts over A is a dts (T'S = (S,—) such that
— C S x p(A) x S. An A-frame is a dts over A. An A-model is a model M = (T'S,V'), where
TS is an A-frame. {a | Voc(a) C A} is the set of A-formulas. The A-formula « is A-satisfiable iff
there exists an A-model M = ((S,—),V) and s € S such that M, s |= a. The notion of A-validity
(restricted to A-formulas) is defined in the obvious way. We write =4 « to denote that the formula
« is A-valid.

Now the formula def pAS~p A /\ [a] Flalse is obviously not A-satisfiable, but is certainly

acA
(3-)satisfiable. This is the essence of the difference between the finite and infinite alphabet cases.

The relationship between the two notions of satisfiability can be brought out as a corollary of the
completeness theorem (Theorem 2.7) in Section 2:

Corollary 6.1 « is satisfiable iff o is A-satisfiable for some A € pyin(X) with Voc(a) C A and
|A] < |Voc(a)| + 1.

Proof: Suppose « is satisfiable. Then by the soundness theorem for ND, « is N D-consistent.
By the proof of Theorem 2.7, « is A-satisfiable for some A € @y, (X) with Voc(a) C A and
|A| < |Voc(a)| + 1.

The second half of the result is immediate because every dts over A is also a dts over X. O

For the rest of this section, we fix A, a finite nonempty subset of 3. Our first aim is to consider
the set of A-valid formulas. Let NDY denote the axiom system ND (presented in Section 2)

34



instantiated over A-formulas. 1t is easy to see that N DY is sound over the class of A-models, but it
cannot be complete. This is because the formula § defined above is ND%—consistent (by soundness
of ND, since 3 is satisfiable), but not A-satisfiable. For completeness, we need in addition the
following induction scheme:

(AIndn) O(a > /\ [ala) D (o > Oa)
acA

Let ND 4 stand for the system N DY augmented with (AIndn). The following theorem can be
easily proved:

Theorem 6.2 (Soundness) If « is a thesis derivable from ND 4 then « is valid over the class of
A-models.

The completeness proof proceeds along the lines of the proof of Theorem 2.7. We assume the
notation and terminology of that proof for the discussion below. Let «ag be an N D 4-consistent
formula. We first define T'Sy = (AT, —) by:

ww' iff @ A (u)w is consistent, u C A
It can be easily checked, as in the proof of Lemma 2.4, that T'Sy is a dts. Clearly, T'Sy is an A-dts.

The rest of the proof proceeds exactly as before, the only difference being that My, w = <«
when Ga € w. To establish this, we need an intermediate result:

Lemma 6.3 Let w € AT and R = Ry, (w). Then - R > /\ [a] R.
acA

Proof: Assume w and R as above. If R = AT, then from - AT (Proposition 2.3(iv)) and TG, we

get /\ [a]fi, and hence, by PC, the formula above.
acA

Otherwise let R = {z1,..., 7} and let AT — R = {y1,...,y;}. Suppose the formula is not a

thesis. Then R A \/ (a)~R is consistent. By Proposition 2.3(iv), = AT and hence we can show
acA

that - ~R > g1 V...V . Thus, (z1V...VZg) A \/ (a)(y1 V...V 1) is consistent. Hence, for some

acA
i€{l,....k},some j € {l,...,l}, and some a € A, 7; A (a)y; is consistent. By definition of —, we

get 'r7£>yj But then z; € Ry, (w) and hence y; € Ryg,(w) as well, contradicting our assumption
that y; € AT — R. |

Lemma 6.4 Let w € AT and let Oa € w. Then, for some w' € R(w),a € w'.

Proof: Suppose Oa € w. Let R = Ryg,(w). By the Lemma above, - R /\ [a]R. By the rule
acA
(TG), we get - O(R > /\ [a]R). By the axiom (AIndn), we get - R > OR. Since w € R, we have
acA
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- @ > R and hence, F @ > OR. Since Oa € w, F @ > OR A Oa. Hence - @ O(ﬁ A a)A. Using

the rule (T'G), we find that (R A ) is consistent. Hence there exists w' € R such that w' A « is
consistent. That is, « € w' and the lemma is proved. O

The remaining details are as in Section 2. We then get:
Theorem 6.5 (Completeness and decidability)

1. For any A-formula o, if =4 «, then Fyp, .

2. A-satisfiability is decidable in nondeterministic exponential time.

It is straightforward to establish the results of Section 3 on prime event structures and net
systems with minor notational modifications for A-formulas.

We now turn to deterministic dts’s over a finite alphabet A C ¥. We can then define DSATy
and DV AL, in the obvious way. The case when |A| = 1 is standard: decidability can be proved
and an axiomatization found (see, for example, [Gol]). For |A| > 1, from the results of the previous
section, it is clear that DSAT, is not a recursive set. The main surprise is that DV AL 4 is not
recursively enumerable either! Hence the completeness argument given in Section 4 cannot go
through. (There, we managed to build a deterministic model for a consistent formula by picking a
new element from ¥ to satisfy each future requirement. We cannot do this when the alphabet is
finite.) We will prove that DV ALy, the set of all A-formulas valid over the class of deterministic
A-models, is IT}-complete and hence not axiomatizable.

We use the so-called Recurring Colouring Problem (RCP) to obtain our negative result. As one
may expect, RCP is recursively equivalent to the Recurring Tiling Problem considered in [Har85]
and the equivalence between the two problems is shown in [Parikh].

An instance of RCP is a tuple A = (C, R, U, ¢,) where C = {¢gy,c1,...,ck} is a finite non-empty
set of colours, ¢, € C and R,U : C — (p(C) — () are the “right” and “up” functions.

A solution to A is a colouring function C'ol : N x N — C which satisfies:

1. Col(0,0) = cy.

2. V(i,j) e Nx N, Col(i+1,j) € R(Col(i,7)) and Col(i,j+ 1) € U(Col(i,j)).

3. VmeN: In>m: Col(0,n) = c,.

Thus RCP is CP with an additional constraint, which can alternatively be stated as: along the
Y -axis, an infinite number of grid points are to be coloured with the recurring colour c¢,.

We shall encode each instance A of RCP into an A-formula A and prove that A has a solution
iff Ao € DSAT4. For coding the functions R and U, we reserve two letters x and y as before (this
is why we need |A| > 1). For convenience, we again assume C' C P. In addition, we reserve five
atomic propositions (disjoint from C') denoted {Y, D, AD, BD, RR}. Y will be used to mark the
points lying on the Y-axis. D will be used to mark the diagonal line of the grid. BD and AD
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respectively will be used to mark the points below and above the diagonal. Finally, RR will be
used to pick out the lines parallel to the X-axis, whose intersections with the Y-axis have been
assigned the recurring colour ¢,. (Actually, for proving the negative result for DSAT4, we do not
need the last four special propositions; we introduce them only so that a uniform proof can be given
for trace transition systems to be introduced in Section 8.)

Definition 6.6 Let A = (C,R,U,c,) be an instance of RCP, where C = {cg,c1,...,c,} and

10
cr € C. Then, Ba def /\ Bi, where
=1

1. /8] = Cp.-
2. (9 def O(({z,y})True A /\ [a]False).
ag{z,y}
def K
3. B3 =0 /\(Cz = /\ NCj).
=0 J#1
def A
4. ﬁ4 = O /\((37 D [’I}] \/ C).
1=0 ceER(c;)
def A
5.6 0 N>y \V o
1=0 ceU(c;)

6. Bs = O((DAN~BDAN~AD)V (BD AN ~D AN~AD)V (AD AN ~D N ~BD))
7. B: = DAO(D > ([{z,y}]D A [z]BD A [y]AD A O(D A RR)))
8. Bs = O(BD > [#]BD) AO(AD > [y]AD)

9. Bo ¥ O(((z)RR > RR) A (RR > [2]RR))

10. Bro Y ADY > ([y]Y A[2]0~Y A (RR > )

(1 through G5 are just like ai; through as in the definition of aa in Section 5, except that (s is
a strengthened version, where we exploit the fact that A is finite, and force models satisfying Ga to
be based on {z, y}-frames. This turns out to be crucial in enforcing the recurrence constraint along
the Y-axis. g to (s describe the diagonal points, and the ones below and above them. Further, 37
ensures that an infinite number of diagonal points are marked by RR as belonging to the recurrence
row. (B9 propagates the recurrence row information along the z-direction to the right and the left.
B0 describes the Y-axis and ensures that points lying on its intersection with the recurrence rows
are coloured by c,.

Before we present the proof of the reduction, let us introduce some notation to extend the
transition relation to sequences of actions; this will be useful through this and the next section of
the paper. For a dts (S, X, —), we define the transition relation = C S x ¥* x S inductively by:
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o s2s for every s € S. (Here X denotes the null string.)

o If s24 and §'%s", a €Y then s==>s".
Secondly, for p € ¥* and n € N, the string p” is given inductively by:

e o0 =\
° pn+1 :pnp.

Finally, for p € ¥* and a € X, let f,(p) denote the number of occurrences of the symbol a in
the sequence p.

Lemma 6.7 Let A = (C,R,U,¢,) be an instance of RCP. If A has a solution, then Sa € DSAT 4.

Proof: Let Col : N x N — C be a solution to A. Define now T'S = (S,—) as in Lemma 5.2.
Then it is clear that T'S is a deterministic A-dts. Next define V : S — p(P) to be a function which
satisfies, for all 7, j € N:

L. V(i.j) C {Col(ij)} U{D, BD, AD,Y, RR}.

2. DeV(i,j) ifti=j; BD € V(i,j) iff i < j; AD € V(i,j) iff i > j.

3. RR € V(i,7) iff Col(0,7) = c,.

4. Y €V(i,g) iffi = 0.

Clearly, V is a well-defined map. Let M = (T'S,V). Then it is straightforward to show that
M, (0,0) = Ba. O

To prove the converse, we need some intermediate results. Firstly recall that Lemma 5.3 showed

. e e ;b . .
that in a deterministic model, when ({a, b})T'rue holds at a state s, we have s{a—>}s’ i 5= s' iff s

This result, of course, holds for deterministic A-frames as well.

Lemma 6.8 Let A be an instance of RCP and M = ((S,—),V) be a deterministic A-model such
that for some sy € S, we have M, sy = Ba. Let s,s" € R(sg) such that M,s |= D and s2' where
p € {z,y}*. Let m = §,(p) and n = f,(p). Then the following assertions hold:

() 2=

1. ifm>mnthens = &

. py)myn—m
2. if m <n then A y):y> s

3. m=mn if (M,s' = D).
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Proof: We first prove (1) and (2) by induction on the length of p.

e A .
The base case, when p = ) is trivial as m = n = 0, s=s, as required.

For the induction step, let p = p'z (the proof when p = p'y is similar). Let s” be such that

525" 5! Let m' = f,(p'). Clearly, n = f,(p') and m = m' + 1. There are two cases:

Case 1: m > n : Hence m' > n. By the induction hypothesis (1), sTVZEE T and since we

"T s (my) ™" :
have s"=s', we get s "= ¢’ as required.

m', k
Case 2: m < n: Hence m' < n. By the induction hypothesis (2), s(m%y s", where k = n—m'.

Let tg,t1,...t,_1 € S such that

!
T m
S(% t()i)t] . tkflis’,.

Now we have t;_1-55"5s', hence by Lemma 5.3 for deterministic A-frames, there exists t}._, such

(

m' k—1
T
y) to Y t] T t’ly 5,

(refer to Figure 9). Again by Lemma 5.3 for deterministic A-frames, to{ﬁn—’yﬁt’]. Thus s(% t}. Since,

(:L,y)myn—m / .
k—1=n—m,wegets = s, as required.

that tk,linf;cflis’. By repeating this argument, we can find ¢} such that s

m

Thus (1) and (2) are proved. Now we prove (3).
Suppose m = n. By (1) and (2), we get s s We show by induction on m that M,s' = D.

The base case when m = 0 is trivial, since m = 0 and hence s = s’ and M, s |= D by assumption of

m—1
the Lemma. If m > 0 then there exists s” € S such that ST g By induction hypothesis,

we get M, s" = D. But M, sq = 87 and s” € R(sp), hence M, s" = [{z,y}]D and hence M,s' = D,
as required.

(zy)"y*
=" s', where

Suppose m # n. Then either m < n or m > n. Suppose m < n. By (ii), we get s
k = (n—m) > 0. Thus we have tg,t1,...t;_1 € S such that s(g}toﬁnﬁ] ... tp_1->s". But the proof
above tells us that M,ty = D. Now, using 7, we get M, ty = [y]AD and hence M,t; = AD. (g
ensures that M, ¢, = [y]AD. Repeating the argument, we see that M, s’ = AD. But then, because
of B, we get M, s' = ~D. On the other hand, when m > n, we use (i) above in a similar fashion

to show that M, s’ = BD and thus again appealing to s, we get M, s’ |= ~D. Hence the result. O

Lemma 6.9 Let A = (C,R,U,c,) be an instance of RCP such that fan € DSAT. Then A has a
solution.

Proof: Let M,sq = OBa, where M = (T'S,V), T'S = (S, —) is a deterministic A-dts over ¥ and
sg € S.

As before, for constructing a colouring function for A, we adapt the following strategy: we
first decide the colours on the diagonal in N x N and then inductively fill out larger and larger
squares. For each point on the grid, we associate a state in R(sg); this is sufficient since the formula
B3 A B4 A B5 is satisfied at that state and hence the colouring function can be easily “pulled out”.
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The only complication which arises now is that when we construct the diagonal, we have to ensure
that infinitely many points along the diagonal satisfy the proposition RR.

The function Diag : N — R(sg) is defined inductively. Let Diag(0) def

assume for k > 0, Diag(k — 1) = s € R(s).

sp- Inductively we can

By 3y and 87, M, s = DA {({x,y})(DA<S(DARR)). Hence, for some p such that |p| > 0, s=2=s'
and M,s' = (D A RR). But then by (2, we find that p € {z,y}*.

Now, by Lemma 6.8, we get REIN s,
Sty .ty 1—2s. Set t, = s

7) o tj, for j € {1,...m}.

where m = #,(p)
Clearly, for all j € {1, ..

= Hy(ﬂ) Let t1,...t,,—1 € S such that
.m}, M,t; = D. Define Diag(k — 1+

By induction, Diag is totally defined. Clearly, we have Diag(i ){—%}qu(v + 1), for all i.
We again construct an infinite sequence of function pairs {(Uy,, Coly,) }m>0 with Uy, : {0,...,m}
S and Col,y, : {0,...,m} x {0,...,m} — C such that the following conditions are satisfied at every
stage m, m > 0:
(C1) Col,(0,0) = ¢
(C2) W, (i, )50, (i + 1,5) [0<i<m,0<j<m)]
(C3) Wp(i,5) 2T, (3,5 + 1) [0<i<m,0<j<m]
(C4) W,,(i,1) = Diag(i) 0 <i<m)]
(C5) Col (i +1,5) € R(Coly(i, ) [0<i<m,0<j<m)
(C6) Colyn(ij + 1) € U(Coly(i, ) [0 <i<m,0<j<m)

The construction proceeds exactly as in the proof of Lemma 5.4 and is hence omitted.

Finally define Col :

N x N — C by Col(i,§) ¥ Col,(i,

7), where m = maxz{i,j}. We now

show that Col(0,j) = ¢,, for infinitely many j; the other conditions on Col are easily seen to be

satisfied thanks to the conditions above.

We know that by construction, M, ¥,,(m,m) &= RR for infinitely many m. Fix any such m.

If m = 0 then M, ¥,,(0,m) = RR. Otherwise note that W,,(m

M, ¥,,(m —1,m) E (z)RR. By [y, M,¥,,(m

M, ¥,,(0,m) = RR. But then by (19, we get M, V,,(m,m) = ¢, as well.

—1,m) 5 W,,(m,m) and hence
—1,m) = RR. Repeating this argument, we find
Since this is true for

infinitely many m, the recurrence condition on Col is satisfied. O

Theorem 6.10 Suppose |A| > 1. Then DSAT is X1 -complete. Hence DV AL 4 is a 1] -complete

set and not ariomatizable.

Proof: By the earlier Lemma 6.7 and Lemma 6.9, any instance A of RCP has a solution iff the
formula n € DSAT4. Since RCP is ¥1-complete [Parikh], so is membership in DSAT}. O

This negative result is extended to trace languages in Section 8.
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7 Finite DTS’s

An important and interesting subclass of dts’s is that of finite dts’s. Recall that the dts T'S = (S, %, —)
is said to be finite if and only if both S and — are finite sets. Clearly if T'S = (5,3, —) is a dts
over A, where A € py;,,(X) then — is finite whenever S is finite. In general, we could have S finite
and — infinite. One result we will show here is that our logic cannot distinguish between these two
situations even in the presence of determinacy. As a result, it suffices to deal with just the strong
notion of finiteness, where both S and — are finite.

We say that a formula « has a finite model (that is, a model based on a finite frame) iff there
exists a finite model M = ((S,—),V) and s € S such that M,s = a. Let FSAT denote the
set of all formulas which have finite models and let F'V AL denote the set of formulas that are
valid over the class of finite models. Then FFDSAT and FDV AL will denote the relevant sets of
formulas with reference to finite deterministic models. The sets FSAT,, FVAL,, FDSAT4 and
FDV AL, where A € gy, (%), are defined in the obvious way.

Firstly, we review all our earlier results in the context of finite models. The system N D is easily
seen to be a sound and complete axiomatization of F'V AL; finiteness of models does not disturb
soundness, and the completeness proof in Section 2 (Theorem 2.7) does produce a finite model for
any N D-consistent formula. Similar remarks apply for ND4 and FV AL 4.

Turning now to the results of Section 3, it is clear that the proof of Theorem 3.4 cannot work
if we insist on finite models based on event structures: since event structures are poset-based, a
formula such as O(a)T'rue will necessarily require a model based on an infinite event structure.
However, the problem is open in the case of elementary net systems. We do not know whether for
every formula in FSAT, there exists a model M = (T'S, V') such that T'S = T'Sys for some finite
labelled elementary net system N.

Before turning to FDSAT, we show that our logic cannot distinguish between finite dts’s and
finite state dts’s, deterministic or otherwise:

Proposition 7.1 Let M = ((S,—),V) be a model, S a finite set, sy € S and M, sy = «. Then

1. a € FSAT.
2. Suppose M is a deterministic model. Then o € FDSAT.

Proof: We prove only part (2); the other proof follows. Assume M, sg, @ to be given. First fix
an injective function f : S x S — (X — Voc(a)). The existence of f is assured since ¥ is infinite

whereas both S x S and Voc(«) are finite. Define TS’ def (S, —') where

_yt def {(s,u,8") | ss" and u C Voc(a)}

U{(s,{f(s,5)}.5") | s%5" and a & Voc(a)}

It is easy to verify that T'S” is a dts. Determinacy of T'S’ follows from that of T'S and the injective-
ness of f. Further T'S’ is finite since S was assumed to be finite and —' is finite by construction.
From the definition of —', we can make the following crucial remark about T'S":

Vs,s' €S : s € Rys(s) iff s' € Rrgi(s).
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Consider M’ % (TS, V).
Claim : Vse S:VB8e CL(a): M,s E B iff M, s = (.

The proof of the claim proceeds by an easy induction on the structure of g and is omitted here.
Since M, sy = «, by the claim above, we have M', sg = a as well. Hence o € FDSAT. O

The decision procedure given in Section 2 also shows that the membership problem for F.SAT
is decidable in nondeterministic exponential time. In the case of DSAT we showed undecidability
in Section 5. However, we do not know whether the membership problem for FDSAT is decidable
or not. We do know, thanks to Proposition 7.1, that FDSAT = U FDSAT,. Moreover,

AEpfin(E)
we can also easily deduce that FFDSAT is a recursively enumerable set. Hence FFDV AL is at worst
co-r.e. But it might well be the case that F DSAT is not recursive, in which case FFDV AL would
not be r.e. and hence not axiomatizable.

On the other hand, when A € @;,(X), |A| > 1, we can show an undecidability result for
FDSAT,. We show this with yet another variant of the colouring problem called the Finite
Colouring Problem (FCP for short).

An instance of FCP is a triple A = (C, R, U, ¢s) where C = {cg,c1,..., ¢} is a finite non-empty
set of colours such that ¢; € C and R,U : C — p(C) are the “right” and “up” functions as before.
A solution to A is a pair (Col, (K, L)), where K,L € N and Col : {0,...,K} x {0,...,L} — C'is
a colouring function which satisfies:

1. Col(0,0) = ¢q.
2. Col(i+1,7) € R(Col(i,5)), 0<i< K L
3. Col(i,7+1) € U(Col(i,j)), 0<i< K, 0<j<L.

4. Col(K,L) = cy.
Proposition 7.2 FCP is undecidable.

Proof: (Sketch) We can reduce to FCP the halting problem of Turing machines started on a
blank tape with the head on the leftmost cell. Each such TM can be coded as an instance Apjys of
FCP. The coding scheme closely follows the one given in [LP]. We can then show that TM halts if
and only if Arys has a solution. O

We now reduce each instance of FCP to a membership problem for FDSAT4. In other words, we
shall encode each instance A of FCP into a formula ya such that A has a solution iff yA € FDSAT 4.
It is assumed that |A| > 1. We will ensure that 7 is an A-formula. Without loss of generality, let
z,yy € A and as before, we reserve z and y respectively for R and U. As usual, we let C C P. In
addition, we use two special propositions UM and RM respectively for °
margin”.

‘up-margin” and “right-
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Definition 7.3 Let A = (C,R,U,cy) be an instance of FCP, where C = {cp,c1,...,c} and
6

cy € C. Then, ya def /\ i, where
i=1

1. v oo A O(ef NUM ANRM).

2. 9 def O(({z,y})True = (~UM N ~RM)) A O( /\ [d]False).

de(A—{z,y})
def A
3. v E= O N(g = /\ ~Cj).
i=0 i
def A
e
b E 0Nzl Voo
1=0 ceR(c;)

k
595 CON@@oy Vo
1=0

ceU(c;)

6. v6 ¥ O(UM > [g)UM A [y]False) A (RM > [y]RM A [z]False)).

The first clause, apart from capturing the origin constraint, also specifies a termination condi-
tion. The second clause forces the creation of a grid as in the earlier reductions, but this time only
upto an upper margin (UM) and a right margin (RM). The next three clauses are familiar. The
last clause ensures that the propositions UM and RM acquire their intended meaning.

Lemma 7.4 Let A = (C,R,U,cy) be an instance of FCP. If A has a solution, then ya € FDSAT,.

Proof: Let (Col, (K, L)) be a solution to FCP. Define now T'S = (S, —) as in the proof of Lemma
5.2, but now for § = {0,...,K} x{0,...,L}. Next define V : S — p(P) to be a map which
satisfies, for all 4,5 € {0,..., K} x{0,...,L}:

o V(i,j) C Col(i,j) U{UM, RM}.

« RM € V(i,j) iffi = K.

« UM eV(i,j)iffj= L

Clearly, V is a well-defined map. Let M = (T'S, V). Then it is easy to show that M, (0,0) = ya.
Hence ya € FDSATy. O

Lemma 7.5 Let M = (T'S,V) be a model where TS = (S,—) is a finite deterministic dts over
A and sg € S such that M, sy = ya where A is an instance of FCP. Let s,s' € R(sg). Then the
following statements are equivalent:
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1. s{m—’y>}s'.
2. Js, € 8 555,54,

3. ds, €8 si)syim'.

Proof: (1) implies (2) and (3) since T'S is a dts. To show that (2) implies (1), assume s-55,-%s,.
Then M, s, |= (y)True. Now, because of s, M, s, |= (UM > [y]False). Therefore M, s, = ~UM.
Further, M,s |= (UM > [x]UM) and so, M,s = ~UM. From the fact that s=s,, we get M,s =
(x)True and thanks to g, we have M, s = ~RM. Thus, M,s |= (~UM A ~RM). Now, by 7ya, we

get M, s = ({z,y})True. Therefore, for some s” € S, we have s 1 Hence there exists st such

that s5s" 55", By determinacy of T'S, we get s, = s' and hence s' = s".

By a symmetric argument we can show that (3) implies (1) as well. O

Lemma 7.6 Let A be an instance of FCP and M = ((S,—),V) be a finite deterministic A-model
such that for some sy € S, we have M, sg |= ya. Let s,s' € R(so) such that s2s', where p € {z,y}*.
Let m = fi,(p) and n =H,(p). Then the following assertions hold:

()2

1. ifm>mnthens = &

2. if m <n then ST

Proof: Identical to the proof of (1) and (2) of Lemma 6.8, except that instead of appealing to
Lemma 5.3, we refer to Lemma 7.5 above. O

Lemma 7.7 Let A = (C,R,U,cy) be an instance of FCP such that yn € FDSAT4. Then A has
a solution.

Proof: Let M, sy = ya, where M = (T'S,V), TS = (S, —) is a finite deterministic dts over A and
s0 € S. Since M, sq = O(cf AUM AN RM), there exists s; € S and p such that $0251. Yo ensures
that p € {z,y}*. Let m = f,(p) and let n = f§,(p). We have three cases to consider:

Case 1 (m = n): By Lemma 7.6 above 50(% s1. Let t1,...,t;,—1 € S such that sg =
to=2t1 . . . by 1=ty = s1. Define Diag : {0,...,m} — S by Diag(k) def ti. Following the proof
of Lemma 5.4, we can construct a function pair (¥,,, Col,,) with U, : {0,...,m} x {0,...,m} = S

and Coly, : {0,...,m} x {0,...,m} — C such that Col,, is a solution to A.

Case 2 (m < n): By Lemma 7.6 sO(my)gims]. Let s’ € S such that sO(ﬂs’ygs1. Again
we follow Lemma 5.4. Construct (¥, Col,y,) as in the proof for Case 1, with ¥,,,(0,0) = so and
U, (m,m) = s’. (Note that we no longer maintain C2 of Lemma 5.4.) Let k = n — m. Let

t1,...,tx_1 € S such that s = t(]'—y)tl cee tk,]'—y)tk = 5.
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Now, we define for [ € {1,...,k},Up,qy : {0,...,m} x {0,....,m + 1} — S and Coly,; :
{0,....m} x{0,...,m+1} — C. Firstly set

.. def ..
\Ijm—H(Za]) = \I/m_H,l(’L,j)

and
Colyi(i,5) € Colypyi1(iy5), 0<i<i—1, 0<j<1-1.

Next set W, (m, m +1) 4 4. Now we have

\Ijm+l(m — l,m + l — 1)'—T)\I/m+l(m,m + l — 1)'—U)\I/m+l(m,m + l)

Hence there exists s” € S such that

Uppi(m—1,m+1—1)5s"30,(m,m+1).

Set U,y (m—1,m+1) def g, Repeating this argument, we define W,,, ;(j, m+1) for all 5,0 < j < m.
Coly11(4,m 4+ 1) can be suitably defined for 0 < j < m.

It can be easily checked that Col,, 1k, that is Col, is a solution to A.

Case 3 (m > n): Similar to the proof for Case 2. This time we follow Lemma 5.4 but do not
maintain condition C3. O

Theorem 7.8 Let |A| > 1. Then the membership problem for FDSAT}, is undecidable. Conse-
quently, FDV AL 4 is not aziomatizable.

Proof: The undecidability follows from Proposition 7.2, and Lemmas 7.4 and 7.7. It is easy to
see that FDSAT, is r.e. and hence FDV AL 4 is not r.e. and therefore not axiomatizable. O

8 Traces and trace transition systems

In this section, we show that our proof methods yield results for transition systems based on the
theory of trace languages [Maz]. Specifically, we shall show that the satisfiability problem for our
logic becomes undecidable when it is interpreted over models based on trace transition systems. In
fact, the result holds for a much weaker logical language the eventuality operator of temporal
logic with an action-indexed modality suffices to establish undecidability. We can extend the result
to subclasses as in the previous two sections.

As we noticed, our proofs of undecidability rely on a weaker property than determinacy, spec-
ified in Lemma 5.3. In particular, the partial commutativity of actions gives rise to the same
phenomenon. In concurrency theory, this arises in the context of Mazurkiewicz’s trace languages.
Here we present only the bare essentials of this theory. For background and more details, refer to
[Maz].
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A concurrency alphabet over Y. is a pair (X, I), where I C ¥ x 3 is an irreflexive and symmetric
independence relation. Our results will require the concurrency alphabet to be nontrivial, that is,
I has to be a nonempty independence relation. Note that this forces |X| > 1.

The independence relation I induces a natural equivalence relation over ¥* which is in fact
a congruence with respect to concatenation. This congruence is the one generated by equations
of the form ab = ba for each (a,b) € I. Stated differently, we first define =; C ¥* x ¥* as:
p =1 p iff Fp1,pa € ¥* and (a,b) € I such that p = p1abps and p’ = pi1bapy. Then =;, defined to
be (=;)* is the congruence we want. ¥*/=; is called the partially commutative trace monoid over
(3, 1) (with [p]7.[0']r = [pp']1 being the monoidal operation). A trace language over (X, I) is simply
a subset of ¥*/=/.

Thus the idea is that if a I b, then whenever a and b occur adjacent to each other in a sequential
description of a run of the system (modelled by the trace language), a and b have in fact occurred
with no order over their occurrences. Hence a sequence of the form pyabps represents the same
stretch of behaviour as a sequence of the form pibaps.

A number of closely related proposals have been made in the literature to carry over these ideas
to transition systems [Bed, Shi, WN]. We define a class of transition systems for which the only
constraint is the commuting of sequences of concurrent actions. This suffices for our purpose, and
our negative results will carry over to the transition systems defined in the above papers.

Definition 8.1 A trace transition system (tts) over the concurrency alphabet (3,1) is a
(countable) labelled transition system TS = (S,X,—) such that for every (a,b) € I, for every

. b . b
80,851,592 € S, if so->s1—>8y then there exists s| such that so—s|"s9.

Instead of Step-TL, we now work with the simpler language Action-TL, which has the & modal-
ity as usual and the action modality (a) for every a € . Let P be a countable set of propositions.
The formulas of this language are:

e Every member of P is a formula.

e If @ and (3 are formulas then so are ~a, a V 3, Ca and (a)a, for a € 3.

The semantics is defined as before. For a tts-based model M = ((S,—),V) and s € S, we have:
M, s |= {a)a iff there exists s’ such that s—%s' and M, s |= .

Clearly, Action-TL is a weaker language than Step-TL; in fact, it corresponds to the formulas
of Step-TL where steps are restricted to be of size 1.

Definition 8.2 Let (3,1) be a concurrency alphabet.

e « is said to be I-satisfiable iff there exists a model M = (T'S, V'), where T'S = (S, —) is a tts
over (3,1) and sg € S such that M, sy = «.

e TSATY is the set of all I-satisfiable formulas.
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o We write =1 « if a is valid over all models over (X, 1).

Given a nonempty independence relation I, we show undecidability of I-satisfiability, again by
reducing CP to it. Let A = (C, R,U) be an instance of CP. We need to reserve two actions from
Y, for R and U. We choose z and y, where (x,y) € I. Below, whenever appropriate, we follow the
notations and conventions used in proving Theorem 5.5. As before, aa is the conjunction of five
formulas, except that we modify s to be O(z)(y)True.

Lemma 8.3 Let A = (C,R,U) be an instance of CP. If A has a solution, then an € TSAT].

Proof: From the dts constructed in the proof of Lemma 5.2, one can clearly extract a tts over
(33, 1) by forgetting the {z,y} transitions. Hence an € T'SAT7. O

Lemma 8.4 Let A = (C,R,U) be an instance of CP such that an € TSAT;. Then A has a
solution.

Proof: Let M,sy = aa, where M = (T'S,V), TS = (S,—) is a tts over (X,]) and s9 € S. By
definition, R(sg) is countable. Fix an enumeration of R(sq).

We proceed exactly as in the proof of Lemma 5.4. Instead of Lemma 5.3, we appeal directly to
the definition of a trace transition system. The few modifications required are as follows:

1. In Step 2, when choosing W, 1(m + 1, m + 1), set it equal to s, where s is the state with the

least index (in the enumeration of R(sg)) with the property that W, (m, m){T—’yQG

2. In Step 3, when choosing W,,1(m + 1,7), for 0 < j < m, appeal to Lemma 8.4 instead of
Lemma 5.3 and set it equal to s,, where s, is the state with the least index (in the enumeration

of R(sg)) with the property that ¥, (m, j)isyiﬂPmH (m+1,7+1). A similar modification
is done for the choice of s, in Step 4.

The required result now follows easily. O

Theorem 8.5 Let (3, 1) be a nontrivial concurrency alphabet. I-satisfiability is undecidable.

What about an axiomatization' The following is a sound axiom system. All the axioms are
derived from the earlier axiomatization, but now restricted to the language Action-TL. The only
novelty is in the axiom (Ag,) which represents the commuting condition for a and b.

Axiom System NTj

Axiom schemes
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(A0)  All the substitutional instances of the tautologies of PC
(A1) O(a> B) > (Oa > 0OF)

(A2) Oa > aAlalaADODa

(43)  [al(a > B) > (la]a > [a]B)

(Ag) (a)(b)a > (b){a)a, fora Ib

Inference rules

(MP) «a, a>p (TG) «
J6] O

If I is a finite relation, we can show that [-validity is completely axiomatized by NT7.

Theorem 8.6 (Completeness) Given a concurrency alphabet (X, 1) where I is a finite indepen-
dence relation on X, if =1 « then Fn7, .

Proof: The proof follows along the lines of that of Theorem 4.9. When satisfying live future re-
quirements, we pick an action d which is outside the vocabulary of @ and which, in addition, does not
commute with any other action in 3. Since [ is finite and ¥ is countable, this is always possible. O

Consider now the case that the alphabet ¥ is finite. We get the stronger undecidability result
of Section 6. Since the techniques involved are very similar to the ones used earlier, we will give
only an informal sketch of the proof.

Given an instance A of RCP, we define the formula S as before except that Gy is defined to
be O((z)(y)True A /\ [a|False). It is easy to show that Oa is I-satisfiable, where (without loss

{I'g{m7y}
of generality) (x,y) € I. To see this, we only need to extract from the dts constructed in the proof

of Lemma 6.7 a tts over ({z,y}, {(z,v), (y,2)}).

On the other hand, given a model for the formula Sa, to construct a solution the instance A
of RCP, one has to simply go through the steps in the proof of Lemma 6.9, making the necessary
modifications as suggested in the proof of Lemma 8.4, using the fact that R(sg) is enumerable
(where sq is the state at which the formula (§a is satisfied in the given model). Indeed, the proof
of Lemma 6.9 follows the given lines only so that it applies for tts’s as well.

Theorem 8.7 Let (X,1) be a nontrivial concurrency alphabet over finite 3. Then I-satisfiability
is ¥1-complete. Hence I-validity is I} -complete and not aziomatizable.

Similarly, we can consider finite trace transition systems. The corresponding satisfiability prob-
lem is undecidable and hence validity is not axiomatizable.

Theorem 8.8 Let (X, 1) be a nontrivial concurrency alphabet. Then I-satisfibiality over finite tts’s
1s undecidable and validity is not axiomatizable.

An analogue of Theorem 8.7 is already available in [Har84], but in the context of the global
consequence problem of PDL. The corresponding notion of transition systems would be those which
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satisfied
ab ba . .
s—s and s—s" implies s’ = s".

This would be the case for deterministic tts’s.

Our result for Action-TL shows that even with nondeterminism allowed, the commuting con-
dition of trace transition systems makes even a very weak logic highly expressive. On the other
hand, Step-TL and even the stronger logics considered in the next section remain decidable over
nondeterministic distributed transition systems, where concurrency is explicitly presented rather
than being semantically inferred.

9 Extensions

In this section we look at some different logical languages for the frames we have been considering.
The two extensions we consider are to allow program operators in place of the temporal <, and to
strengthen the step modality to refer to intermediate states in the cube.

9.1 Regular programs over concurrent steps

The notion of a step can be used to obtain a straightforward generalization of Propositional Dynamic
Logic (PDL) [Har84]. The resulting language, which we shall call Step-PDL, is closely related to
the language used so far. Most of the results we have proved so far go through for Step-PDL with
suitable modifications.

First we can define the class of programs Ils:

e Every member of py;,(X) is a program.

e If ¥ and n’ are programs, then so are m + 7/, ;' and 7*.
Now the language of Step-PDL consists of the set of formulas built from Iy, and P, a countably
infinite set of atomic propositions, by closing under negation, disjunction and the modality (7)a,

for m € IIy. PDL is usually defined with a test operator, but we do not include it here for the sake
of simplicity.

As Kripke frames for Step-PDL, we will once again use dts’s. To do so, we first need to extend
the step transition relation of a dts to a program transition relation.

Let TS = (5,3, —) be a dts. Then =prg C S x IIyx x S is defined inductively as follows (we
drop the T'S subscript for convenience):

U . Uu
o s=g' iff s—s'.
T+, . T 7’
o s=—¢s iff s=5' or s=5".
o !
T . ™ i
o s=5iff 3" € § : s—=3"=>5'.

* . k def def
o s==s'iff Ik > 0: s==5', where 70 = ( and 7*T! = 7; 7", for k > 0.
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The notions of frame and model are as before. The notion M,s |= «, for s € S is defined
inductively, the new case being:

M,s = (m)aiff 3s' € S : 5 Zpg s and M, s |= a.

Satisfiability and validity are defined as before. One crucial observation here is that for Step-PDL
it makes no difference whether the frames are dts’s over X or dts’s over some finite subset of X.
(For the negative results, of course, we need |A| > 1).

A complete axiomatization of the set of valid formulas of Step-PDL is obtained by adding the
empty step axiom a = (f)a and the (Step) inference rule to the well-known Segerberg axioms for
PDL [KP, Har84]. As a consequence, satisfiability in Step-PDL is decidable in nondeterministic
exponential time.

It can be easily checked that the completeness results for elementary net systems and elementary
event structures presented in Section 3 go through for Step-PDL. As for the negative results, we do
not get an axiomatization of the set of deterministically valid formulas as deterministic satisfiability
for Step-PDL formulas is ¥}-complete. Hence deterministic validity is not axiomatizable. (In the
coding of RCP, we uniformly replace O by [(z + y)*] and < by ((z +y)*).)

The strong negative result goes through for trace transition systems as well. Further in the
case of finite deterministic dts’s and finite trace transition systems, once again the negative result
obtains, using the same transformation in the formulas used for coding earlier.

We conclude by noting that instead of generalizing the atomic programs of PDL to concurrent
steps, we could also generalize them to finite multisets of actions. We could in fact consider finite
pomsets over ¥ [Pra86] to be our atomic programs. Correspondingly, we would have to index
the modality by finite multisets or by finite pomsets. In each case, there is a corresponding (and
notationally more complicated) version of the inference rule (Step) which leads to completeness,
and as a by-product, to decidability. Naturally, the negative results we have obtained will also go
through.

9.2 Referring to intermediate states

One drawback of the logical languages we have looked at so far is that we have been unable to
axiomatize our models with a finite set of axiom schemes and inference rules. By considering a
more expressive modality for the u-cube, however, we can overcome this difficulty. We shall merely
give a sketch of the main ideas; the details can be worked out.

Given a set of atomic propositions P, the formulas of the language Cube-TL are inductively
specified as:

e Every member of P is a formula.

e If @ and S are formulas then so are ~a, a V 3, Ca.

o Let u € prin(3). If ag,...,qy,..., 0, are formulas (v C u), then (u) < ay,...,a, > isa
formula.
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The last clause defines a formula (u)W, where U can be viewed as a function from p(u) to
formulas, where U(v) = a,. The formula states that there exists a u-cube with the states in the
cube satisfying the corresponding formulas from W.

Now given a model M = ((S,—),V) and s € S,
M, s |= (u)V iff 3f € Flu, S]: f(0)>f(u), f(§) =sand M, f(v) = ¥(v) for v C u.

That is, the formula (u)W¥ forces the existence of a u-cube with intermediate states satisfying the
formulas from W.

Observe that W is at least exponential in the size of u. Our earlier modality in the language
Step-TL, (u)a, is defined to be (u)T', where I'(u) = « and T'(v) = T'rue, for v C u.

Given v C v' C w and a function ¥ from p(u) to formulas, define its restriction ¥, ,» to be a

def U(vUwu), for up Co' —w.

function assigning formulas to p(v" — v): W, v (u1)
The step axioms and inference rule are:

(Ada) a> ) <a>
(A4b)  (u)T > T(0)

(Step) ~(v' —v)U, o, for somev Cv' Cu
~(u) W

With these axioms and rule, completeness and decidability can be proved along the lines of
Section 2. Since Cube-TL is more expressive than Step-TL, all the negative results for that language
will go through.

10 Discussion

In this paper we have studied logics whose models are distributed transition systems of a certain
kind. The central notion underlying these transition systems is that of a concurrent step. The
properties that are demanded of a step capture the intuition that the actions named in the step
occur causally independent of each other. The paper is then essentially a logical study of this basic
notion concerning distributed systems.

The main results of the paper are summarized in the table, where we have fixed a countable
alphabet ¥ and a finite subset A of X.

In addition, we have shown that the logical system ND is a complete axiomatization of validity
over the class of labelled prime event structures and hence over the class of labelled elementary net
systems as well.

Our positive results show that the step notion lends itself to a logical treatment with the help
of fairly standard techniques. In fact, as the ideas sketched in Section 9 show, the logic Step-TL
itself can be viewed as a smooth extension of PDL in the presence of steps.

On the other hand, our negative results show that from a logical standpoint, determinacy
combined with a non-interleaved notion of a transition is very expressive. The results of Section
8 provide additional insight: since the negative results carry over for trace transition systems, we
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Figure 7: A dts which cannot be generated from an event structure

frames all models finite models
dts’s axiomatizable axiomatizable
decidable decidable
det dts’s axiomatizable r
undecidable at most r.e.
axiomatizable for finite 1 r

trace ts’s over (3, 1)

undecidable at most r.e.
A-dts’s axiomatizable axiomatizable
decidable decidable
det A-dts’s not axiomatizable not axiomatizable
highly undecidable undecidable
trace ts’s over (A, ) not axiomatizable not axiomatizable
highly undecidable undecidable

Table 1: Step-TL: axiomatizability and satisfiability
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can see that it is not just determinacy together with “non-interleaved” transitions that generates
such expressive power; even the kind of partial commutativity of actions that is often associated
with independent actions leads to undecidability.

Turning now to related work, Valiev [Val] presents a strong negative result for a variant of PDL.
In this variant one has, in addition to the usual program constructs of PDL, also the shuffle and
the iterated shuffle operators. The techniques used here are very different from Valiev’s work.

Penzcek [Pen] has also reported a number of negative results for a logic interpreted over deter-
ministic asynchronous transition systems. The logical language uses past operators. The results of
Section 8 show that the negative results need neither determinacy nor the past time modalities.

As for other logics based on labelled transition systems, two well-known instances are the
Hennessy-Milner logics [HM] and the Modal p-Calculus [Sti]. We have not yet “operationally”
characterized (in the Hennessy-Milner style) the equivalence notion induced by our logic. It is also
not clear at this stage whether the Modal u-Calculus augmented with the step notion leads to an
interesting variant.
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