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Abstract

A simple extension of the propositional temporal logic of linear
time is proposed. The extension consists of strengthening the until
operator by indexing it with the regular programs of propositional
dynamic logic (PDL). It is shown that DLTL, the resulting logic, is
expressively equivalent to S1S, the monadic second-order theory
of ω-sequences. In fact a sublogic of DLTL which corresponds
to propositional dynamic logic with a linear time semantics is
already as expressive as S1S. We pin down in an obvious manner
the sublogic of DLTL which correponds to the first order fragment
of S1S. We show that DLTL has an exponential time decision
procedure. We also obtain an axiomatization of DLTL. Finally,
we point to some natural extensions of the approach presented
here for bringing together propositional dynamic and temporal
logics in a linear time setting.
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1 Introduction

We present here a simple extension of the propositional temporal logic
of linear time (LTL). The basic idea is to strengthen the until modality
by indexing it with the regular programs of propositional dynamic logic
(PDL). The resulting logic, called dynamic linear time temporal logic
(DLTL), is easy to handle. It has the full expressive power of the monadic
second order theory of ω-sequences (S1S). Indeed a sublogic of DLTL
is already equal in expressive power to S1S. A pleasant feature of this
sublogic is that it is just PDL operating in a linear time framework.

In addition to our expressiveness results we show that DLTL has an
exponential time decision procedure. We also extend the well known
axiomatization of PDL [9] to obtain an axiomatization of DLTL.

Our work may be viewed from two different perspectives. The first
one is from the standpoint of process logics [6, 14, 16] which attempt a
rapprochement between dynamic and temporal logics. However the study
of process logics is committed to viewing dynamic logic as a restricted
kind of a branching time temporal logic. One then attempts to bring in
some additional mechanisms for talking about the computational paths
of a Kripke frame in a more sophisticated fashion. Our point of departure
from this line of work consists of merging, in a very simple way, dynamic
logic and temporal logic in a linear time setting.

The second perspective from which our work may be viewed has to
do with attempts to augment the limited expressive power of LTL. One
route consists of permitting quantification over atomic propositions. The
resulting logic called QPTL [18] has the expressive power of S1S and has
a decision procedure of non-elementary complexity. The second route
consists of augmenting LTL with the so called automaton connectives.
Indeed this additional feature is so powerful that the next and until
modalities become derived ones. The resulting logic called ETL [23] is
equal in expressive power to S1S while admitting an exponential time
decision procedure. To be precise, the version of ETL we have in mind
is the one referred to as ETLf in [21] but for convenience we will call it
just ETL here.

Our logic is, in spirit, inspired by ETL and in fact it may appear to
be at first sight just a reformulation of ETL with some cosmetic changes.
This however has to do with the instinctive identification one makes be-
tween finite state automata and regular expressions. In fact DLTL is
quite different in terms of the mechanisms it offers for structuring formu-
las and we feel that it is more transparent and easier to work with. The
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results and the proofs we present here are designed to support this claim.
Our approach also leads to smooth generalizations in non-sequential set-
tings where similar extensions in terms of ETL will be hard to cope with
at least in terms of transparency.

In the next section we start with an action-based version of LTL in
order to fix terminology and to introduce a key feature of DLTL. In
Section 3 we present DLTL and its semantics. This is then followed by a
more detailed assessment of the similarities and the differences between
ETL and DLTL.

In Section 4 we prove the decidability of DLTL by reducing it to
the emptiness problem for Büchi automata. In Section 5 we show that
DLTL−, a sublogic of DLTL, has the same expressive power as S1S. This
then easily leads to the conclusion that DLTL, DLTL− and S1S are all
equal in expressive power. We then establish similar results for the first-
order fragment of S1S with the help of the “star-free” fragments of DLTL
and DLTL−.

In Section 6, we extend the axiomatization of PDL and the complete-
ness proof in [9] to obtain finitary axiomatizations of DLTL and DLTL−.
In the final section we point to two natural generalizations in the setting
of distributed systems. These generalizations appear to be eminently ac-
cessible and offer additional support to our belief that the synthesis of
dynamic and temporal logics in a linear time framework as pursued here
is a fruitful one.

2 Linear Time Temporal Logic

One key feature of the syntax and semantics of our temporal logic is the
treatment of actions as first class objects.

The usual treatment of LTL [10, 15] is based on states viewed as
subsets of a finite set of atomic propositions. We wish to bring in actions
explicitly for a number of reasons. Firstly, in a state-based approach there
is a mismatch between the models of a formula and the language accepted
by the associated ω-automaton. A model will consist of a sequence of
states whereas the automaton will accept or reject a sequence of actions.
Thus the alphabet of the automaton will correspond to the possible states
of the model. However this is not a major hurdle and it leads, at worst, to
minor technical overheads. The more important point is that it is difficult
to define synchronized products of sequential components in a purely
state-based setting. Since this is a very common and useful method of
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specifying distributed behaviours, we feel that it is handy to work with
logics in which both states and actions can be treated on an equal footing.

As a vehicle for introducing some terminology and for later compar-
isons we shall first introduce an action-based version of LTL denoted
LTL(Σ). We begin with some notations.

Through the rest of the paper we fix a finite non-empty alphabet Σ.
We let a, b range over Σ and refer to members of Σ as actions. Σ∗ is the
set of finite words and Σω is the set of infinite words generated by Σ with
ω = {0, 1, . . .}. We set Σ∞ = Σ∗∪Σω and denote the null word by ε. We
let σ, σ′ range over Σω and τ, τ ′, τ ′′ range over Σ∗. Finally � is the usual
prefix ordering defined over Σ∗ and for u ∈ Σ∞, we let prf(u) be the set
of finite prefixes of u.

Next we fix a countable set of atomic propositions P = {p1, p2, . . .}
and let p, q range over P . The set of formulas of LTL(Σ) is then given
by the syntax:

LTL(Σ) ::= p | ∼α | α ∨ β | 〈a〉α | α U β.

Through the rest of this section α, β will range over LTL(Σ). The
modality 〈a〉 is an action-indexed version of the next state modality of
LTL as we shall soon see.

A model of LTL(Σ) is a pair M = (σ, V ) where σ ∈ Σω and V :
prf(σ) −→ 2P is a valuation function. Let M = (σ, V ) be a model,
τ ∈ prf(σ) and α be a formula. Then M, τ |= α will stand for α being
satisfied at τ in M . This notion is defined inductively in the expected
manner.

• M, τ |= p iff p ∈ V (τ).

• M, τ |= ∼α iff M, τ 6|= α.

• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β.

• M, τ |= 〈a〉α iff τa ∈ prf(σ) and M, τa |= α.

• M, τ |= α U β iff there exists τ ′ such that ττ ′ ∈ prf(σ) andM, ττ ′ |=
β. Moreover for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that
M, ττ ′′ |= α.

For further reference we note that the next-state modality of LTL is

definable via Oα
∆⇐⇒
∨
a∈Σ〈a〉α. It is well known [4, 8] that LTL(Σ) is

expressively equivalent to the first-order theory of sequences. Hence this
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temporal logic has definite limitations of expressive power. In particular,
as pointed out by Wolper in a state-based setting [22], the property “p
holds at every even position” is not definable in this logic. The dynamic
version of LTL(Σ) that we introduce in the next section is designed to
overcome this kind of expressive limitation.

3 Dynamic Linear Time Temporal Logic

Our extension of LTL(Σ) basically consists of indexing the until operator
with the programs of PDL (e.g. [3, 5]). We start by defining the set of
programs (regular expressions) generated by Σ. This set is denoted by
Prg(Σ) and its syntax is given by:

Prg(Σ) ::= a | π0 + π1 | π0; π1 | π∗.

Here and elsewhere, π, π′ with or without subscripts will range over
Prg(Σ). With each program we associate a set of finite words via the
map || · || : Prg(Σ) −→ 2Σ∗. This map is defined in the standard fashion.

• ||a|| = {a}.

• ||π0 + π1|| = ||π0|| ∪ ||π1||.

• ||π0; π1|| = {τ0τ1 | τ0 ∈ ||π0|| and τ1 ∈ ||π1||}.

• ||π∗|| =
⋃
i∈ω ||πi||, where

– ||π0|| = {ε} and

– ||πi+1|| = {τ0τ1 | τ0 ∈ ||π|| and τ1 ∈ ||πi||} for every i ∈ ω.

Again we fix a countable set of atomic propositions P = {p1, p2, . . .}
and let p, q range over P . Then the set of formulas of DLTL(Σ) is given
by the following syntax.

DLTL(Σ) ::= p | ∼α | α ∨ β | α Uπβ.

Here and throughout the rest of the paper we take α, β to range over
DLTL(Σ). The notion of a model is as in the case of LTL(Σ). So let
M = (σ, V ) be a model, τ ∈ prf(σ) and α ∈ DLTL(Σ). Then M, τ |= α
is defined inductively.

• M, τ |= p iff p ∈ V (τ).
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• M, τ |= ∼α iff M, τ 6|= α.

• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β.

• M, τ |= α Uπβ iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and
M, ττ ′ |= β. Moreover, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the
case that M, ττ ′′ |= α.

Thus DLTL(Σ) is obtained form LTL(Σ) by strengthening the until
operator. To satisfy α Uπβ, one must satisfy αUβ along some finite
stretch of behaviour which is in the (linear time) behaviour of the pro-
gram π.

As usual, α ∈ DLTL(Σ) is satisfiable iff there exist a model M =
(σ, V ) and τ ∈ prf(σ) such that M, τ |= α. The satisfiability problem is,
given α, to decide whether α is satisfiable.

Apart from the conventional derived propositional connectives such
as ∧,⊃ and ≡ the derived modality 〈π〉 and its dual [π] will play an
important role in the sequel. They are defined as follows:

• > ∆⇐⇒ p1∨ ∼p1. Recall that P = {p1, p2, . . .}.

• 〈π〉α ∆⇐⇒ > Uπα.

• [π]α
∆⇐⇒ ∼〈π〉∼α.

Suppose M = (σ, V ) is a model and τ ∈ prf(σ). It is easy to see
that σ, τ |= 〈π〉α iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and
σ, ττ ′ |= α. It is also easy to see that σ, τ |= [π]α iff for every τ ′ ∈ ||π||,
if ττ ′ ∈ prf(σ) then σ, ττ ′ |= α. In this sense, the program modalities of
PDL acquire a linear time semantics in the present setting.

Note that a ∈ Σ is a member of Prg(Σ) and hence 〈a〉α is a derived
modality. It is also easy to see that the until operator of LTL(Σ) can

be obtained via: αUβ ∆⇐⇒ α UΣ∗β. Thus LTL(Σ) is a fragment of
DLTL(Σ). To see that DLTL(Σ) is strictly more expressive than LTL(Σ),
let Σ = {a1, a2, . . . , an} and πev = ((a1+a2+. . .+an); (a1+a2+. . .+an))∗.

It is now easy to see that αev = [πev]p is a specification of the property
”p holds at every even position”.

We shall close out the section by briefly discussing the key differ-
ences between DLTL(Σ) and ETL, the extension of LTL proposed by
Wolper [22]. As mentioned earlier, the version of ETL we shall con-
sider here is the one called ETLf in [21]. We shall present a simplified
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form of ETL so as to stay close to DLTL. First we fix an enumeration
of Σ = {a1, a2, . . . , an}. The syntax of the logic that we shall name as
ETL(Σ) is then given by:

ETL(Σ) ::= p | ∼φ | φ ∨ φ′ | A(φ0, φ1, . . . , φn).

Here φ, φ′, φ0, φ1, . . . , φn are assumed to be formulas of ETL(Σ). Further,
A is a finite state automaton of the form A = (Q,−→, Qin, F ) with
−→ ⊆ Q×Σ×Q as the transition relation, Qin ⊆ Q as the initial states
and F ⊆ Q as the accepting states. In what follows we let L(A) be
the language of finite words accepted by A. Moreover we shall assume
for the sake of convenience that ε 6∈ L(A) for each formula of the form
A(φ0, φ1, . . . , φn).

A model for ETL(Σ) is, as before, a pair M = (σ, V ) with V :
prf(σ) −→ 2P . Let τ ∈ prf(σ). Then M, τ |= φ is defined via:

• M, τ |= p iff p ∈ V (τ).

• M, τ |= ∼φ iff M, τ 6|= φ.

• M, τ |= φ ∨ φ′ iff M, τ |= φ or M, τ |= φ′.

• M, τ |= A(φ0, φ1, . . . , φn) iff there exists ai1ai2 . . . aim ∈ L(A) such
that the following conditions are satisfied:

— i1, i2, . . . , im ∈ {1, 2, . . . , n}. (recall that Σ = {a1, a2, . . . , an}).
— τai1ai2 · · ·aim ∈ prf(σ).

— M, τ |= φ0 and M, τai1 · · ·aij |= φij for 1 ≤ j ≤ m.

Though the technical details are somewhat different, ETL(Σ) cap-
tures the spirit of the logic presented in [21]. The key drawback of
ETL(Σ), as we see it, lies in its lack of structuring principles for forming
compound formulas. Stated differently, the only mechanism that ETL(Σ)
has — apart from the boolean connectives — to form compound formulas
is by nesting the automaton formulas. Thus a typical compound formula
would look like:

A1(φ1
0,A2(φ2

0, φ
2
1,A3(φ3

0, . . . , φ
3
n), φ2

3, . . . , φ
2
n), φ1

2, . . . , φ
1
n).

In contrast, DLTL(Σ) adds to the familiar mechanisms of LTL an orthog-
onal and well-understood component; namely, the language of regular ex-
pressions. Equally important, this orthogonal component is formulated
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purely in terms of Σ and not in terms of arbitrary formulas as is the case
of ETL. In fact, ETL, as formulated in [21] has an uncontrolled amount
of “external” elements in the sense that the states and the alphabets of
the automata which are used to write down the automaton formulas have
little to do with the logic under consideration.

4 A Decision Procedure for DLTL

The goal here is to show that the satisfiability problem for DLTL(Σ) can
be solved in deterministic exponential time. This will be achieved by
effectively constructing for each α ∈ DLTL(Σ), a Büchi automaton Bα
such that the language of ω-words accepted by Bα is non-empty iff α is
satisfiable.

We shall use the terminology adopted in [20] for dealing with Büchi
automata. In particular, a Büchi automaton over Σ is a tuple B =
(Q,−→, Qin, F ) where:

• Q is a finite non-empty set of states.

• −→ ⊆ Q× Σ×Q is a transition relation.

• Qin ⊆ Q is a set of initial states.

• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf(σ) −→ Q such that:

• ρ(ε) ∈ Qin.

• ρ(τ)
a−→ ρ(τa) for each τa ∈ prf(σ).

The run ρ is accepting iff inf(ρ) ∩ F 6= ∅ where inf(ρ) ⊆ Q is given by
q ∈ inf(ρ) iff ρ(τ) = q for infinitely many τ ∈ prf(σ). Finally L(B), the
language of ω-words accepted by B, is:

L(B) = {σ | ∃ an accepting run of B over σ}.

Through the rest of the section we fix a formula α0. To construct Bα0

we first define the (Fischer-Ladner) closure of α0 as follows. cl(α0) is the
least set of formulas that satisfies:

• α0 ∈ cl(α0).
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• If ∼β ∈ cl(α0) then β ∈ cl(α0).

• If α ∨ β ∈ cl(α0) then α, β ∈ cl(α0).

• If α Uπβ ∈ cl(α0) then α, β ∈ cl(α0).

Now CL(α0), the closure of α0, is defined to be:

CL(α0) = cl(α0) ∪ {∼β | β ∈ cl(α0)}.

In what follows ∼∼β will be identified with β. Moreover, until the end of
the section, all the formulas that we encounter — unless stated otherwise
— will be assumed to be members of CL(α0). For convenience, we shall
often write CL instead of CL(α0).

A ⊆ CL is called an atom iff it is a subset of CL satisfying:

• β ∈ A iff ∼β 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• If β ∈ A and ε ∈ ||π|| then α Uπβ ∈ A.

AT (α0) is the set of atoms and again we shall often write AT instead
of AT (α0). Next we define Req(α0), the set of until requirements of α0,
to be the subset of CL given by:

Req(α0) = {α Uπβ | α Uπβ ∈ CL}.

We shall write Req instead Req(α0) and take ξ, ξ′ to range over Req. For
each ξ = α Uπβ ∈ Req we fix a finite state automaton Aξ such that
L(Aξ) = ||π|| where L(Aξ) is the language of finite words accepted by
Aξ. We shall assume each such Aξ is of the form Aξ = (Qξ,−→ξ, Iξ, Fξ)
where Qξ is the set of states, −→ξ ⊆ Qξ × Σ × Qξ is the transition
relation, Iξ ⊆ Qξ is the set of initial states and Fξ ⊆ Qξ is the set of
final states. Without loss of generality, we shall assume that ξ 6= ξ′

implies Qξ ∩ Qξ′ = ∅ for every ξ, ξ′ ∈ Req. We set Q =
⋃
ξ∈ReqQξ and

Q̂ = Q× {0, 1}.
The Büchi automaton Bα0 associated with α0 (from now on denoted

as B) can now be defined as

B = (S,=⇒, Sin, F ),

where the various components of B are specified as follows:
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(1) S ⊆ AT × 2Q × 2Q̂ × {0, 1} × {↓,X} such that (A,X, X̂, x, f) ∈ S
iff the following conditions are satisfied for each ξ = α Uπβ:

(i) If β ∈ A then Fξ ⊆ X. (Recall that Aξ = (Qξ,−→ξ, Iξ, Fξ)).

(ii) If α ∈ A and q ∈ X for some q ∈ Iξ then α Uπβ ∈ A.

(iii) If α Uπβ ∈ A then either β ∈ A and ε ∈ ||π|| or (q, 1−x) ∈ X̂
for some q ∈ Iξ. (Note that we are considering the candidate

(A,X, X̂, x, f) for membership in S).

(iv) If (q, z) ∈ X̂ with q 6∈ Fξ or β 6∈ A then α ∈ A.

(2) The transition relation =⇒ ⊆ S × Σ× S is defined as follows:

(A,X, X̂, x, f)
a

=⇒ (B, Y, Ŷ , y, g)

iff the following conditions are satisfied for each ξ = α Uπβ:

(i) Suppose q′ ∈ Qξ ∩ Y and q
a−→ξ q

′ and α ∈ A. Then q ∈ X.

(ii) Suppose (q, z) ∈ X̂ with q ∈ Qξ. Suppose further that q 6∈ Fξ
or β 6∈ A. Then (q′, z) ∈ Ŷ for some q′ with q

a−→ξ q
′.

(iii) If f = X then (y, g) = (1− x, ↓). If f = ↓ then,

(y, g) =

 (x, ↓), if there exists (q, x) ∈ X̂ such that
q 6∈ Fξ or β 6∈ A.

(x,X), otherwise.

(3) Sin = {(A,X, X̂, x, f) | α0 ∈ A and (x, f) = (0,X)}.

(4) F = {(A,X, X̂, x, f) | f = X}

We wish to prove that α0 is satisfiable iff L(B) 6= ∅. Afterwards we
will argue that the size of B can be chosen to be at most exponential in
the size of α0.

Lemma 4.1 Suppose L(B) 6= ∅. Then α0 is satisfiable.

Proof: Let σ ∈ L(B) and ρ : prf(σ) −→ S be an accepting run. For each

τ ∈ prf(σ), let ρ(τ) = (Aτ , Xτ , X̂τ , xτ , fτ ). Define the model M = (σ, V )
via:

V (τ) = Aτ ∩ P for all τ ∈ prf(σ).

We shall prove the following intermediate result.
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Claim: For all τ ∈ prf(σ) and δ ∈ CL,

M, τ |= δ iff δ ∈ Aτ .

First note that if the claim is true then Lemma 4.1 follows at once. This
is so because ρ is a run of B and hence ρ(ε) ∈ Sin. But from (3) (in
the definition of B), it follows that α0 ∈ Aε. Thus M, ε |= α0 and α0 is
satisfiable.

In proving the claim we will repeatedly refer to various clauses in the
definition of the Büchi automaton B.

We proceed by structural induction on δ. For the base case and the
boolean connectives the claim is obvious. Hence assume that δ = α Uπβ.

Suppose that M, τ |= α Uπβ. Since M, τ |= α Uπβ there exists
τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and M, ττ ′ |= β. Moreover, M, ττ ′′ |= α
for every τ ′′ ∈ Σ∗ such that ε � τ ′′ ≺ τ ′.

Suppose τ ′ = ε. Then ε ∈ ||π|| and M, τ |= β. By the induc-
tion hypothesis β ∈ Aτ . From the definition of an atom it follows that
α Uπβ ∈ Aτ .

So assume that τ ′ 6= ε. Let ξ = α Uπβ and R be an accepting run
of Aξ over τ ′ = a1a2 . . . an with R(ε) = q0 ∈ Iξ and R(a1a2 . . . ai) =
qi for 1 ≤ i ≤ n and qn ∈ Fξ. Since M, ττ ′ |= β we have from the
induction hypothesis that β ∈ Aττ ′ . Hence by (1.i), Fξ ⊆ Xττ ′. Now

by the definition of R we are assured that qn−1
an−→ξ qn. On the other

hand, the fact that M, τ |= α Uπβ and the choice of τ ′ guarantee that
M, τa1 . . . an−1 |= α (with the convention that ε = a1 . . . an−1 in case
n = 1). By the induction hypothesis α ∈ Aτa1...an−1 , so by (2.i) and the
fact that qn ∈ Xτa1...an , we have that qn−1 ∈ Xτa1...an−1 . In case n ≥ 2 we
repeat the above argument at qn−1 to conclude that qn−2 ∈ Xτa1...an−2 .
Continuing this way we can finally arrive at q0 ∈ Xτ and α ∈ Aτ . But
q0 ∈ Iξ and hence by (1.ii) we are assured that α Uπβ ∈ Aτ .

For the converse direction assume that α Uπβ ∈ Aτ . The are four
cases to consider depending on the values of xτ and fτ . We will only
prove the first case. The remaining cases can be resolved by very similar
arguments.

So assume that xτ = 0 and fτ = ↓. Suppose first that β ∈ Aτ and
ε ∈ ||π||. Then by the induction hypothesis M, τ |= β and hence we at
once have M, τ |= α Uπβ. So assume that β 6∈ Aτ or ε 6∈ ||π||. Then by

(1.iii), (q0, 1) ∈ X̂τ for some q0 ∈ Iξ. Suppose q0 ∈ Fξ. Then ε ∈ ||π|| and
thus β 6∈ Aτ . This implies, by (1.iv), that α ∈ Aτ , and by the induction
hypothesis we have that M, τ |= α.
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Now with ρ being an accepting run of B over σ there must exist τ1

and τ2 in Σ∗ such that the following conditions are satisfied:

• τ1 6= ε and τ2 6= ε and ττ1τ2 ∈ prf(σ).

• fττ1 = X and fττ1τ2 = X. (Recall the notational convention that

ρ(u) = (Au, Xu, X̂u, xu, fu) for each u ∈ prf(σ)).

• For each τ ′′1 and τ ′′2 in Σ∗, if ε � τ ′′1 ≺ τ1 then f(ττ ′′1 ) 6= X and if
ε ≺ τ ′′2 ≺ τ2 then f(ττ1τ

′′
2 ) 6= X.

Let τ1 = a1a2 . . . an and τ2 = b1b2 . . . bm. Now ρ(τ)
a1=⇒ ρ(τa1),

α Uπβ ∈ Aτ and (q0, 1) ∈ X̂τ . Moreover, we have that q0 6∈ Fξ (if
ε 6∈ ||π||) or β 6∈ Aτ . Thus by (2.ii), there exists q1 ∈ Qξ such that

q0
a1−→ξ q1 and (q1, 1) ∈ X̂τa1 .
Now suppose q1 ∈ Fξ and β ∈ Aτa1 . Then a1 ∈ ||π|| and by the

induction hypothesis M, τa1 |= β. Since M, τ |= α has already been
deduced we have M, τ |= α Uπβ. So assume that q1 6∈ Fξ or β 6∈ Aτa1 .
Then by repeating the arguments we had above for q0 at q1 we can ar-
rive at α ∈ Aτa1 , and hence by the induction hypothesis M, τa1 |= α.
Moreover, we can conclude that there exists q2 ∈ Qξ such that q1

a2−→ξ q2

and (q2, 1) ∈ X̂τa1a2 . Marching down τ1 using this sequence of arguments
we will either terminate with the conclusion M, τ |= α Uπβ or we will
exhaust all of τ1 while being able to conclude that there must exist states
q0, q1, . . . , qn ∈ Qξ such that q0

a1−→ξ q1
a2−→ξ q2 . . . qn−1

an−→ξ qn. Further-
more, we will be able to conclude that M, ττ ′′1 |= α for every τ ′′1 such that

ε � τ ′′1 ≺ τ1. Finally, we will also be assured that (qn, 1) ∈ X̂ττ1 .
Now suppose qn ∈ Fξ and β ∈ Aττ1 . Then τ1 ∈ ||π|| and M, ττ1 |= β

by the induction hypothesis. Consequently M, τ |= α Uπβ. So assume
that qn 6∈ Fξ or β 6∈ Aττ1 . Then α ∈ Aττ1 (by (1.iv)) and hence M, ττ1 |=
α by the induction hypothesis. Now by the choice of τ1, we know that
(xττ1 , fττ1) = (0,X) and hence (xττ1b1 , fττ1b1) = (1, ↓) by (2.iii). On the

other hand, ρ(ττ1)
b1=⇒ ρ(ττ1b1) implies that there exists q′1 ∈ Qξ such

that qn
b1−→ξ q

′
1 and (q′1, 1) ∈ X̂ττ1b1 . Again q′1 ∈ Fξ and β ∈ Aττ1b1 will

lead to the desired conclusion M, τ |= α Uπβ.
So suppose q′1 6∈ Fξ or β 6∈ Aττ1b1 . Then as before, α ∈ Aττ1b1 and

hence M, ττ1b1 |= α by induction hypothesis. By the choice of τ2 we

are assured that m ≥ 2 because fττ1b1 = ↓. So consider ρ(ττ1b1)
b2=⇒

ρ(ττ1b1b2). Then again it follows easily that there must exist q′2 ∈ Qξ such

that q′1
b2−→ξ q

′
2 and (q′2, 1) ∈ X̂ττ1b1b2 . If q′2 ∈ Fξ and β ∈ Aττ1b1b2 then we

12



will at once obtain M, τ |= α Uπβ. If not, the facts that (q′1, 1) ∈ X̂ττ1b1

and that q′1 6∈ Fξ or β 6∈ Aττ1b1 holds, guarantee us that fττ1b1b2 = ↓ by
(2.iii). Hence m ≥ 3. Carrying on this way we will eventually exhaust
all of τ2 and while doing so, reach the desired conclusion M, τ |= α Uπβ.
2

Lemma 4.2 Suppose α0 is satisfiable. Then L(B) 6= ∅.

Proof: Since our logic has no past modalities it is easy to see that if α0

is satisfiable then there exists a model M = (σ, V ) such that M, ε |= α0.
We shall show that σ ∈ L(B) by constructing a map ρ : prf(σ) −→ S

so that ρ is an accepting run of B over σ. For each τ ∈ prf(σ) we set

ρ(τ) = (Aτ , Xτ , X̂τ , xτ , fτ) and define ρ in a componentwise manner.
For each τ ∈ prf(σ) define Aτ via:

Aτ = {α |M, τ |= α}.

For each τ ∈ prf(σ) define Xτ as follows. Suppose ξ = α Uπβ and
q ∈ Qξ. Then q ∈ Xτ iff there exists a pair (τ ′, R′) such that:

• ττ ′ ∈ prf(σ) and M, ττ ′ |= β.

• For every τ ′′, if ε � τ ′′ ≺ τ ′ then M, ττ ′′ |= α.

• R′ : prf(τ ′) −→ Qξ such that R′(ε) = q and R′(τ ′) ∈ Fξ and

R′(τ ′′)
a−→ξ R

′(τ ′′a) for every τ ′′a ∈ prf(τ ′).

To define the remaining three components we will first define the
fourth and fifth components by mutual induction. To this end we shall
make use of some terminology.

We shall call the pair (τ, ξ) an obligation in M if τ ∈ prf(σ) and
ξ = α Uπβ ∈ Req such that M, τ |= α Uπβ but M, τ 6|= β or ε 6∈ ||π||.
Let (τ, ξ) be an obligation in M . We shall say that the pair (τ ′, R′) is a
witness for (τ, ξ) iff the following conditions are satisfied:

• ττ ′ ∈ prf(σ) and M, ττ ′ |= β and for every τ ′′, ε � τ ′′ ≺ τ ′ implies
M, ττ ′′ |= α.

• τ ′ ∈ ||π|| and R′ : prf(τ ′) −→ Qξ such that R′(ε) ∈ Iξ, R′(τ ′) ∈ Fξ
and R′(τ ′′)

a−→ξ R
′(τ ′′a) for every τ ′′a ∈ prf(τ ′).

Note that if (τ ′, R′) is a witness for the obligation (τ, ξ) then τ ′ 6= ε.
We shall fix a chronicle set CH for M . It is a set of quadruples which
satisfies the following conditions:
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• If (τ, ξ, τ ′, R′) ∈ CH then (τ, ξ) is an obligation in M and (τ ′, R′)
is witness for (τ, ξ).

• If (τ, ξ) is an obligation in M then (τ, ξ, τ ′, R′) ∈ CH for some
witness (τ ′, R′) for (τ, ξ).

• If (τ, ξ, τ ′, R′), (τ, ξ, τ ′′, R′′) ∈ CH then (τ ′, R′) = (τ ′′, R′′).

It is easy to check that CH exists. (In fact it can be chosen in a canonical
manner by fixing a lexicographic order on Qξ for each ξ ∈ Req).

With these definitions in place, we are now prepared to define the
fourth and the fifth components of ρ by induction on τ . For the base case,
we set (xε, fε) = (0,X). Now consider the induction step where τ = τ0a

and assume that (xτ ′ , fτ ′) is defined for every τ ′ ∈ prf(τ0). If fτ0 = X then
(xτ , fτ ) = (1− xτ0 , ↓). Suppose fτ0 = ↓. Then (xτ , fτ ) = (xτ0 , ↓) if there
exists (τ1, ξ1, τ

′
1, R

′
1) ∈ CH such that τ1 � τ0 ≺ τ1τ

′
1 and xτ1 = 1 − xτ0 .

Otherwise, fτ = X and xτ = xτ0 .
Finally, the third component of ρ can now be defined. For each τ ∈

prf(σ), we define X̂τ as follows. Suppose ξ ∈ Req and q ∈ Qξ and

z ∈ {0, 1}. Then (q, z) ∈ X̂τ iff there exists (τ1, ξ, τ
′
1, R

′
1) ∈ CH such

that for some τ ′′1 ∈ prf(τ ′1), τ1 � τ = τ1τ
′′
1 . Moreover, R′1(τ ′′1 ) = q and

xτ1 = 1− z.
We now wish to argue that ρ : prf(σ) −→ S is an accepting run of

B over σ. First we shall show that ρ is well defined. Let τ ∈ prf(σ) be
given. We must show that ρ(τ) ∈ S. It is easy to see that Aτ is an atom,

Xτ ⊆ Q, X̂τ ⊆ Q̂, xτ ∈ {0, 1} and fτ ∈ {↓,X}. We will show that ρ(τ)
satisfies all the clauses of the definition of B.

So fix some α Uπβ = ξ. Assume initially that β ∈ Aτ and q ∈ Fξ.
Then M, τ |= β by definition of Aτ . Now consider the pair (τ ′, R′) where
τ ′ = ε and R′(ε) = q. From the definition of Xτ it now follows that
q ∈ Xτ . Thus Fξ ⊆ Xτ as required by (1.i).

Next assume that α ∈ Aτ and q ∈ Xτ for some q ∈ Iξ. From the
definition of Xτ it follows that there exists a pair (τ ′, R′) such that ττ ′ ∈
prf(σ) and M, ττ ′ |= β and M, ττ ′′ |= α for every τ ′′ such that ε �
τ ′′ ≺ τ ′. Furthermore, R′ : prf(τ ′) −→ Qξ such that R′(ε) = q and

R′(τ ′) ∈ Fξ and R′(τ ′′)
a−→ξ R

′(τ ′′a) for every τ ′′a ∈ prf(τ ′). But from
the assumption that q ∈ Iξ we have that τ ′ ∈ ||π||, because R′ is an
accepting run of Aξ over τ ′. Consequently M, τ |= α Uπβ and this leads
to the conclusion that α Uπβ ∈ Aτ as required by (1.ii).

Next assume that α Uπβ ∈ Aτ and β 6∈ Aτ or ε 6∈ ||π||. Then
(τ, ξ) is an obligation in M since by the definition of Aτ , M, τ |= α Uπβ
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but M, τ 6|= β or ε 6∈ ||π||. Hence there exists (τ, ξ, τ ′, R′) ∈ CH. Let
R′(ε) = q. From the fact that (τ ′, R′) is a witness for (τ, ξ) we have that

q ∈ Iξ. Moreover, by the definition of X̂τ and from τ � τ = τ (i.e. τ1 = τ

and τ ′′1 = ε), it follows that (q, 1− xτ ) ∈ X̂τ as required by (1.iii).

Finally suppose that (q, z) ∈ X̂τ with q ∈ Qξ such that q 6∈ Fξ or

β 6∈ A. Now (q, z) ∈ X̂τ implies, by the definition of X̂τ , that there
exists (τ1, ξ, τ

′
1, R

′
1) ∈ CH such that for some τ ′′1 ∈ prf(τ ′1), τ1 � τ = τ1τ

′′
1

and R′1(τ ′′1 ) = q and xτ1 = 1 − z. But (τ ′1, R
′
1) is a witness for the

obligation (τ1, ξ) and hence R′1(τ ′1) ∈ Fξ and M, τ1τ
′
1 |= β. Since β 6∈ Aτ

or q 6∈ Fξ it must be the case that τ ′′1 ≺ τ ′1 and hence M, τ1τ
′′
1 |= α. But

then τ = τ1τ
′′
1 now leads to α ∈ Aτ as required by (1.iv).

We have now shown that ρ is well defined. Next we wish to show that
ρ is a run of B over σ. Since M, ε |= α0 we have α0 ∈ Aε. By definition,
(xε, fε) = (0,X). Hence ρ(ε) ∈ Sin.

Now suppose τa ∈ prf(σ). We must show that ρ(τ)
a

=⇒ ρ(τa). For
this purpose we fix α Uπβ = ξ ∈ Req. Suppose q, q′ ∈ Qξ with q′ ∈ Xτa

such that q
a−→ξ q

′. Further suppose α ∈ Aτ . Now q′ ∈ Xτa implies
that there exists a pair (τ ′, R′) such that R′(ε) = q′ and R′(τ ′) ∈ Fξ and

R′(τ ′′)
b−→ξ R

′(τ ′′b) for every τ ′′b ∈ prf(τ ′). Furthermore, M, τaτ ′ |= β
and M, τaτ ′′ |= α for every τ ′′ such that ε � τ ′′ ≺ τ ′. Now consider the
pair (aτ ′, R′a) where R′a : prf(aτ ′) −→ Qξ is given as R′a(ε) = q and for
every τ ′′ ∈ prf(τ ′), R′a(aτ

′′) = R′(τ ′′). From M, τ |= α (as α ∈ Aτ by
assumption) it now follows at once that q ∈ Xτ as required by (2.i).

Suppose now that q ∈ Qξ and (q, z) ∈ X̂τ but q 6∈ Fξ or β 6∈ Aτ .

Since (q, z) ∈ X̂τ there must exist (τ1, ξ, τ
′
1, R

′
1) ∈ CH and τ ′′1 ∈ prf(τ ′1)

such that τ1 � τ = τ1τ
′′
1 and xτ1 = 1−z and R′1(τ ′′1 ) = q. But (τ ′1, R

′
1) is a

witness for (τ1, ξ) and hence R′1(τ ′1) ∈ Fξ and M, τ1τ
′
1 |= β. Consequently

τ ′′1 ≺ τ ′1 and thus τ ′′1 a ∈ prf(τ ′1) for the unique a. This implies that
R′1(τ ′′1 )

a−→ξ R
′
1(τ ′′1 a). Let R′1(τ ′′1 a) = q′. Then q

a−→ξ q
′. But then

it follows directly from the definition of Xτa, that (q′, 1 − z) ∈ X̂τa as
required by (2.ii).

Next suppose that fτ = X. Then clearly (xτa, fτa) = (1−xτ , ↓) by the
definition of ρ. So assume that fτ = ↓. Supposing there exists α Uπβ = ξ
in Req and there exists q ∈ Qξ such that (q, z) ∈ X̂τ where z = xτ .

Further suppose q 6∈ Fξ or β 6∈ Aτ . Now (q, z) ∈ X̂τ implies that there
exists (τ1, ξ, τ

′
1, R1′) ∈ CH such that τ1 � τ = τ1τ

′′
1 for some τ ′′1 ∈ prf(τ ′1)

with the further property that xτ1 = 1 − z. From the definitions and
the fact that q 6∈ Fξ or β 6∈ Aτ it follows that τ1 � τ ≺ τ1τ

′
1. Hence
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by the definition of ρ it follows that (xτa, fτa) = (xτ , ↓) as required by

(2.iii). On the other hand, if such a (q, z) ∈ X̂τ does not exist, then it
follows directly from the definition that (xτa, fτa) = (xτ ,X) as required
by (2.iii).

We have now verified that ρ is a run of B over σ. To show that ρ is
accepting it suffices to prove that for any τ ∈ prf(σ) there exists τ ′ such
that ττ ′ ∈ prf(σ) and fττ ′ = X.

Case 1: (xτ , fτ ) = (0,X). By picking τ ′ = ε the desired conclusion
follows trivially.

Case 2: (xτ , fτ ) = (0, ↓). Define the set Γτ ⊆ CH as follows. Sup-
pose (τ, ξ, τ ′, R′) ∈ CH. Then it must be the case that (τ1, ξ1, τ

′
1, R

′
1) ∈ Γτ

iff τ1 � τ ≺ τ1τ
′
1 and xτ1 = 1. If Γτ = ∅ then it is easy to see that with

τ ′ = a where τa ∈ prf(σ) we must have fττ ′ = X as required.
So suppose Γτ 6= ∅. Define, for each ch = (τ1, ξ1, τ

′
1, R

′
1) ∈ Γτ , kch =

|τ1τ
′
1| − |τ | and set kτ = max({kch}ch∈Γτ ). Let τa ∈ prf(σ). Then it is

easy to see that (xτa, fτa) = (0, ↓). But it is also easy to verify Γτa = ∅ or
kτa < kτ . Proceeding in this way the required conclusion can be drawn
eventually.

The two other cases can be resolved by similar arguments. 2

It is now straightforward to establish the main result of this section.
To start with we define the size of a formula α, denoted |α|, via:

• |p| = 1, |∼α| = 1 + |α| and |α ∨ β| = 1 + |α|+ |β|.

• |α Uπβ| = 1 + |α|+ |π|+ |β|,

where |π| is given by |a| = 1, |π + π′| = |π; π′| = 1 + |π| + |π′| and
|π∗| = 1 + |π|.

Theorem 4.3 For each α ∈ DLTL(Σ) the question whether or not α is
satisfiable can be decided in time 2O(|α|).

Proof: Let α0 ∈ DLTL(Σ). Then α0 is satisfiable iff L(Bα0) 6= ∅ where
α0 is the Büchi automaton constructed above. The emptiness problem
for Bα0 can be settled in O(|S|) where S is the set of states of B [20].

Clearly CL(α0) is linear in the size of α0 and hence |AT | = 2O(|α0|).
Let α Uπβ ∈ Req. It is known that for π ∈ Prg(Σ), we can construct
in polynomial time a non-deterministic finite state automaton Aξ with
L(A) = ||π|| such that |Qξ| is linear in the size of π (see [7] for a recent
account on converting regular expression to small finite state automata).
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Let Req = {α1 Uπ1β1, . . . , αm Uπmβm}. Then |π1|+ |π2|+ . . .+ |πm| ≤
|α0|. Consequently both Q and Q̂ are linear in the size of α0. It is now
easy to see that |S| = 2O(|α0|). 2

As usual, the decision procedure can be applied to solve the associated
model checking problem but we will not enter into details here.

5 Some Expressiveness Results

Our main goal here is to show that DLTL(Σ) has the same expressive
power as the monadic second-order theory of infinite sequences over Σ.
Towards the end of the section we will also establish that a natural
sublogic of DLTL(Σ) captures the first order theory of infinite sequences
over Σ.

In order to obtain clean formulations of the expressiveness results, we
shall banish atomic propositions through the rest of the paper. Instead,

we will just work with the constant > and its negation ∼> ∆⇐⇒ ⊥. To
be precise, the syntax of DLTL(Σ) will be from now on assumed to be:

DLTL(Σ) ::= > | ∼α | α ∨ β | α Uπβ,

where π ∈ Prg(Σ) with Prg(Σ) defined as before.
A model is now just a ω-sequence σ ∈ Σω. For τ ∈ prf(σ) we define

σ, τ |= α via:

• σ, τ |= >.

• All the other clauses are filled in exactly as in Section 3 while
replacing M by σ in the appropriate places.

Each formula α now defines a ω-language Lα ⊆ Σω given by:

Lα = {σ | σ, ε |= α}.

We say that L ⊆ Σω is DLTL(Σ)-definable iff there exists some α ∈
DLTL(Σ) such that L = Lα.

The monadic second-order theory of infinite sequences over Σ is de-
noted S1S(Σ). Its vocabulary consists of a family of unary predicates
{Ra}a∈Σ, one for each a ∈ Σ; a binary predicate ≤; a binary predi-
cate ε; a countable supply of individual variables Var = {x, y, z, . . .};
a countable supply of set variables (i.e. monadic predicate variables)
SVar = {X, Y, Z, . . .}. The formulas of S1S(Σ) are then built up by:
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• Ra(x), x ≤ y and x ∈ X are atomic formulas.

• If φ and φ′ are formulas then so are ∼φ, φ∨ φ′, (∃x)φ and (∃X)φ.

A structure for S1S(Σ) is a ω-sequence σ ∈ Σω. Let I be an interpre-
tation of the variables with I : Var −→ ω and I : SVar −→ 2ω. Then
the notion of σ being a model of φ under the interpretation I, denoted
σ |=I φ, is defined in the expected manner. In particular, σ |=I Ra(x)
iff σ(I(x)) = a (note that σ ∈ Σω is here to be viewed as σ : ω −→ Σ);
σ |=I x ≤ y iff I(x) ≤ I(y) (here ≤ is the usual ordering over ω);
σ |=I x ∈ X iff I(x) ∈ I(X).

As usual, a sentence is a formula with no free variables. Each sentence
φ defines a ω-language denoted Lφ where:

Lφ = {σ | σ |= φ}.

We say that L ⊆ Σω is S1S(Σ)-definable iff there exists a sentence φ ∈
S1S(Σ) such that L = Lφ.

Lemma 5.1 Let L ⊆ Σω. If L is DLTL(Σ)-definable then L is S1S(Σ)-
definable.

Proof: Consider the construction from the previous section which asso-
ciates a Büchi automaton Bα0 with each formula α0 ∈ DLTL(Σ). Suppose
we apply this construction to formulas arising from the restricted syntax
assumed in the present section. Then it is easy to see that, in the ab-
sence of atomic propositions, Lα0 = L(Bα0). But then the classic result
of Büchi [1] asserts that L ⊆ Σω is S1S(Σ)-definable iff there exists a
Büchi automaton B operating over Σ such that L = L(B). 2

Next we wish to show that if L ⊆ Σω is S1S(Σ)-definable then L is
DLTL(Σ)-definable. In fact, it turns out that it suffices to consider a
natural fragment of DLTL(Σ) denoted DLTL−(Σ) whose syntax is given
by:

DLTL−(Σ) ::= > | ∼α | α ∨ β | 〈π〉α,
where π ∈ Prg(Σ).

Here 〈π〉α is interpreted as >Uπ α with the resulting semantics. As
before L ⊆ Σω is said to be DLTL−(Σ)-definable iff there exists α ∈
DLTL−(Σ) such that L = Lα, where Lα is defined as for DLTL(Σ). To
get at the result we are after we need to work with Muller automata
operating over Σ of the form A = (Q,−→, Qin,F) where:
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• Q,−→ and Qin as in the case of a Büchi automaton.

• F ⊆ 2Q is a family of accepting sets of states.

Let σ ∈ Σω. Then the notion of a run ρ : prf(σ) −→ Q of A over σ is
as in the case of a Büchi automaton. The definition of inf(ρ) is also as
before. The run ρ is said to be accepting iff inf(ρ) ∈ F . Naturally L(A),
the ω-language accepted by A, is given by : σ ∈ L(A) iff there exists an
accepting run of A over σ.

The Muller automaton A = (Q,−→, Qin,F) is said to be determin-
istic iff |Qin| = 1 and −→ ⊆ Q × Σ × Q is a deterministic transition
relation. In other words, whenever q

a−→ q′ and q
a−→ q′′, we have

q′ = q′′. The well-known theorem of McNaughton [12] guarantees that
L ⊆ Σω is S1S(Σ)-definable iff there exists a deterministic Muller au-
tomaton operating over Σ such that L = L(A). This fact will be the
basis for the proof of the next result.

Lemma 5.2 Let L ⊆ Σω. If L is S1S(Σ)-definable then L is DLTL−(Σ)-
definable.

Proof: As remarked above L is S1S(Σ)-definable implies that there ex-
ists a deterministic Muller automaton A = (Q,−→, {qin},F) operating
over Σ such that L = L(A). We will exhibit a formula αA ∈ DLTL−(Σ)
such that LαA = L(A).

An easy argument shows that it involves no loss of generality to as-
sume that A— apart from determinacy — has two additional properties:

(i) ∅ 6∈ F .

(ii) ∀q ∈ Q ∀a ∈ Σ. ∃q′. q a−→ q′.

Determinacy and (ii) ensure that for every σ ∈ Σω the Muller au-
tomaton A has a unique run over σ. This fact will be crucial in what
follows.

Suppose F = ∅. In this case we have that L = ∅, so we set αA = ⊥.
So suppose that F 6= ∅. For each F ∈ F we shall construct a formula

αF . The required formula αA defining L will then be the disjunction of
all such αF .

First we extend −→ ⊆ Q × Σ × Q to −→∗, where −→∗ is the least
subset of Q× Σ∗ ×Q satisfying:

• q ε−→∗ q for every q ∈ Q.
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• If q
τ−→∗ q′ and q′

a−→ q′′ then q
τa−→∗ q′′.

Next define, for each q, q′ ∈ Q, the language of finite words Lq,q′ ⊆ Σ∗

by:

Lq,q′ = {τ | q τ−→∗ q′}.

It is easy to see that each Lq,q′ is a regular subset of Σ∗. Hence we can
fix a regular expression πq,q′ ∈ Prg(Σ) such that Lq,q′ = ||πq,q′||. Due to
the determinacy of A it follows at once that if q, q′, q′′ ∈ Q such that
Lq,q′ ∩ Lq,q′′ 6= ∅ then q′ = q′′.

Now let F = {q0, q1, . . . , qn−1} with n ≥ 1. Then the formula αF is
given by:

αF =
∨
q∈F
〈πqin,q〉

(∧
q′ 6∈F

[πq,q′]⊥ ∧
n−1∧
j=0

[πq,qj ]〈πqj ,qj⊕1〉>
)
,

where ⊕ denotes addition modulo n. The required formula αA is then
defined as:

αA =
∨
F∈F

αF

Clearly αA ∈ DLTL−(Σ). We wish to argue that L(A) = LαA . So
first suppose that σ ∈ L(A). Let ρ : prf(σ) −→ Q be the (unique) run of
A over σ. We must have inf(ρ) ∈ F since ρ is an accepting run. Assume
that inf(ρ) = F = {q0, q1, . . . , qn−1} with n ≥ 1. There must exist a
τ ∈ prf(σ) such that ρ(τ) = q ∈ F and for all τ ′ ∈ Σ∗, ττ ′ ∈ prf(σ)
implies ρ(ττ ′) ∈ F . This is so because inf(ρ) = F . If ρ(τ) = q then
τ ∈ ||πqin,q|| because ρ(ε) = qin and (consequently) ρ being a run assures

us that qin
τ−→∗ q. Now suppose σ, τ |= 〈πq,q′〉> for some q′ 6∈ F . Then

there exists τ ′ ∈ ||πq,q′|| such that ττ ′ ∈ prf(σ). But this violates the
assumed property of τ . Consequently, for every q′ 6∈ F we must have
σ, τ |= [πq,q′]⊥. Hence σ, τ |=

∧
q′ 6∈F [πq,q′]⊥.

Next suppose j ∈ {0, 1, . . . , n − 1} and τ ′ ∈ ||πq,qj || such that ττ ′ ∈
prf(σ). Then by the assumed property of τ there must exist τ ′′ 6= ε such
that ττ ′τ ′′ ∈ prf(σ) and ρ(ττ ′τ ′′) = qj⊕1, because qj⊕1 ∈ F = inf(ρ).
Clearly τ ′′ ∈ ||πqj ,qj⊕1|| because ρ(ττ ′) = qj . Thus σ, τ |= [πq,qj ]〈πqj ,qj⊕1〉>
for every j ∈ {0, 1, . . . , n− 1}. We have now established that σ, ε |= αF
where F ∈ F . This in turn implies that σ, ε |= αA and hence σ ∈ LαA .

Now assume that σ, ε |= αA. Then it must be the case that σ, ε |= αF
for some F ∈ F with F = {q0, q1, . . . , qn−1}, n ≥ 1. Consequently, there
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exist τ ∈ prf(σ) and q ∈ F such that τ ∈ ||πqin,q|| and

σ, τ |=
∧
q′ 6∈F

[πq,q′]⊥ ∧
n−1∧
j=0

[πq,qj ]〈πqj ,qj⊕1〉>.

Let ρ be the unique run of A over σ. From the determinacy of A it
follows that ρ(τ) = q.

Claim: Suppose τ ′ ∈ Σ∗ is such that ττ ′ ∈ prf(σ). Then ρ(ττ ′) ∈ F .

To see that the claim holds, let ττ ′ ∈ prf(σ) and ρ(ττ ′) = q′. If q′ 6∈ F
then τ ′ ∈ ||πq,q′|| would lead to the contradiction that σ, τ |= 〈πq,q′〉>
for some q′ 6∈ F . Thus the claim holds, which at once implies that
inf(ρ) ⊆ F .

If we now show that F ⊆ inf(ρ) we are done. So let j ∈ {0, 1, . . . , n−
1}. To show that qj ∈ inf(ρ) assume that τ ′ ∈ Σ∗ such that ττ ′ ∈ prf(σ).
Let ρ(ττ ′) = qi, say. We must show that there exists τ ′′ such that
ττ ′τ ′′ ∈ prf(σ) and ρ(ττ ′τ ′′) = qj .

If i = j then we can set τ ′′ = ε and be done. So suppose i 6= j. Then
clearly τ ′ ∈ ||πq,qi||. But σ, τ |= [πq,qi]〈πqi,qi⊕1〉> and hence there must
exist τi ∈ ||πqi,qi⊕1|| such that ττ ′τi ∈ prf(σ) so that ρ(ττ ′τi) = qi⊕1. If
i⊕1 = j then we can set τ ′′ = τi. Otherwise τ ′τi ∈ ||πq,qi⊕1|| and hence we
can find τi⊕1 such that ττ ′τiτi⊕1 ∈ prf(σ) such that ρ(ττ ′τiτi⊕1) = qi⊕2. If
i⊕ 2 = j we set τ ′′ = τiτi⊕1, otherwise we proceed as before. Eventually
we will be done. 2

Theorem 5.3 Let L ⊆ Σω. Then the following statements are equiva-
lent:

(i) L is S1S(Σ)-definable.

(ii) L is DLTL(Σ)-definable.

(iii) L is DLTL−(Σ)-definable.

Proof: Follows immediately from Lemmas 5.1, 5.2 and the fact that
DLTL−(Σ) is a sublogic of DLTL(Σ). 2

At present we do not know of a direct conversion of DLTL(Σ)-formulas
into DLTL−(Σ)-formulas. Although these two logics have the same ex-
pressive power in the sense of Theorem 5.3, it appears that DLTL(Σ)
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will admit more natural specifications. In addition, it is a conservative
extension of LTL(Σ) even from a syntactic standpoint and hence conven-
tional LTL specifications can be brought in with no overhead translation
costs.

We shall conclude this section by pointing out that star-free programs
can be used to capture the first-order definable subsets of Σω. Admittedly
this is not a big surprise, but it illustrates once more that our method of
augmenting the expressive power of LTL is a natural one.

FO(Σ) will denote the first-order theory of ω-sequences generated by
Σ. It is the fragment of S1S(Σ) obtained by eliminating set variables
from the syntax. We shall say that L ⊆ Σω is FO(Σ)-definable iff there
exists a sentence φ in FO(Σ) such that L = Lφ.

The set of star-free regular programs over Σ is denoted PrgSF(Σ) and
its syntax is given by:

PrgSF(Σ) ::= 0 | a | π + π′ | π | π; π′.

The set of finite words denoted by each star-free program is obtained via
the map || · || : PrgSF(Σ) −→ 2Σ∗ which is defined as follows: || π || =
Σ∗ − ||π|| and ||0|| = ∅. The remaining cases are handled as before.

Next let ϕ ∈ FO(Σ), τ ∈ Σ∗ and I : Var −→ {0, 1, . . . , |τ | − 1} where
|τ | is the length of τ . In case τ = ε we set I — viewed as a set of ordered
pairs — to the empty set. The notion τ |=I ϕ is defined in the obvious
way.

With each sentence ϕ ∈ FO(Σ) we can now associate the language of
finite words Lfinϕ given by:

Lfinϕ = {τ | τ ∈ Σ∗ and τ |= ϕ}.

We let SF fin(Σ) be the subset of 2Σ∗ where L ⊆ Σ∗ is admitted as a
member of SF fin(Σ) iff there exists a sentence ϕ ∈ FO(Σ) such that
L = Lfinϕ . A well-known fact [13] is that SF fin(Σ) and PrgSF(Σ) denote
each other in the following sense.

Proposition 5.4 Let L ⊆ Σ∗. Then L ∈ SF fin(Σ) iff there exists π ∈
PrgSF(Σ) such that L = ||π||.

Next we recall a well-known characterization of FO(Σ)-definable sub-
sets of Σω. Let SF ω(Σ) be the least subset of 2Σω which satisfies:

• ∅ ∈ SF ω(Σ).
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• If L̂ ∈ SF ω(Σ) then Σω − L̂ ∈ SF ω(Σ).

• If L̂1, L̂2 ∈ SF ω(Σ) then L̂1 ∪ L̂2 ∈ SF ω(Σ).

• If L ∈ SF fin(Σ) and L̂ ∈ SF ω(Σ) then {τσ | τ ∈ L and σ ∈ L̂} ∈
SF ω(Σ).

We then have the following characterization (see [20]).

Proposition 5.5 Let L ⊆ Σω. Then L ∈ SF ω(Σ) iff L is FO(Σ)-
definable.

The star-free version of DLTL(Σ) will be denoted — for want of a
better notation — by DLTLSF(Σ) and its syntax is given by:

DLTLSF(Σ) ::= > | ∼α | α ∨ β | α Uπβ (π ∈ PrgSF(Σ)).

Thus the only difference is that the programs that are used to build
up the until-formulas are required to be star-free programs. All the
semantic notions concerning this logic are transported from DLTL(Σ) in
the natural manner. The fragment of DLTLSF(Σ) which corresponds to
DLTL−(Σ) has the syntax:

DLTL−SF(Σ) ::= > | ∼α | α ∨ β | 〈π〉α (π ∈ PrgSF(Σ)).

Once again, all the semantic notions concerning DLTL−SF(Σ) are trans-
ported from DLTL−(Σ) in the natural way.

We now wish to show that FO(Σ), DLTLSF(Σ) and DLTL−SF(Σ) all
have the same expressive power.

Lemma 5.6 Let L̂ ⊆ Σω. If L̂ is FO(Σ)-definable then L̂ is DLTL−SF(Σ)-
definable.

Proof: Using Proposition 5.5 and following the definition of SF ω(Σ), we
now inductively define the map g : SF ω(Σ) −→ DLTL−SF(Σ) as follows.

• If L̂ = ∅ then g(L̂) = ⊥.

• Suppose L̂ = Σω − L̂1 for some L̂1 ∈ SF ω(Σ) with g(L̂1) defined.

Then g(L̂) = ∼g(L̂1).

• Suppose L̂ = L̂1∪ L̂2 with L̂1, L̂2 ∈ SF ω(Σ) so that both g(L̂1) and

g(L̂2) are defined. Then g(L̂) = g(L̂1) ∨ g(L̂2).
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• Suppose L1 ∈ SF fin(Σ) and L̂1 ∈ SF ω(Σ) such that L = {τσ |
τ ∈ L1 and σ ∈ L̂1} and g(L̂1) is defined. Let π ∈ PrgSF(Σ) such
that L = ||π||. The existence of π is guaranteed by Proposition 5.4.

Then g(L̂) = 〈π〉g(L̂1).

It is now routine to verify that for each L̂ ∈ SF ω(Σ)

L̂ = {σ | σ, ε |= g(L̂)}.

Hence L̂ is DLTL−SF(Σ)-definable. 2

The last step is to show that DLTLSF(Σ)-definability implies FO(Σ)-
definability. The proof will be syntactic and it will be convenient to go
through some preliminaries.

First let ϕ ∈ FO(Σ) and x, y be variables that do not appear in ϕ (free
or bound). Then the formulas Rel(ϕ, 0, x) and Rel(ϕ, x, y) — describing
the relativizations of ϕ — are defined inductively as follows:

• Rel(Ra(z), 0, x) = z ≤ x ∧Ra(z).
Rel(Ra(z), x, y) = x ≤ z ∧ z ≤ y ∧Ra(z).

• Rel(z1 ≤ z2, 0, x) = z2 ≤ x ∧ z1 ≤ z2.
Rel(z1 ≤ z2, x, y) = x ≤ z1 ∧ z2 ≤ y ∧ z1 ≤ z2.

• Rel(∼ϕ, 0, x) = ∼Rel(ϕ, 0, x).
Rel(∼ϕ, x, y) = ∼Rel(ϕ, x, y).

• Rel(ϕ1 ∨ ϕ2, 0, x) = Rel(ϕ1, 0, x) ∨ Rel(ϕ2, 0, x).
Rel(ϕ1 ∨ ϕ2, x, y) = Rel(ϕ1, x, y) ∨Rel(ϕ2, x, y).

• Rel((∃z)ϕ, 0, x) = (∃z)(z ≤ x ∧ Rel(ϕ, 0, x)).
Rel((∃z)ϕ, x, y) = (∃z)(x ≤ z ∧ z ≤ y ∧ Rel(ϕ, x, y)).

It is easy to see that both Rel(ϕ, 0, x) and Rel(ϕ, x, y) are members of
FO(Σ) for any ϕ ∈ FO(Σ).

Next we fix for each π ∈ PrgSF(Σ) a sentence ϕπ ∈ FO(Σ) such that
||π|| = Lfinϕ . The existence of ϕπ is guaranteed by Proposition 5.4 and
the definition of SF fin(Σ).

Finally we inductively define, for each α ∈ DLTLSF(Σ), the formulas
SAT(α, 0) and SAT(α, x) as follows:

• SAT(>, 0) = SAT(>, x) = (∀z)(z ≤ z).
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• SAT(∼α, 0) = ∼SAT(α, 0).
SAT(∼α, x) = ∼SAT(α, x).

• SAT(α ∨ β, 0) = SAT(α, 0) ∨ SAT(β, 0).
SAT(α ∨ β, x) = SAT(α, x) ∨ SAT(β, x).

• Let α = β1 Uπβ2. Suppose first that ε ∈ ||π||. Then

SAT(α, 0) = SAT(β2, 0) ∨ (SAT(β1, 0) ∧ (∃x)(ϕ1 ∧ ϕ2 ∧ ϕ3)),

where

ϕ1 = SAT(β2, x),

ϕ2 = (∀y)(y < x ⊃ SAT(β1, y)),

ϕ3 = Rel(ϕπ, 0, x).

Moreover,

SAT(α, x) = SAT(β2, x)∨(SAT(β1, x)∧(∃y)(x < y∧ϕ′1∧ϕ′2∧ϕ′3)),

where

ϕ′1 = SAT(β2, y),

ϕ′2 = (∀z)(x ≤ z ∧ z < y ⊃ SAT(β1, z)),

ϕ′3 = Rel(ϕπ, x, y).

Now, if it is the case that ε 6∈ ||π|| we disregard SAT(β2, 0) and
SAT(β2, x), respectively, above. In other words,

SAT(α, 0) = SAT(β1, 0) ∧ (∃x)(ϕ1 ∧ ϕ2 ∧ ϕ3),

and

SAT(α, x) = SAT(β1, x) ∧ (∃y)(x < y ∧ ϕ′1 ∧ ϕ′2 ∧ ϕ′3),

We can now prove the following result.

Lemma 5.7 Let L ⊆ Σω. If L is DLTLSF(Σ)-definable then L is FO(Σ)-
definable.
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Proof: Let L ⊆ Σω be given such that L = Lα with α ∈ DLTLSF(Σ),
i.e. L = {σ | σ, ε |= α}. It is now routine to check that SAT(α, 0) is a
sentence of FO(Σ) and moreover that

L = {σ | σ |= SAT(α, 0)}.

Hence, L is FO(Σ)-definable. 2

Theorem 5.8 Let L ⊆ Σω. Then the following statements are equiva-
lent:

(i) L is FO(Σ)-definable.

(ii) L is DLTLSF(Σ)-definable.

(iii) L is DLTL−SF(Σ)-definable.

Proof: Follows easily from Lemmas 5.6 and 5.7. 2

6 Axiomatizations

Our axiomatization of the set of valid formulas of DLTL is an extension
of Segerberg’s axiomatization of PDL [17]. Moreover, our completeness
argument is based on the elegant proof of completeness of Segerberg’s
axioms due to Kozen and Parikh [9]. It will be convenient to first axiom-
atize DLTL−.

We begin by augmenting the set of regular programs with the atomic
program 1. We set ||1|| = {ε}. By abuse of notation this augmented set
of programs will also be denoted as Prg(Σ). Next we define the transition
relation−→Prg(Σ) (from now on written as just −→) to be the least subset
of Prg(Σ)×Σ× Prg(Σ) yielded by the following rules:

•
a

a−→ 1

• π
a−→ π1

π + π′
a−→ π1

π
a−→ π1

π′ + π
a−→ π1

• π
a−→ π1

π; π′
a−→ π1; π′

if π1 6= 1
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• π
a−→ 1

π; π′
a−→ π′

• π′
a−→ π′′

π; π′
a−→ π′′

if ε ∈ ||π||

• π
a−→ π′

π∗
a−→ π′; π∗

.

This transition relation is extended to the relation −→∗ ⊆ Prg(Σ)×
Σ∗ × Prg(Σ) via:

• π ε−→∗ π

• If π
τ−→∗ π′ and π′

a−→ π′′ then π
τa−→∗ π′′.

Finally the sets of programs δa(π) and δ∗(π) for each π and each a
are defined as follows:

• δa(π) = {π′ | π a−→ π′}.

• δ∗(π) = {π′ | ∃τ. π τ−→∗ π′}.

Proposition 6.1 For each π and each a, both δa(π) and δ∗(π) are finite
sets.

Proof: The proof follows easily by structural induction on π. 2

We are now ready to present an axiomatization of DLTL− (Recall

that Oα
∆⇐⇒
∨
a∈Σ〈a〉α). The logical system DLT L− is given as follows.

Axiom schemes:
(A0) All the tautologies of propositional calculus.
(A1) [π] (α ⊃ β) ⊃ ([π]α ⊃ [π]β).
(A2) 〈π + π′〉α ≡ 〈π〉α ∨ 〈π′〉α.
(A3) 〈π; π′〉α ≡ 〈π〉〈π′〉α.
(A4) 〈π∗〉α ≡ α ∨ 〈π〉〈π∗〉α.
(A5) [π∗](α ⊃ [π]α) ⊃ (α ⊃ [π∗]α).
(A6) α ≡ 〈1〉α.
(A7) O>.
(A8) 〈a〉> ⊃

∧
b6=a[b]⊥.

(A9) 〈a〉α ⊃ [a]α.

(A10) 〈π〉α ≡ α ∨
(∨

a∈Σ〈a〉
∨
π′∈δa(π)〈π′〉α

)
, (ε ∈ ||π||).

(A11) 〈π〉α ≡
∨
a∈Σ〈a〉

∨
π′∈δa(π)〈π′〉α, (ε 6∈ ||π||).
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Inference rules:

(MP)
α α ⊃ β

β
.

(TG)
α

[π]α
.

(A0) through (A5) and the inference rules together constitute an ax-
iomatization of PDL. The behaviour of 1 is captured by (A6). The re-
maining axiom schemes describe the linear time semantics provided for
regular programs in the setting of DLTL−. Due to Proposition 6.1 both
(A10) and (A11) are well-defined. It is easy to see that the axioms are
valid and that the inference rules preserve validity.

We shall say, as usual, that a formula α is (DLT L− −) consistent in
case∼α is not a thesis derivable from the systemDLT L−. We shall prove
that every consistent formula is satisfiable. To this end, fix a consistent
formula α0. Define ĉl(α0) to be the least set of formulas containing cl(α0)
(recall the definition of cl(α0) in Section 4) and satisfying:

• If 〈π〉α ∈ ĉl(α0) and π′ ∈ δa(π) then〈π′〉α, 〈a〉〈π′〉α ∈ ĉl(α0).

• If 〈1〉α ∈ ĉl(α0) then α ∈ ĉl(α0).

• 〈a〉> ∈ ĉl(α0) for every a ∈ Σ.

Next define ĈL(α0) as ĈL(α0) = ĉl(α0) ∪ {∼ β | β ∈ ĉl(α0)}. As
usual, we will identify ∼∼β with β in what follows.

Proposition 6.2 ĈL(α0) is a finite set.

Proof: Follows at once from Proposition 6.1. 2

In this section, an atom is a maximal consistent subset of ĈL(α0).

If A is an atom then Â will be the conjunction of all the formulas in A.
Let AT0 be the set of all atoms. We now define the transition system
TS0 = (AT0,=⇒) where =⇒ ⊆ AT0 × Σ × AT0 is given by A

a
=⇒ B iff

Â∧〈a〉B̂ is consistent. As before, the transition relation =⇒ is extended
to =⇒∗ ⊆ AT0 ×Σ∗ × AT0 in the obvious way.

Lemma 6.3

(i) Suppose A,B ∈ AT0 and π ∈ Prg(Σ) such that Â∧ 〈π〉B̂ is consis-
tent. Then there exists τ ∈ ||π|| such that A

τ
=⇒∗ B.
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(ii) Suppose 〈π〉α ∈ A ∈ AT0. Then there exists B ∈ AT0 and τ ∈ ||π||
such that α ∈ B and A

τ
=⇒∗ B.

Proof: Part (i) can be established by just repeating the proof of [9,
Lemma 1]. Now part (ii) follows easily from part (i) with the help of a
few tautologies of propositional calculus. 2

We are now ready to extract a model of α0 from TS0. We shall do
so by inductively defining a map ρ̂ : ω −→ AT0 and an ascending chain
of sequences τ0 ≺ τ1 ≺ . . . where each τi is in Σ∗. In what follows we
will denote ρ̂(i) by Ai for each i ∈ ω. We shall also assume that we have

fixed an enumeration of the countable set ĈL(α0)×Σ∗.

• ρ̂(0) = A0 where A0 ∈ AT0 such that α0 ∈ A0. Further, τ0 = ε.

• Assume ρ̂(i) and τi are defined. We say that the pair (〈π〉α, τ)
is a requirement at stage i provided the following conditions are
satisfied:

– τ � τi and 〈π〉α ∈ Aj where |τ | = j.

– For every τ ′ ∈ Σ∗, if ττ ′ � τi then τ ′ 6∈ ||π|| or α 6∈ Ak where
|ττ ′| = k.

Let RQi be the set of requirements at stage i. Assume that RQi = ∅.
Let a ∈ Σ such that 〈a〉> ∈ Ai. The fact that such an a exists and is

unique is guaranteed by (A7) and (A8). Since
∨
A∈AT0

Â is a thesis, it

follows from simple propositional reasoning that Â ∧ 〈a〉B̂ is consistent
for some B ∈ AT0. Consequently A

a
=⇒ B. Now let ρ̂(i + 1) = B and

τi+1 = τia. The construction now proceeds from stage i+ 1.
Assume now that RQi 6= ∅. Let (〈π〉α, τ) be the least member of

RQi in the enumeration we have fixed for ĈL(α0)×Σ∗. Let j = |τ | and
ττ ′ = τi. Then using (A10) and (A11) it is easy to show that there exists

π′ such that π
τ ′−→∗ π′ and 〈π′〉α ∈ Ai. Moreover α 6∈ Ai or ε 6∈ ||π′||.

By part (ii) of Lemma 6.3, there exists B ∈ AT0 and τ ′′ ∈ ||π′|| such

that Ai
τ ′′

=⇒∗ B and α ∈ B. Let τ ′′ = b1b2 . . . bm. Then we can find

B0, B1, · · · , Bm ∈ AT0 such that Ai = B0 and Bm = B and Bk
bk=⇒ Bk+1

for 0 ≤ k < m. We now extend ρ̂ by:

ρ̂(i+ k) = Bk for 1 ≤ k ≤ m.
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Further we define τi+k = τib1b2 . . . bk for 1 ≤ k ≤ m. The construction
now proceeds from stage i+m.

Now consider the model M0 = (σ, V0) where σ ∈ Σω is the sequence
satisfying that τi � σ for every i ∈ ω. Further, V0(τ) = A|τ | ∩ P for each
τ ∈ prf(σ). It is a routine exercise to establish that for all τ ∈ prf(σ)

and α ∈ ĈL(α0), M0, τ |= α iff α ∈ A|τ |. Hence M0, ε |= α0 as required.
The system DLT L is obtained by replacing (A10) and (A11) with

the following axiom schemes:
(A12) α Uπβ ⊃ 〈π〉β.

(A13) α Uπβ ≡ β ∨
(
α ∧

∨
a∈Σ〈a〉

∨
π′∈δa(π) α Uπ

′
β
)
, (ε ∈ ||π||).

(A14) α Uπβ ≡ α ∧
∨
a∈Σ〈a〉

∨
π′∈δa(π) α Uπ

′
β, (ε 6∈ ||π||).

It is an easy exercise to extend the completeness argument for DLT L−
to DLT L. Thus we have:

Theorem 6.4

(i) DLT L− is a sound and complete axiomatization of the set of valid
formulas of DLTL−(Σ).

(ii) DLT L is a sound and complete axiomatization of the set of valid
formulas of DLTL(Σ).

7 Conclusion

We have presented here an enriched version of LTL called DLTL. The
extension is obtained by indexing the until operator of LTL with regular
programs. We have shown that in terms of the complexity of the deci-
sion procedure and expressiveness, DLTL compares very favourably with
ETL. It is worth pointing out here that the decision procedure for DLTL
is carried out directly in terms of Büchi automata whereas for ETL it
is carried out in terms of the so called set-subword automata, which are
then translated to Büchi automata [21]. Two additional results that are
available for DLTL are: A characterization of the first order fragment
of S1S in terms of the sublogics DLTL−SF and DLTLSF; and a relatively
clean axiomatization of DLTL− and DLTL. All these results demonstrate
that our means of bringing together propositional dynamic and temporal
logics in a linear time setting is natural.

It turns out that our idea extends smoothly to richer domains. In par-
ticular, we can obtain similar results concerning the so called ω-regular
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product languages [19] in terms of the product version of DLTL. Roughly
speaking, a ω-regular product language is a ω-regular language L ⊆ Σω

generated by a distributed alphabet {Σi}Ki=1 with Σ =
⋃K
i=1 Σi. The lan-

guage L is a product language in the sense it is a finite union languages
of the form L1⊗L2⊗· · ·⊗LK with each Li a regular subset of finite and
infinite strings over Σi and ⊗ standing for the synchronized product op-
eration. In other words σ ∈ Σω is in L1⊗L2⊗· · ·⊗LK iff σ � Σi (i.e. the
sequence obtained by erasing all symbols from σ that are not in Σi) is in
Li for each i. The interesting distributed alphabets are of course those in
which the component alphabets are not pairwise disjoint. The ω-regular
product languages can be used to capture the linear time behaviour of
a widely used model of distributed programs. These programs consist
of a fixed set of finite state sequential programs that coordinate their
behaviours by performing common actions together. Our logical charac-
terization of ω-regular product languages is obtained by taking boolean
combinations of formulas in

⋃K
i=1 DLTL(Σi).

Yet another extension is obtained by considering ω-regular trace lan-
guages over a trace alphabet (Σ, I) with I ⊆ Σ× Σ being an irreflexive
and symmetric independence relation. Here by traces we mean the class
of Σ-labelled posets known as Mazurkiewicz traces. These objects play
a fundamental role in the theory of distributed systems [2, 11]. It turns
out that ω-regular trace languages can be captured by a natural exten-
sion of DLTL(Σ) denoted DLTL(Σ, I). The main idea is that one must
use regular “parallel” programs instead of regular programs to index the
until operator. What is interesting about this characterization is that so
far there has been no comparable result concerning ω-regular trace lan-
guages in terms of a modal logic with a fixed point operator or in terms
of a linear time temporal logic. These results and related generalizations
will be reported in a forthcoming paper.
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