Sadhana, Vol. 17, Part 1, March 1992, pp. 131-165. © Printed in India.

Models and logics for true concurrency

KAMAL LODAYA!, MADHAVAN MUKUND? R RAMANUJAM!
and P S THIAGARAJAN?

1 The Institute of Mathematical Sciences, Taramani, CIT Campus, Madras
600113, India

2School of Mathematics, SPIC Science Foundation, 92 G.N. Chetty Road,
T. Nagar, Madras 600017, India

Abstract. A distributed computer system consists of different processes
or agents that function largely autonomously and coordinate their actions
by communicating with each other. In such a situation, actions may be
performed by different agents of the system locally, in a concurrent manner.

In this paper, we first discuss formal models of distributed systems in
which concurrency is specified explicitly, in contrast to more traditional
approaches where concurrency is represented implicitly as a nondeter-
ministic choice between all possible sequentializations of concurrent

_ actions. This naturally leads to models based on partially-ordered sets of

%3 actions rather than sequences of actions and is often called the true
concurrency approach. The models we focus on are distributed transition
systems, elementary net systems and event structures.

In the second half of the paper, we develop a family of logics to specify
and reason about the behavioural properties of the models we have
described. The logics we define are extensions of temporal logic with new
modalities to directly describe concurrency.

This paper is essentially a survey of work done by the authors during
the last few years on modelling distributed systems with true concurrency

_ and using logic to reason about these models. The emphasis is on

2 motivating definitions through examples and on presenting major results,
without going into too many formal details. We provide pointers to the
literature where these details can be found.

Keywords. Concurrency; temporal logic; distributed systems; logics of
programs. :

1. Introduction

The study of distributed systems and computations is an important topic of research
in computer science. A distributed system consists of a number of essentially
autonomous components that work together to perform a complex task.

A computer network which brings together a heterogeneous collection of computing
resources and users dispersed over a wide geographic area is a classic example of a

131

132 Kamal Lodaya et al

distributed system. Distributed databases constitute yet another class of examples. At
a lower level, computer protocols which facilitate efficient and reliable transmission
of electronic data and operating systems which coordinate the activities of multiple
processes (programs) in the presence of multiple processors can also be viewed as
distributed systems. With the advent of VLSI systems, the notion of a distributed
system is also becoming relevant at the circuit level.

The theory of distributed systems consists of formulating abstract mathematical
models of distributed systems and studying the properties of these models. A basic
motivation in the study of formal models is to develop tools and techniques using
which one can specify, analyse and implement distributed systems. Another goal is
to develop formal means for reasoning about the behaviour of distributed systems. This
is important because one would like to ensure that a specification is in some sense
consistent before one attempts an analysis or an implementation. Even more
importantly, one would like to guarantee that a proposed implementation indeed
meets the requirements of a specification.

In this paper, we present some of our work in the last few years on modelling
distributed systems with true concurrency, using logic to reason about these models.
The emphasis is on motivating definitions through examples and on presenting major
results. No attempt will be made to go into formal details; we shall provide pointers
to the literature where these details can be found.

In the first part of the paper, we introduce three models called distributed transition
systems, elementary net systems and event structures. Using these models, we illustrate
some of the fundamental features of distributed systems, such as causality, choice and
concurrency.

In the second half of the paper, we develop a family of logics to specify and reason
about the behavioural properties of the models considered in the first half of the paper.

2. Models for true concurrency

Typically, a distributed system consists of spatially separated processes or agents
performing a joint task. The agents function largely autonomously and coordinate
their actions by communicating with each other. In such a situation, actions may be
performed by different agents of the system locally, in a concurrent manner.

Informally, we say that two events are concurrent if they occur with no a priori
ordering over their occurrences. This is in contrast to a sequential system in which
any two events that occur in a computation must be ordered. :

In addition to concurrency, two other aspects are of interest in the theory of
distributed systems — causality and choice. Causality refers to the fact that certain
events in a distributed system can only occur in a fixed order; for example, a message
can be received only after it has been sent. The receipt of a message is said to be
causally dependent on the sending of the message. ,

Choice captures the fact that systems can behave in an indeterminate fashion. In
other words, at certain points of the computations, the system may choose between
alternative events, leading to different behaviours.

As we shall see, labelled transition systems are simple and convenient models of
sequential systems which can explicitly describe causality and choice, but which do
not have a natural way of representing concurrency. One way of describing
concurrency in the framework of transition systems is in terms of indeterminacy. In

Models and logics for true concurrency 133

this approach, the fact that a set of actions may be performed concurrently is
represented by permitting the system to choose between all possible sequentializations
of the actions. This approximation of concurrency by interleaving is used in various
-algebraic approaches to the theory of distributed systems such as a calculus for
communicating systems (CCS) (Milner 1989), communicating sequential processes (CSP)
(Hoare 1984) and algebra of communicating processes (ACP) (Bergstra & Klop 1984).

Such an implicit representation of concurrency leads to problems in analysing
system behaviour, due to the combinatorial explosion in the number of possible
interleavings. We follow an alternative approach, called “true concurrency”, where
concurrency is represented explicitly in the models.

Many abstract models of distributed systems have been suggested which explicitly
deal with the phenomena of causality, choice and concurrency. Here, we shall consider
three of these models — distributed transition systems, elementary net systems and
event structures. We shall also discuss a model called communicating sequential
agents. This model, based on a restricted class of event structures, captures in a natural
way the intuitive picture of a distributed system as a collection of sequential agents
coordinating their actions through communication.

2.1 Distributed transition systems

Before discussing models of concurrent systems, let us briefly look at sequential
systems. Transition systems are a basic model of sequential systems.

DEFINITION 1.1

A (XZ-labelled) transition system is a triple - TS = (S, Z, —) where

(1) S is a set of states.
(2) Z is a set of actions.
(3) » =8 x Z x §is the transition relation.

If (s,a,s)e—, then the idea is that the action a can occur at state s and after the
execution of a the system assumes the state s. We shall often write s-5s’ instead
of (s,a,s)e—.

Figure 11is a graphical representation of a transition system. The nodes of the graph
represent the states of the system. The edges, labelled by actlons from X, reflect the
transition relation —.

Clearly the structure of a transition system captures both the basic phenomena
present in sequential systems — causality and choice. The transition relation can be
used to determine the causal dependencies between system states. Choice is specified

@/“' @\k
N @/
/

@ Figare 1.. A transition system..

. ®
\K

134 Kamal Lodaya et al

by branching in the transition system. In other words, if s5s and s5s" both
belong to the transition relation, then the system at state s can choose between the
actions a and b. For example, at s, the system shown in figure 1 can either move by
an a to s, or move by a b to s3. In general, different choices available to the system
at a state may be labelled by the same action. In other words, the behaviour could
be nondeterministic. For instance, at s, this system can move on b either to s; or to s;.

In this example, starting at s,, either the action a can occur followed by the action
b or the action b can occur followed by the action a. In the interleaving approach
to concurrency, this situation often amounts to saying that a and b can occur
concurrently at s, .

However, we would like to maintain a clear distinction between nondeterminism
and concurrency. Hence, to describe concurrency in a transition system, we enrich
the relation — by permitting a transition to be labelled by a finite set of actions from
¥, rather than just by a single action. Thus, we will now have elements in — of the
form s%¢', where u is a finite subset of . The idea is that the actions in u can occur
at s with no order over their occurrences. When they have all occurred, the resulting
state is §'. The set of actions u is termed a concurrent step.

Henceforth, given a set X, £(X) denotes the set of subsets of X and 4 ;,(X) denotes
the set of finite subsets of X. We can now formally define distributed transition
systems as follows.

- DEFINITION 1.2

A distributed transition system (DTS) is a triple DTS = (S, Z, —) where

(1) Sis a set of states;

(2) Z is a set of actions;

(3) = =8 x fg;,(Z) x S is the step transition relation satisfying for all s, §" in S:
(a) sdsiff s=5.
(b) for all ue s, (L), if s> then there exists a function f:4(u)—S such that
f@=s, f(uy=s" and for every v,, v,€4(U) with v, Sv,, it is the case that

f)25 1 (v,).

We often say that DTS =(S,Z, —) is a DTS over . For convenience, we write
s5¢ instead of s % . ‘

The new definition of — is a bit involved because we have to ensure that any
nontrivial “substep” of a concurrent step is also performed as a concurrent step. The
function f in clause (3.b) is said to define a u-cube (from s to). The existence of the
u-cube guarantees that the mutual independence of the actions in u holds for all the
substeps as well. For example, figure 2 shows the cube generated by a concurrent
step consisting of three events. To avoid cluttering up the figure, “interior” arrows
such as f, —{f”—ll}-rj:,b and fb{'—"—f-}»ﬁ,,w have not been drawn.

Figure 3 is an example of a distributed transition system modelling the allocation
of a shared resource to different processes within a system. In the example, we have
3 processes P,, P, and P, functioning in an operating environment that supports
multiprocessing. The resource — say, for example, blocks of memory — is available in
“units”. There are totally 5 units available. The 3 processes require 2, 3 and 5 units,
respectively, of the resource at a time. In this DTS, £ = {a,,4a,,a4,7,,7;,73}, Where a;
denotes that process P; has been allocated the entire amount of the resource that it
needs and r; denotes that P; has released the resource it has been allocated. The states

Models and logics for true concurrency - 135

{a,b,c}

: Figure 2. A “cube” generated by a
concurrent step.

of the DTS are ordered pairs consisting of the number of unallocated units of the
resource available in the system along with the set of processes currently in possession
of their required quota of the shared resource.

Thus, at the state (5,(), no processes are active and all 5 units of the resource are
available. At this state, the system can either allocate units of the resource to one of
the three processes, or perform a concurrent step allocating resources to both P; and
P,. Notice that the transition from (3, {P,}) to (2, {P,}) can either be performed as
a concurrent step {a,,r,} or by interleaving the two actions. In one interleaving,
however, (5,0) is reached as an intermediate state, at which point the resource can
be allocated to P, instead of P,. Thus, in this case, the effect of the interleavings is
not quite the same as that of the concurrent step.

In general, it is important to note that clause (3.b) in definition 1.2 is merely an
implication, The existence of a function from 4(u) into S which fulfills the stated

(3,{P1})

ay T2
ry as

(o)) =t (0) fonr)|[tanrs} @)

ra aj
a 1

{ay, 05}
{Tl, 1"2}

Figure 3. A distributed transition system.

136 ‘ Kamal Lodaya et al

requirements does not guarantee the existence of a concurrent step. This is in line with
our philosophy that concurrency should be clearly differentiated from interleaving.
As we have seen above, interleavings may permit unintended deviations from the
behaviour expected of a concurrent step. In fact, it is possible to have a concurrent
step as well as an interleaving of the step performed at a state but leading to two
different states.

Finally, we introduce the important notion of reachability in a transition system.
Given TS =(S, %, —) we define 2(s,), the reachability set of so€S, as the least subset
of S containing s, satisfying:

If seR(s,), acX and s>, then '€ Z(so)-

Thus, %(s,) is the set of states reachable from s, in a finite number of steps using —.

2.2 Elementary net systems

In a distributed transition system, concurrency is explicitly introduced into a transition
system by permitting transitions between states via finite sets of actions called
concurrent steps. In effect, the notion of a state is left unchanged and the transition
relation is enriched to model concurrency.

An alternative way of introducing concurrency into a transition system is to
“distribute” the states of the system. The states of a DTS correspond to the global
states of the concurrent system being modelled by the DTS. Rather than regard these
global states as indivisible entities, we can break them up into atomic components
which can be regarded as the local states of the different processes within the system.
The global states of the system can then be characterized in terms of the local states.

By distributing the states of the model in this manner, we can clearly distinguish
concurrency from choice without having to define a transition relation involving sets
of actions as in a DTS. Instead, the transition relation is designed to capture the fact
that the change of state accompanying each event occurrence in the system is
“localized” to those processes that actually participate in the event. As a result, when
an event occurs, only specific local components of the global state are affected, leaving
the rest of the components untouched. Thus, two events that are enabled at a global
state of the system can occur concurrently if the local states that they affect are
disjoint. On the other hand, if the local states affected by the two events overlap, they
cannot both occur in the same computation at that state and so a choice must be
made between them.

Net theory deals with models of concurrent systems based on this approach. Here

we describe elementary net systems, which are a basic model in this theory. We begin
with the definition of a net.

DEFINITION 2.1

A net is a triple N = (B, E, F) where B and E are disjoint sets and F < (B x E)U(E x B)
satisfies: »

- YxeBUE:3yeBUE:(x,y)eF or (y,x)eF.

The elements or B are called conditions and are used to denote atomic local states,
The elements of E are called events and are used to represent atomic actions. The

Models and logics for true concurrency 137

flow relation F models a fixed neighbourhood relation between the conditions and
events of a system. This flow relation determines the way in which the atomic actions
affect the atomic local states. The restriction on F in the definition of a net ensures
that there are no isolated conditions or events.

We can now define an elementary net system as follows.

DEFINITION 2.2

An elementary net system is a quadruple 4" = (B, E, F,c;,) where

(1) N, =(B,E,F) is a net called the underlying net of A4".
(2) ¢;, = B is the initial case.

[

Figure 4 is an example of an elementary net system. We have used the conventional
graphical notation for nets — conditions are represented by circles, events by boxes
and the flow relation by directed arcs. The “marked” conditions denote the initial
case Cj,. ‘

For e in E the conditions “pointing into” e via F are called the pre-conditions of
e and are denoted by “e. Similarly, the conditions “pointing away” from e via F are
called the post-conditions of e and are denoted by e’. More formally we have

‘¢4 (b|(b, e)eF),
e {b|(e,b)eF}.

A state of a net system, called a case, consists of a set of conditions ¢ = B. The
conditions in ¢ are said to hold when the system is at the case c. Thus, c;, is the set
of conditions that hold when the system starts up.

The system moves from one case to another through the occurrence of events from
E. An event can occur at a case iff all its pre-conditions hold and none of its
post-conditions do at the case. When an event occurs all its pre-conditions cease to
hold and all its post-conditions begin to hold.

In graphical terms, an event e can occur at a case c iff all the conditions pointing
into e are “marked” at ¢ and none of the conditions pointing away from e are. For

e . s .
i .‘ Figure 4. An elementary net system.

138 Kamal Lodaya et al

example, in figure 4, the event e, can occur at the initial case c;, = {b, b,}. When e,
occurs, we “unmark” all the pre-conditions of e, and “mark” all its post-conditions,
leaving the other conditions in, ¢;, untouched. Thus, after the occurrence of e, the
system is at the case {b,,b3}.

We can formalise this by defining —y < 4(B) x E x 4(B), the elementary transition
relation generated by the net N = (B, E, F) as follows.

ay={rex)|x—x'="e, x'—x=¢}

Using this transition relation, we can associate a transition system with an elementary
net system as follows.

DEFINITION 2.3

Let A/ =(B,E,F,c;) be a net system.

(1) C,., the state space of A, is the least subset of #(B) cbntaining ¢;, such that if
ceC, and (c,e,c)e—» N, then c'eC ,

) TS, =(C,,E,— ,)is the transition system associated with A", where — ,, is =,
restricted to C - x E x-C ..

For the net system shown in figure 4, {{b;,b,}, {b1,bs}s {b2, b3}, {b3,by}} is its state
space.

Let A" =(B,E,F,c,) be a net system with ceC, and ecE. Then e is said to be
enabled at ¢ — denoted c[e) — iff there exists ¢'eC, such that ¢5c’, where as usual
¢5>¢’ abbreviates (c,e,c')e—

As we had mentioned at the beginning of this section, we can clearly separate
concurrency from choice once we have distributed the global states of a transition
system into local components.

Let /" =(B,E,F,c,) be a net system and e, ¢'cE. We say that e and ¢’ can occur
concurrently at a case ¢~ denoted c[{e,e'}> —iff c[e) and c[¢’) and (‘euve)n
(¢'ue”)=0. Thus, e and ¢ can occur concurrently at a case if they can occur
individually and their “neighbourhoods” are disjoint.

Similarly we can define the notion of conflict. Let 4" be a net system as above
with e, ¢’eE. e and ¢ are said to be in conflict at a case c iff c[e) and c[¢’) but not
c[{e,€'}). Thus, if e and ¢’ are in conflict at ¢, it means that they are both individually
enabled at ¢, but they cannot occur together at ¢. For the computation to proceed,
the conflict must be resolved by making a (nondeterministic) choice between the two
events,

The definition of — ,.is designed to ensure that the notlon of change of state in
an elementary net system is fairly restricted.

First, notice that an event must cause the same change in the system state whenever
it occurs; its pre-conditions cease to hold and its post-conditions begin to hold. Thus,
if ¢; >¢, and ¢35c, are both possible in a net system, then it must be the case that
¢i—Cy=c3—cy=ceand ¢c;—¢c; =¢c,—c3=e .

Further, to determine whether an event e is enabled at a case c, it is sufficient to
look at the conditions contained in ‘e and e’. eis enabled at ciff ‘e c cand e’n¢ =0 —no
“side-conditions” are involved in the enabling of an event.

Finally, it turns out that the transition system TS ,. associated with a net system
A" is deterministic; that is, ¢3¢’ and c¢5c¢” implies that ¢’ =¢”. To connect up

Models and logics for true concurrency

139

b

<o
[X

o
[]

(2.
(YA

4
el

O O—0—

r—-——»bé@‘ a@ @bé«—w
‘l/ \11
0t O O
el ¢! [Ji__]cf E‘]eg

O
l
L]
|

' Figure 5. Mutual exclusion.

with other approaches to the theory of distributed systems, nondeterminism can be
introduced into TS, by labelling the events in E. We shall come back to this point
later in this section.

Let us consider an example of modelling a distributed system using an unlabelled
elementary net system. Consider the problem of sharing resources in a distributed
system. Suppose that there are two processes P, and P, in the system which require
access to a common resource r. Suppose that r can be used by only one process at
a time — r could, for instance, be a printer. Then, when one of the processes is granted
access to r, the other process should be prevented from accessing r till the first process
releases it. This will ensure that at any state during a computation of the system, at
most one process can actually be using that resource.

Figure 5 models a solution to this problem of mutual exclusion. In this net system
the process P,, i = 1,2, is represented by the conditions {bh, b}, b, b5} and the events
{eb,¢i,eb, ey}, Each process is modelled as a simple loop consisting of four
events — getting access to r (ep), utilizing r (¢}), releasing r (¢5) and performing some
internal computations not involving r (e}). At the initial case, both processes are
waiting for access to r. The additional condition a functions as an arbitrator which
enforces mutual exclusion of access to r. For example, suppose that ej occurs initially,
giving P, access to r. Since a ceases to hold e} is no longer enabled. Thus, P; can
gain access to r only after P, releases r by the occurrence of e3. It is easy to check
that b! and b? can never hold together in this net system. On the other hand, the
conditions b and b can hold at the same case — that is, the events e} and €3 which
do not involve the use of r can occur concurrently in this system.

Finally, we show that we can describe the behaviour of elementary net systems
in terms of distributed transition systems. Consider an elementary net system
A =(B, E, F,c;,). The transition system TS ;- contains information about the causality

140 Kamal Lodaya et al

and conflict present in 4. To describe the concurrency present in .4, it is sufficient
to augment TS, with additional transitions labelied by concurrent steps, as follows.
We first extend the notion of a pair of events being concurrently enabled at a case
to a set of events. Let u={e,e,,...,¢,} be a finite subset of E. We say that y is
concurrently enabled at a case ceC , —denoted c[u) —iff c[e;) for each ¢;eu and,
further, c[{e,,e,} > for every pair of distinct events e,,e,eu.
We can then define the step transition relation = ,. as follows,

=, .={uc)cceCy cluyandc—c'="u,c —c=u}.

Here ‘u and 4" denote the unions of the pre-conditions and post-conditions of the

events contained in u. Note that — . is “included” in =, in the sense that il

(c,e,c)e— , then (c,{e},¢)e=,. We can then immediately establish the following.
PROPOSITION 24.
DTS ,=(C,, E, =) is a distributed transition system over E.

It is easy to verify that the concurrency and choice present in A" is precisely captured
by the DTS (DTS ;).

However, notice that this DTS is deterministic, for the same reason that the transition
system TS - is. As we had mentioned earlier, we can introduce nondeterminism by
labelling the events.

DEFINITION 2.5.

A X-labelled elementary net system is a pair Ay = (A", ¢), where & = (B, E, F,c,,) is
an elementary net system, called the underlying net system of A;. X is a set of labels
and ¢: E— X is the labelling function.

The notions we have developed for net systems can be transported to labelled net
" systems in the obvious way. To represent the behaviour of a labelled net system A"y
as 4 DTS, we can define DTS, to be the DTS over X obtained by using the labelling
function ¢ to rename the actionsin DTS > the DTS over E generated by the underlying
net system A

However, in general we need to place a restriction on the labelling function in
order to get a neat translation from labelled net systems to distributed transition
systems. In a DTS, we have restricted concurrent steps to be sets of actions. On the
other hand, a labelled pet system 4"y may generate a concurrent step in DTS ,. where
two distinct events in the step have the same label. To avoid dealing with multisets
in concurrent steps that arise in this fashion, we require that events which can occur
concurrently in the underlying net system 4" have distinct labels.

Let A"y =(B,E, F,c;,, ¢) be a Z-labelled net system. The labelling function ¢ is said
to be co-injective if it satisfies the following condition.

Ve,,e,eE:(IceC ,:c[{e;,e,}) implies d(e,) # @ (e,).
PROPOSITION 2.6.

Let &g = (N, (,b) be a Z-labelled elementary net system, where /" = (B, E, F,c,,), such

that ¢ is co-injective. Then DTS , =(C,,X,=,.) is a DTS over X, where

=>_/Vz = {(C, d)(U), cl) I(C, u, C’)E =>.A"}

;
i
|
i

Models and logics for true concurrency 141
2.3 Event structures

To reason about the behaviour of a distributed transition system or an elementary
net system, we have to examine all the computations of the underlying “machines”
defined by the model. For this, it is convenient to work with an abstract representation
of the entire behaviour of the system. This behavioural description should include
information about all the computations of the system, explicitly identifying the causal
dependencies and concurrency present within each computation. In addition, it should
also have a way of describing the branching points in the system behaviour.

Before discussing behavioural representations of concurrent systems, let us first go
back to sequential transition systems. A computation of a sequential transition system
TS =(S, X, -) starting at some state s,€S is an alternating sequence of actions and
states which obeys the transition relation —. We shall restrict our attention to the
maximal computations of the system — those that cannot be extended by performing
any more actions. Thus, a maximal computation is a finite sequence just in case a
state is reached at the end of the sequence from which no transition is possible;
otherwise, it is an infinite sequence. '

A natural way to group together the sequences which correspond to computations
of TS =(S,X, —) starting from s, is in the form of a tree. The nodes of the tree are
labelled by states from S and the edges are labelled by actions from X. The root node
is labelled by the initial state s,. Each maximal path in the tree now corresponds to
a computation of the system, The branching points in the tree are the states where
the system makes choices between different possible actions.

In the case of models exhibiting concurrency, the situation is more complicated.
A computation of such a system is a partially ordered set of actions, not a simple
sequence, so we need a more sophisticated method of collecting all the computations
together in a single structure. An elegant way of achieving this is to use event structures.
Event structures are behavioural models of distributed systems in which causality,
concurrency and choice (conflict) are represented explicitly.

Prime event structures, introduced in Nielsen et al (1980), are the simplest type of
event structures. They have a rich theory and are closely related to both net systems
and domains. Since we deal only with prime event structures in this paper, henceforth
we shall simply call them event structures.

DEFINITION 3.1

An event structure is a triple ES = (E, <,#) where

(1) E is a set of event occurrences.

(2) < S E x E is a partial order called the causality relation.

(3) #< E x E is an irreflexive and symmetric conflict relation.

(4) # is inherited via < in the sense that e, #e, <e; implies that e, #e, for every
e,,e,,€; in E.

An element of E represents the occurrence of an event within a specific context. Thus,
if the same event can occur in different contexts, “copies” of it will be present in the
event structure. This is why we have called the elements of E event occurrences rather
than events. :

If e, <e,, then e, is causally dependent on e;. Thus, in any computation of the
system, e, can occur only if e, has already occurred As usual we let > stand for <~

142 Kamal Lodaya et al

The # relation identifies pairs of events which are inconsistent with each other and
hence cannot both occur during the same computation. The last clause of
definition 3.1 ensures that if e, #e, then events that are causally dependent on e, are
in conflict with events that are causally dependent on e, —in other words, the
inconsistency of e, and e, is inherited by events that follow these two events.

Two events that are neither causally related nor in conflict with each other can
both occur within a computation with no order over their occurrence. We can thus

define the concurrency relation co in an event structure ES = (E, <,#) in terms of <
and # as follows.”

cOEEXxE—(<UzU#).

Notice that co, like #, is irreflexive and symmetric. Clearly, every pair of distinct events
in an event structure belongs to exactly one of the four relations { <, >,#, co}.

It is useful to define one more auxiliary relation. Let ES = (E, <,#) be an event
structure and e,e'€E. Then

def
e#, e = effe’ and Ve,,e';eE:[e; <e and ¢, < ¢ and
e #ey implies e,=eand ¢, =¢e].

#, identifies the minimal elements (under <) of the # relation and is hence called the
rmmmal conflict relation. #, identifies the actual branching points in the behaviour
where choices are made betwecn conflicting events. This “basic” conflict then
propagates to causally related events and “generates” other conflicts.

Figure 6 is an example of an event structure. The squiggly lines represent the #,
relation. The causality relation is shown in the form of the associated Hasse diagram.
The # relation is then uniquely determined by the last part of definition 3.1. In this
event structure, e, #eq because e; #,e, < ¢¢. It is also easy to see that egcoe,.

The states of an event structure are called configurations. A configuration identifies
a set of events that have occurred “so far”. An event can occur only if all the events
in its past have occurred. Two events that are in conflict can never both occur in the

same stretch of behaviour. Before formalizing these notions it will be convenient to
adopt the following notion.

€o O | 0O €10

4 Y

€7 D'\NVVW\,D €g

N

O ez

Figure 6. An event structure.

S

By T

i

Models and logics for true concurrency 143
Let ES =(E, <,#) be an event structure and X < E. Then | X ={¢'|JeeX ¢’ <e}.
For the singleton {e}, we shall write |e instead of | {e}.

DEFINITION 3.2

Let ES = (E, <,#) be an event structure and ¢ < E. Then ¢ is a configuration iff

(1) ¢=lc, (left-closed)
@) exc)n#=0. (conflict-free)

For the event structure shown in figure 6, {e,,es,e¢} is a configuration. {e,,es,e;0}
is not a configuration because it is not left-closed and {e,, e;, eg } is not a configuration
because it is not conflict-free.

We are particularly interested in a restricted subset of configurations called local
configurations. The notion of a local configuration is based on a simple but crucial
observation which lies at the heart of the theory of event structures (Nielsen et al 1980).

PROPOSITION 3.3.

Let ES =(E, <,#) be an event structure and ecE. Then |e is a configuration.

We now define LCys = {|e|ecE} to be the set of local configurations of the event
structure ES = (E, <,#). _

We do so because a (general) configuration ¢ = E can be viewed as a global state
of the system. Part of a global configuration may change independent of each other,
due to the spatial separation and the partial autonomy of the inidividual agents in

~ the system being modelled by the event structure. A finite giobal configuration c is

completely characterized by specifying the maximal events (with respect to <) which
belong to c. Each local configuration |e corresponding to a maximal event e€c can
be regarded as a local state which contributes to the global state at c.

When we reason about the behaviour of an event structure, we would like to make
assertions about properties that are satisfied by the global configurations — that is,
properties that hold at the global states of the system. However, a global state can
be completely described in terms of all the local states that are part of that global state.
Thus, we shall restrict ourselves to specifying properties at the local configurations.
Using combinations of these assertions, we can describe global configurations of the
event structure. Further, the assertions that we can make about a global configuration
are tied down to the assertions that we can make about the local configurations that
constitute the global configuration. This will become clearer in the second part of
the paper where we discuss how to specify properties of distributed systems.

As we had mentioned at the beginning of this section, an event structure is a single
entity which describes all the computations of a distributed system. Thus, we need a
means of “extracting” individual computations from an event structure. Since a
configuration represents a set of events that have happened so far, in general, an
arbitrary configuration represents a partial computation of the system. If we consider
configurations which are maximal (with respect to inclusion) we obtain the maximal
computations of the event structure. We call these the runs of the event structure. It
is easy to verify the following characterization of runs. Let r < E. Then r is a run iff

VeeE: eer iff Ve'eE: e#fe’ implies €' ¢r.

Next, let us look at some useful restrictions on event structures. We begin with the

144 Kamal Lodaya et al

auxiliary relation #,. In general, there may be events in # whose inconsistency cannot
be traced back to a pair of events in #, — a typical example consists of two infinite
descending chains of events in # with each other. We would like to rule out such
structures, since they model behaviours which are intuitively infeasible. We can
therefore restrict our attention to well branching event structures.

DEFINITION 3.4

Let ES =(E, <,#) be an event structure. ES is well-branching iff
Ve,e'cE:efte implies Je,,¢';eE:e; <e and ¢} <e¢ and e, #,¢e].

Well-branching is a fairly weak restriction. A stronger and more useful restriction is
that of finitariness. An event structure ES = (E, <,#) is said to be finitary in case |e
is a finite set for every ecE. Finitariness captures the important fact that in any
realizable system, an event can be causally dependent on only a finite set of events,
An event with an infinite past can never actually occur.

There is a systematic way of describing the behaviour of elementary net systems
using finitary event structures. To do this, we require labelled event structures. A
labelled event structure is a pair ESy=(ES, ¢) where ES=(E, <.,#) 1s an event
structure and ¢: E —ZX is a labelling function.

Constructing a labelled finitary event structure describing the behaviour of a net
system involves an intermediate stage where the net system is “unfolded” to generate
an acyclic structure. The details are a bit involved and can be found in Nielsen et al
(1980) and Thiagarajan (1990). We shall merely present an example.

Consider the elementary net system in figure 5 modelling mutual exclusion. The
labelled event structure in figure 7 describes the behaviour of this system. In this case,
the event occurrences in the event structure are labelled by the events of the net system.

‘Given a finitary event structure ES, we can construct a DTS DTSy which exhibits
the same behaviour as ES. Let €42 denote the set of finite configurations of the

2 2 '
et| —|et - el - el ~led| —|et] -
e er| -

Figure 7. A labelled event structure.

T

Models and logics for true concurrency 145

finitary event structure ES =(E, <,#). We can define the step transition relation
— s S CLE X fogin(E) x GL as follows:

—ps={(c,u,c)[cnu=0 and cou=¢" and
Ve,,e,euze; # e, implies e; co e, }.

PROPOSITION 3.5.
DTSgs= (LY E, —gs) is a DTS over E.

As in the case of elementary net systems, it turns out that DTSgg is always
deterministic. Once again, we can use labelled event structures to permit non-
determinism in this DTS. As before, we have to restrict the labelling to be co-injective
to rule out multisets in concurrent steps. In other words, given ES; = (E, <,#, ¢), we
require that for every e,,e,eE: e ,coe, implies ¢(e,)# P(e,). We then have the
following result.

PROPOSITION 3.6.

Let ESy = (ES,¢) be a I-labelled event structure where ¢ is a conjective labelling
function. Then DTSy = (648, T, =4) is a DTS over T where

=55, = {(C: 9 (),)(c, u,¢") e~ s}

2.4 Communicating sequential agents

In an event structure, the entire behaviour of a distributed system is specified as a
single entity. Individual computations of the system can be identified using the notion
of arun. However, no further information is provided about the structure of the system.

Consider a distributed system consisting of a finite set of sequential agents
performing a joint task, using communication to coordinate their activities. When
reasoning about the behaviour of such a system, it is convenient to associate the
events occurring in the system with the agents involved in the events. This can be
captured by restricting event structures to a model called communicating sequential
agents (CSA). :

Let N denote the set of natural numbers {1,2,3...}. We shall use elements of N
as names for the agents in our system.

DEFINITION 4.1

A system of communicating sequential agents (CSA) is a triple CSA = (E, <, 1), where

(1) E is a non-empty set of event occurrences;
(2) < is a partial order on E called the causality relation;
() n:E— f/s(N) is a naming function assigning to each e in E a non-empty finite
subset of N;
(4) Let E; = {e|eeE and jen(e)}. Then, for every e in E:
' VjeN:]lenE; is totally ordered by <.

We interpret jen(e) as the agent j participating in the event e. Thus #(e) = {1,2} can
stand for a synchronization “handshake” between agents 1 and 2.

146 Kamal Lodaya et al

The poset (E;, <), where <; is < restricted to E; x E;, represents the local
behaviour of agent j in CSA. Usually, we say “agent j” to denote this poset.

As in an event structure, if e, <e, then e, causally depends on e;; in no run of
CSA can e, occur without e, having occurred earlier.

To separate concurrency from conflict, both the causality relation < and the naming
function # are used. In a CSA, each agent is defined to be sequential. Thus, given any
two events e and ¢’ which both involve the same agent — that is n(e) and n(e’) are not
disjoint — ¢ and ¢’ must either be causally related or in conflict. So if e and €' are
incomparable with respect to < and #(e)nn(e) # 0, then e and ¢’ are in conflict.

The motivation for the last condition in definition 4.1 should now be clear: we do
not wish an event occurrence to causally depend upon conflicting event occurrences.
This condition also implicitly ensures that the basic conflict in the system is generated
within agents —in effect, choices are made locally by individual agents and then
propagated across agents via <. '

On the other hand, if two events e and ¢’ are unordered and their combined past
does not contain any conflicting events they must be concurrent. Since choices are
assumed to be made locally, it is sufficient to check that for each agent j, the combined
past of e and ¢ does not have incomparable events involving j. In other words, if
(leu le)NE; is totally ordered by < for every j, then the two events e and e’ are
concurrent.

If ecE;, the local state |e includes the local history of agent j as well as the “latest”
local histories of all other agents with which j has communicated upto this state. Let
LCcs,={le|ecE} be the set of local states of CSA.

By suitably restricting the naming function 5, we can capture interesting subclasses
of communicating sequential agents.

The first restriction is on the number of agents. In a general CSA, we may have an
unbounded number of agents in the system. By restricting the range of 7 to a finite
subset {1,2,...,n} of N, we obtain CSA which may have upto n agents, which we call
n-CSA.

As we had mentioned earlier, if #(e) is not a singleton, the interpretation is that
the event e is performed jointly by the agents mentioned by #/(e). This intuitively
corresponds to “handshaking” or synchronous communication between agents. By
restricting # so that |n(e)] =1 for every e in E, we effectively rule out this type of
synchronous communication. Instead, in' such an asynchronous CSA, the agents
communicate by sending messages to each other. The sending and receiving of a
message are regarded as two distinct actions, each involving only one agent at a time.

a6 § G

=
s
——
PP
—-—
O | ——

¢ > C - C >

Figure 8. An asynchronous CSA.

e

RSN

W g e o e =

Models and logics for true concurrency 147

Finally, we say that a CSA is finitary is case |e is a finite set for every e in E. The
motivation for defining finitary CSA is the same as the motivation for defining finitary
event structures —any computation of a real system can be traced back to some
starting point, so the past of any event occurring during the computation must be finite.

Figure 8 is an example of an asynchronous CSA consisting of two agents, a producer
and a consumer, communicating via an unbounded buffer. The producer can produce
zero or more items and then quit. The consumer can consume items produced by
the producer as long as the items are available in the buffer. The events in the CSA
are labelled p, g and ¢ to denote these three types of actions.

3. Logics for concurrency

We now turn our attention to the problem of reasoning about the behaviour of
distributed systems.

A specification language is simply a formalism in which one specifies behaviours
of systems under study. Thus, a specification language for distributed systems is one
in which we can describe behavioural properties of distributed systems.

The specification language should permit us to combine simple specifications
together to construct more complex specifications, reflecting the intuition that large
systems can be broken down into more manageable subsystems This calls for
disjunctive and conjunctive abilities in the language.

In addition, since we are dealing with distributed systems we expect to describe
properties like causality, choice and concurrency. For this, we will need to be able
to specify the relationships that hold between system states as the computation
proceeds. \

Our requirements suggest the use of a formal logic with boolean connectives and
temporal modalities as our specification language. Temporal logic is a branch of
modal logic which is used to study structures of states varying with time. We will
design a variety of modal logics which are extensions of temporal logic to deal with
the models of distributed systems developed in § 2.

We begin with a quick sketch of classical propositional modal logic. We assume
the existence of 2, a countable set of atomic propositions {pg, p1,. - }. The well-formed
formulas of our logic £, are defined inductively:

e every pe is a formula of %,;
o if « and g are formulas of ¥, then so are o, V f and Ca.

(ko is to be read as “not a”, & V B is to be read as “a or §”, and Ca is to be read
as “diamond «”). The intended meaning of ¢« is “a becomes true eventually”.

Formulas are to be interpreted over frames. In our set-up, a frame is a transition
system TS = (S, X, =). A model M is a frame with a valuation function;ie. M = (TS, V),
where TS=(S,%,—>) is a transition system and V:S— 4(#). For example, if
V(s)= {ps,ps}, we interpret this to mean that propositions p, and p; are true at state
s and, further, that no other proposition is true at s.

The notion of a formula « being true at a state s in a model M =(TS, V) where
TS =(S, X, —), denoted as M, sk, is defined inductively as follows:

(i) M, skpiff pe V(s), for pe?
(ii) M sk—oiff M, sfo;
(the notation M, sfa stands for “it is not the case that M, sl=ot”)

148 Kamal Lodaya et al

(iii) M, skaV Biff M, sk or M, skB.
(iv) M, sk Caiff Is'eR(s): M, s'Fo;
(recall that 2(s) is the set of states reachable from s via -).

M,sko can be interpreted as the assertion that the model M at state s is an
implementation of the specification «. We say o is satisfiable if there exists a model
M = (TS, V), where TS = (S,Z, —), and there exists a state seS such that M,skoa. We
say that « is M-valid if M,sko for every seS. We say that « is valid — and denote
this by Fo —if a is M-valid for every model M. It is easy to see that « is valid iff —«
is not satisfiable. \ (

The following derived formulas are useful.

aABE— (faV—p), the conjunction of o and B,
oc::ﬁ?éf—mVﬂ, o implies §,

a=f< (@5 A(B>a), logical equivalence of « and B,
Do < — (C1a), “Henceforth” a,

True & Po VY 1pg,

False & =1 True.
It can easily be verified that for any model M = (S, =), V) and seS,
M,skOa iff VS'eR(s): M, s'Fa.

A number of interesting properties of transition systems can be expressed using this
logic. Suppose that we are using transition systems to model a distributed system
consisting of n processes which can compete for a shared resource r. Let the atomic
proposition ¢; stand for “ Process i has access to the resource r”. Then, \

o A (ci: /\-—1(:]-),

ie{L,2,...,n) ikj

expresses a so-called safety property. It says that at any system statc, at most one
process has control of the shared resource r. This will ensure, for instance, that in
case r is a shared piece of data then the sequence of values assumed by r during the
history of the system will be well-defined. Broadly speaking, safety properties assert
that “bad” situations never arise in the system. ‘

Similarly, if we let the proposition rq; stand for “Process i requires access to resource
r”, the formula,

O A (o0,

ie{1,2,...,n}

expresses a liveness property. It says that any request made by a process for the shared

resource is eventually granted by the system. In general, liveness properties specify
that something “good” occurs eventually. ’ '

This logical framework is very simple, but for that reason is also not as expressive
as we would wish. In particular, we would like to devise logics to reason about models
with true concurrency. In the rest of this section, we shall show how such logics can
be defined for the formal models presented in §2. ' -

W

Models and logics for true concurrency ‘ 149
3.1 Logic for distributed transition systems

Recall that in a DTS, a concurrent step consists of a transition labelled by a finite set
of actions. This leads us to augment the simple modal logic considered earlier with
one additional modality, (u), where u is a finite subset of I, the set of actions.

Let Z s be the language whose well-formed formulas are given by:

e every peZ is a formula of £ ;
e if & and f are formulas of #prg then so are "o, a0 V §, O o and {(u)a, where u is
a finite subset of X,

Thus, the logic £ is parametrized by Z. To emphasize this, we will write %5,.
instead of Zprs.

As one may expect, the frames for our logic are distributed transition systems over
Z. A model is a pair M =(DTS, V), where DTS = (S, X, —) is a DTS over X and
V:S— £(2) is the valuation function. Given seS, the notion M, ska is defined as
before for the atomic propositions and for the connectives — and V and the modality
<. For the new modality we define:

M, sk uyo iff I5'eS:5s 55" and M, 5'Fo.

Relative to the new notion of models, satisfiability and validity are defined as before.
We will write F5rso to denote that « is a valid formula in this logic. Let SA Thrs
denote the set of all satisfiable formulas from Firs. :

Before considering an example, we introduce some notational conventions. The
derived modality [u] is defined as:

[ula¥ = wy—a

where u is a singleton {a}, we will write {a)« instead of {{a}>«. For the empty step,
we write (@) a. :

Now that the modalities are indexed by steps, we can clearly identify the branching
points in a transition system. For example, consider the transition systems shown in
figure 9. In the first system, starting at s, we can perform a and then choose between
b and ¢ whereas in the second system, at s, we have to decide right away whether
we are going to execute a followed by b or a followed by c. The first situation is

captured by the formula {a)(<{b) True A {c) True) while the second can be expressed -

as <ay(<b) True A [c]False) A {a)({c) True A [b] False).

In this logic, we can distinguish between interleavings and true concurrency. For
instance, the formula {a)<{b) True A {b)<{a) True A [{a,b}]False is satisfiable. At
the state where this formula is true, both the interleavings ab and ba can occur, but

@ ® @® @

Figure 9. Varieties of branching in transition systems.

| |
|

?{

e

S

150 Kamal Lodaya et al

the corresponding concurrent step {a, b} is not enabled. On the other hand, it is easy
to see that the formula {{a, b} >a > {a) {b)a is a valid formula, because the definition
of a DTS guarantees the existence of a function f associated with each step, breaking
it up into substeps.

Returning briefly to the sytem of n processes considered earlier, assume that the
shared resource r represents a data item in a shared block of memory. Let ud, denote
the act of process i updating the value of r. Then, the specification

O A [{ud;,ud;}]False,
i#j
requires that the memory manager never permit two distinct processes to concurrently
update r.

Let us consider another example. The writing of a paper can be seen as a sequential
activity: work out what you want to say, write it out, get it typed. In the case of a
joint paper, the work may be divided up in terms of sections. One policy the authors
may follow is to work out all the sections before preparing a typescript, with meetings
for discussion and correction in between. That is, the authors satisfy

(WK (worked A {WR) (written A { TY »typed)),
where g
WK = {work out §1, work out §2, work out §3},

WR = {write §1, write §2, write §3},
TY = {type §1, type §2, type §3},

and worked, written and typed are atomic propositions indicating the end of the
working out, written and typing steps respectively. Here we have assumed that there

~ are three authors each of whom is responsible for one section.

The concurrent steps are necessary, since they express the fact that this is a joint
paper; if the interleaving of the actions required for the three sections were present,
we could'not rule out the possibility that the three authors were separately writing
three (single-section) papers.

The states we are using are global states. The person working out §2 may refer to
a lemma in §1; the person doing the word. processing for §1 may use the macros
defined in §3. :

It becomes necessary to use sequentializations when a complete record of the writing
of the paper is required. For example, a mistake pointed out by the referee in §2 may
be traced to the lemma in §1, which may be just a case of wrong typing thanks to a
misapplication of the macro from §3. ‘

This sort of mixture of independent actions and synchronization is well described
in a DTS framework. '

We now turn to the formal theory of the language Fhrs. Typical questions one
asks of such a logic include:

e Is the set of valid formulas axiomatizable?
e Is the satisfiability problem decidable?

The answers to these questions provide a good deal of insight into the strengths and

weaknesses of the logic and, most importantly, into the expressive power of the logic.
It turns out that both these questions have positive answers for Z%rs. Consider
the following logical system ND. ‘

]
;
i
i
i
}

i
b

Models and logics for true concurrency 151
The system ND

AXIOM SCHEMES

(A0) All the substitutional instances of the tautologies of Propositional Calculus.

(Al) (@) Ole=>p)>(0a>0p) (Deductive Closure)
(b) [ul(e = B) = ([ule > [u]p)
(A2) Ooaos[u]JaA DD« (Reachability)
(A3) a={D« (Empty Step)
(Ad,k) (for k=1) (Step Axiom)
<upa A A [v] V o= VA <vl>(v.,1 AN Ko, —vl>vuz)
vEu JeF(u,k) v, cu 1S, Su

where F(u, k) is the set of all functions {f|f: 4(u) > {1,2,‘..,k}} and

)= B ANa, fvo=u,
| BI™, if vcu.

INFERENCE RULES

-~

‘ oo f a
(MP 3 (TG) =
Axioms A0 to A2 and the rules MP and TG are standard. The characteristic axioms
of distributed transition systems are A3 and A4,k. A3 captures the fact that the empty
step.cannot change the state of the system. A4,k is actually an infinite set of axioms,
finitely presented. The complicated formulation of A4,k is necessary to describe the
fact that each concurrent step u in a DTS can be broken up into concurrent substeps
which are spemﬁed by the associated function f: 4(u)— S.
A formula o is called a thesis of the system ND — denoted Fypa —iff o can be
derived in a finite number of steps using the axioms and inference rules of ND.

Theorem 1.1. (1) ND is a sound and complete axiomatization of the valid formulas in
Lors. In other words, Fypa iff Fhpso for every ae Lprs.

(2) The satisfiability problem for this logic (i.e. the membership problem for SAT%)
is decidable in nondeterministic exponential time.

It turns out that combining concurrency, captured by the step notion, with
determinacy leads to a very expressive class of models. The frame TS = (S,X, —) is
said to be deterministic if for every seS and every ue 4 ;,(X) there exists at most one
s'e8 such that s-5’. A model is deterministic if its underlying frame is.

The formula o is said to be deterministically satisfiable if there exists a deterministic
mode] for «. Similarly, a is said to be deterministically valid if « is valid over the class
of deterministic models. Let F},a denote that « is deterministically valid and let
DSAT%,s denote the set of deterministically satisfiable formulas in #}5s.

It turns out that the deterministicaily valid formulas in #} s are axiomatizable.
Thanks to determinacy, one obtains a much simpler axiomatization than for the
general case. Let D denote the logical system obtained from ND by dropping the
infinitary set of axioms A4, k(k > 1) and adding two new axioms:

(A5) o> du—vda, (< u) ~ (Weak Step Axiom)
(A6) udoo [u]ea. _ (Determinacy)

Let -p,a denote that « is derivable in D.

152 Kamal Lodaya et al

Theorem 1.2. (1) D is a sound and complete axiomatization of the deterministically
valid formulas in L5rs. In other words, -po iff F50 for every ae %5 .
(2) The membership problem for DSA T%ys is undecidable.

The surprise here is that determinacy adds a sufficient amount of expressive power
to make the satisfiability problem undecidable. By combining concurrent steps in a
deterministic fashion, it turns out that we can encode the two-dimensional grid of
natural numbers N x N. We can then use this encoding to reduce some undecidable
tiling problems described by Wang (1961) and Harel (1985) to the problem of
deterministic satisfiability in our logic. This negative result was shown by Parikh
(1989, pp. 199-209).

A variety of positive and negative results can be obtained in this logical framework
by studying the effect of placing suitable restrictions on the DTS. For Instance, we
can restrict the set of actions X to be finite. Alternatively, we can demand that the
DTS as a whole be finite — that is, the set of states and the set of transitions both be
finite. We can also incorporate ideas from trace theory, arising out of the work of
Mazurkiewicz (1989, pp. 285-363), and define trace transition systems, which permit
both Jocal and global specifications of concurrency. Finally, we can also study a
smooth generalization of Propositional Dynamic Logic (Harel 1984, pp. 497-604)
obtained by extending the notion of a regular program to permit concurrent steps
as atomic actions. The details can be found in a forthcoming paper (Lodaya et al 1991).

The logical language ¥}, can also be interpreted over Z-labelled elementary net
systems and Z-labelled event structures, where the labelling function is co-injective.
The frames that we use are the corresponding DTS, as defined in § 2. Thus, a Z-labelled
elementary net system A'y= (4", $), where 4 = (B, E, F, Cin), glves rise to a model
(DTS, V), where V:C -~ 4(2). Similarly, a S-labelled event structure ESy = (ES, ¢),
where ES = (E, <,#), defines a model (DTS £s,» V) Where V€L — 4(2).

Let SAT?, and SA Ts denote the set of formulas from %% satisfiable in models

generated by XZ-labelled elementary net systems and X-labelled event structures -

respectively.

Theorem 1.3. SAT5;5=SAT: =S4 Tis. g
" In other words, this logic cannot discriminate between these classes of models.

3.2 Logic for event structures

We now turn from d..iributed transition systems to event. structures as frames for
our logic. In the logic for DTS, we used the global state approach to reasoning about
the behaviour of the system. In this approach, assertions are made by a “global”
observer of the system who can “see” the distributed system in its entirety in any
given state. This is appropriate for DTS since the states of a DTS do in fact correspond
to the global states of the system being modelled.

Alternatively, we can reason about the system from the point of view of the local
states of the system. Here, assertions are made by individual agents in the system
and hence the nature of the assertion is determined by the “visibility” of the system
state from that agent’s point of view. This approach is more suitable for reasoning
based on event structures, where we can use a local configuration le to represent the
local state of the system at the point where the event e has just occurred.

Another feature of the DTs logic is that concurrency is described by explicitly

“‘%ﬁ»fr :

Models and logics for true concurrency 153

specifying the actions which are to be performed concurrently and describing the effect
of such actions. This approach is natural for the DTS because the models themselves
are action-based. On the other hand, in an event structure it is more convenient to
specify concurrency in an abstract manner by simply asserting facts about concurrent
events without specifying which actions are to be performed concurrently.

The key notions in the theory of event structures are those of causality, conflict
and concurrency. This leads us to extend the language .#, by adding modalities to
capture these notions. It turns out to be fruitful to split up causality into two parts,
allowing us to specify both “past” and “future” behaviour.

The logic s is built up as follows: again fix 2 = {p,,p;,...}, 2 countable set of
atomic propositions. Then the well-formed formulas of %, are given by:

o cvery pe is a formula of Zpy;
o if & and f are formulas of %, then so are 1o, a V B, G o, ©a, A and V.

Here, the modalities ¢ and © denote the future and past respectively. A will
be used to describe concurrency and V will be used to capture conflict.

Frames for this logic are event structures, or rather the local configurations of event
structures. More precisely, a frame is a pair (ES, LCgg), where ES = (E, <,#) is an
event structure and LCpg is the set of local configurations of ES.

A model is a pair M = ((ES, LCys), V) where ES is a frame and V: LCrs— 4(P) is a
valuation function. If peV(|e) then this is taken to mean that p is true at the local
state |e in the model M.

The notion of a formula o being true at a local state e in the model M=
((ES, LCgs), V) is denoted as M, leFa and is defined inductively as follows.

(i) M, lekp,iff peV(le), for pe?.

(i) M, leE—a, iff M, |eFo.
(i) M, leFaV B,iff M, |ekFo or M, ek p.
(iv) M, leE<a, iff 3eie < e’ and M, |e'Fa.

(v) M, leF oo, iff J¢':¢' <e and M, |e'Fa.
(vi) M, leEVa, iff 3¢':e#fe’ and M, |e'Fo.
(vil) M, ek Aw, iff 3¢’:ecoe’ and M, |e'Fua.

Notice that we have defined the modalities & and © in an irreflexive manner.
This is necessary for the axiomatization which follows.

The notions of satisfiability and validity are defined as usual. F g « will denote that
o is a valid formula in #gg.

The derived connectives A, o, =, [J are defined as before. In addition, we set

He¥— o o, VoaX— v a0, Aa— A—a
We can also define a useful derived modality as follows:

LoV OaV ©aVVaV Aa

Sa is to be read as “Somewhere o”. Its dual £at— =10, read as “Everywhere o”,
expands as follows: *

£ ¥u A Oa A BaA VoA Ao,

Thus & describes a property invariant over the entire model.

154 Kamal Lodaya et al

Many interesting features of event structures can be expressed in this logic. Recall
that the maximal computations of event structures are termed runs. We can use an
atomic proposition p to mark out a run with the formula p= V—1p. For any
modal M =((ES,LCgg), V) if the formula p= V—p is M-valid, then {e|M, |eFp)}
constitutes a run of ES. Using this method of marking out runs, we can express
liveness and safety properties in event structures. Let « represent a liveness property.
Then #(p A o) is M-valid for a model M just in case every computation of the
underlying event structure contains a local state where o is true. Similarly, if g
represents an undesirable situation, the formula &(p > f) expresses the safety
property that f does occur at any state of the run marked by p.

In a similar spirit the formula y ==y A By can be used to capture the
notion of a cut—a maximal set of pair-wise incomparable events. Within a
computation, a cut corresponds to a global state. Thus we can use the notion of a
cut in conjunction with that of a run to look “sideways” from a local state and make
assertions about the current global state.

The formula Vo> [0 Va describes the fact that conflict is inherited in a prime
event structure. The formula Aa>E(AaV Oa) expresses the fact that the
configurations of an event structure are “consistent” by asserting that the unified past
of any pair of events in co is conflict-free.

Due to lack of space, we will not provide a separate detailed example for this logic.
The logic presented in the next section, called #s,, is also based on event structures.
We shall provide a detailed example for that logic. It will not be difficult to see how
that example can be translated into the present framework.

Consider the logical system E.

The system E

AXIOM SCHEMES

(AO) All the substitutional instances of the tautologies of Propositional Calculus.
(A1) () O@>p)>(Cae>Op) ' (Deductive closure)
(i) E@=p)>(Ha> Ep)
(i) V@@>p) > (Vas Vp)
(i) A@>p)>(Aas Ap)

(A2) (i) Da> O0a (Transitivity of <)
(i) B> B G«

(A3) () >V Va (Symmetry of # and co)
(i) > AAa

(A4) () an>Oex (Relating past and future)
(i) a> @ |

(A5) Ve OVa (Conflict inheritance)

(A6) AasE(OaV Aa) ~ (Contflict-free past)

(A7) () CaO@V CaVeaV VaV Aa) (Relating <, # and co)

(i) Vaos V{V OaV ©aV VaV Ag)
(i) Aas AV CaV ©aV VaV Ag)
(iv) @a> @V CaV ©aV Aa)

(v) Vao A(CaV VaVAg

(vi) Aa>O(€aV VaV Adg)

%ﬁ_ s ? -

Models and logics for true concurrency 155

INFERENCE RULES

(MP) o :a B
(o)) = (i) =- (i) - i) =

. Poa . : . o
(UNIQ) — where p is an atomic proposition not appearing in o and
PEPAO~PAE ~pAA~PAY ~p.

Axioms AO to A4 and inference rules MP and TG are standard. A5 expresses the
fact that conflict is inherited via <. A6 ensures that any two events related by co
have consistent (i.e. conflict-free) pasts. The remaining axioms are necessary to capture
the fact that the relations <, >, # and co “cover” the event structure — i.c. any two
distinct events are related by one of these relations.

The rule UNIQ is adapted from Burgess (1980). Given a proposition p, the definition
of p ensures that it can be true in at most one local configuration. Hence, we can
label each local configuration Je by a distinct formula p,. The rule UNIQ allows us
to construct this labelling, which is crucial in demonstrating the completeness of the
axiomatization.

Let - « denote that o is a thesis of the system E.

Theorem 2.1. E is a sound and complete axiomatization of the valid formulas in Prs-
In other words, Fga iff Fgs a.

Recall that we had defined an auxiliary relation #, in an event structure, called the
minimal conflict relation. We can define a modality V, to capture the relation #,.

It is possible to strengthen %y by replacing the modality V by the modality V u
Let us call this new language #*5;. To obtain a useful comparison with %, and also
to obtain an axiomatization, we must change the notion of a frame. For this language,
we define a frame to be a pair (ES, LCyg) where ES is a well-branching event structure.
Recall that a well-branching event structure is one in which the # relation can be
completely specified using the relations #, and <. As usual, a model is a frame
together with a valuation function. Models based on well branching frames are called
well branching models. '

The semantics of #%g is the same as that of %, except that the clause for V is
replaced by:

M,leFV o iff de':eff, e’ and M, |e'Fa.
In #%s, we can obtain V as a derived modality:
Ve V,aV V,0aVeV,aVeV,0n

As before, Va denotes thé formula 1 V—a. It is easy to verify that Vo can
be expressed as follows:

VoV, aAV,00ABV,0A DY,

156 Kamal Lodaya et al

In a well-branching model, the derived modalities V and V have precisely the
same interpretation as the corresponding modalities of # . On the other hand, there
is no obvious way to characterize the minimal conflict relation #, using the modality
V. In this connection, we can establish the following resullt.

Theorem 2.2. For well-branching models, the language %y is strictly more expressive
than L.

Informally, this result says that we can use formulas from #%s to differentiate
models which are indistinguishable using the language #p;.

An example of the use of V, is in systems where agents have names, like
communicating sequential agents. For each event e that process i participates in, we
can assign an atomic proposition 7; to the local configuration |e. Suppose that there
are n agents in the system, with “names” 1,7,,...,7,. Then the formula A,_,,
(:> V,7;) expresses the fact that all choices in behaviour are made locally by
individual agents.

The axiom system E, is obtained by adding the following axiom schemes to the
system E.

(Al) (v) V, (@>p)>(V, a2V uB) (Deductive Closure)
(A3) (iii) a2V, V a0, ' (Symmetry of #,)
(A6) (ii) V, a>E(CaV Aa), : (Minimal Conflict)

Al(v) and A3(iii) are standard. A6(ii) is the characteristic axiom describing the #,
relation as the minimal conflict relation.

Let & o denote that « is a thesis of the system E, and let F4g « denote that ¢ is
valid over the class of well branching models. Then we get:

Theorem 2.3. E, is a sound and complete axiomatization of the valid formulas in ¥%s.
In other words, F4 o iff Fg a.

3.3 Logic for communicating sequential agents

We now wish to study a means of talking about a central feature of many distributed
systems — the communication pattern between the components of the system that
ensure coordination. For this, we shall define a logic that is to be interpreted over
communicating sequential agents. f ' '

Let? = {py,p;,...} bea countable set of atomic propositions, and F = {TosT1see s
a countable set of type propositions disjoint from 2. The formulas of & 54 are built
up as follows:

e cvery member of U7 is a formula of L ,; ,
e if « and B are formulas of # g, then so are —1a, ¢ V B, O and ;o

The formula ; asserts that the observer is located in agent i. ¢; and ©; capture
the “visible” future and past of agent i. This will become clearer when we define the
formal semantics of these modalities. ‘

A frame for Zcs, is a pair (CSA,LCqg,), where CSA = (E, <,n) is a system of
communicating sequential agents and LC_g, is the set of local states of CSA. A model
isa pair M = ((CSA, LCcs), V) where (CSA, LC;s,)is a frame and V: LCcsy—= p(PLT)
is a valuation function such that

,eV(le) iff ien(e).

S P —

By

Models and logics for true concurrency 157

The notion M, |eFo can be defined inductively as follows.

(i) M,leka, iff acV(le), for aePL T .
(i) M,leFa, iff M, |efa.
(iii) M,leka V B, iff M, Leboc or M, leFﬁ
(iv) M,leE ©,0, iff Je'eE;:e' < e and M, e Fo.

(eeE;):3de'eE;;e< e’ and M, |e'Fa.

M, }:‘ <>i 'ff 1 ‘
(V) M, ek Ot {(eéEi):Ve’eEizlf ¢ <ethen M,le'k Oa.

Note that ©;a behaves like a normal past modality — it covers all events that lie in
the i-past of e. However <« is different: in agent j, j #1, it asserts that upto the last
communication from i, there is a future for agent i satisfying o. In case there is no
communication from agent i at all, agent] can assert O;a for any formula a.
Define EHa%— ¢ —o and O0%— <O~ It can be verified that
O;a> ©;0;aisa vahd formula over CSA. It asserts that an invariant formula about
an agent must be supported by a communication from that agent. Thus [J; is a
“strong” modality whereas <; is “weak” unlike in standard modal logic. This
asymmetry arises from the fact that in distributed systems, the past of other agents
can be completely obtained by messages, while the possibilities for the future are only

- locally known.

Notice that the formula t; A 7; is satisfied at a local state |e only if {i,j} = #(e) and
thus specifies a synchronization between agents i and j. The infiuite set of formulas
{ti>11;]i #j} together specify that each event is in at most one agent and hence
can specify asynchronous CSA.

Consider the formula ©,0A © ;> ©;(aA ©,0)V ©,(8 A ©;4). This speci-
fies that agent i is backwards linear — during a computation if we look back at any
two events involving agent i, then they must be ordered. This captures the fact that
agents in a CSA are sequential.

Similarly, the formula ©,0a> ©,(a A E;(a> E;1a)) can be used to specify
initary CSA, i.e. those where each event has a finite past. This formula asserts that if
a is true somewhere in the past, then we can find an “earliest” point where is true.

The principal advantage of this logic is that communication between agents in a
distributed system can be easily expressed: —17; A €, A 7; can be used to specify
that i has communicated the truth of « to j sometime in the past.

We shall present a detailed example of reasoning with this logic at the end of this
section. First, we present our main technical results for this logic.

We begin with logical system C defined below.

The system C

AXIOM SCHEMES

(AO) All the substitutional instances of the tautologies of Propositional Calculus.

(A1) (a) B(a> p)> (0= EB) (Deductive closure)
(b) Oi(e>)= (0ia= O;h)

(A2) (a) ;o (R;a>) - (Local reflexivity)
(b) ,o(0;a>)

(A3) ©,9u> @ - (Transitivity)

(Ad) (a) ©,a> 0;9,a (Relating past and future)

(b) 0,-0(:3 E]ioia

158 Kamal Lodaya et al

(A5) SaNS; oA @BV oA @) (Backward linearity)

(A6) Oje> @0 (Communication)

(A7) (a) BT (Type axioms)
(b) ;= Lt

INFERENCE RULES

> p (TG &,)— (T,

(Mp)oc, « -
B’ Y 7,0 0,0

Axioms A0 to A4 are standard axioms suitably modified to reflect the special
interpretation of <;. A5 asserts that individual agents are sequential. A6 captures
the fact that knowledge about another agent’s future can only be obtained via
communication. A7 ensures that the type propositions from J are assigned
consistently. The rules MP and TG[E); are standard. The standard form of the rule
TG [J; will not preserve validity because of the communication requirement imposed
by the semantics of [J,.

Let -, o denote that o is a thesis of the system C. Let Fqg, o denote that o is valid
over the class of models based on CSA. We then have the following result.

Theorem 3.1. C is a sound and complete axiomatization of the valid formulas of £ cg4.
In other words b= o iff ks, o0 for every aeLegy.

When we introduced CSA in §2, we had defined their various subclasses. Let
CSA=(E, <,n) be a CSA. Recall that CS4 is an n-CSA if #(E) < {1,2,...,n} — that is,
there are at most n agents in the system. CSA is an asynchronous-CSA (acsa) if
VeeE:|n(e)| = 1. CSA s finitary if Vee E: | e is a finite set. We can combine these notions;
for example, an n-ACSA is an ACSA with a bounded number of agents. Similarly, we
can have finitary n-CSA, finitary ACSA and, finally, finitary n-ACSA. Figure 10 pictorially
represents the relationships between these various classes. The arrows in the figure
indicate inclusion.

Let € denote one of the subclasses of CSA mentioned above. Then we can define
the notions of satisfiability and validity relative to %. Thus, a formula « is @-satisfiable
if we can find a model M = ((CS4, LC¢s,), V) for o such that CSAe%. We let SA T,
denote the set of #-satisfiable formulas in #,. a is ¥-valid if it is valid over the
class of models based on frames in %.

We can axiomatize the %-valid formulas for all these subclasses. The required

axiomatizations are obtained by suitably combining the system C with the following
“axiom schemes.

{initar
CSA y et CSA

- /
.ta. —— - F . —
s finitary n-CSA t' "
- n-CSA
| [initary ACSA
- ACSA

- - B /’:'
. / -7 -7
finitary |77 | acsal__ — - '

Figure 10. Subclasses of communicating sequential agents.

g

i

Models and logics for true concurrency 159

AUXILIARY AXIOM SCHEMES AND INFERENCE RULES

(A8) T, Vi, V... V1, (n agents)
(A9) 7,21, for i #j (disjoint agents)
(A10) (3) ©,0> @ (a A ;o> B;0) (well-founded agents and

: communications)

(b) @,-OCD @,-(O(/\ BJB,_I Ot), fOl‘ l#j.

Theorem 3.2. (1) The logical system C Ad=°-fC +(A9) is sound and complete for the
class of models based on ACSA

(2) The logical system Cr¥ C + (A10) is sound and complete for the class of models
based on finitary CSA.

(3) The logical system CF 4= £c '+ (A10) is sound and complete for the class of models
based on finitary ACSA.

(4) The logical system C, % C + (48), neN, is sound and complete fior the class of
models based on n-CSA.

(5) The logical system C A =c 4+ (A8), neN, is sound and complete for the class of
models based on n-ACSA.

(6) The logical system Cp ' Cp + (A8), neN, is sound and complete for the class of
models based on finitary n-CSA

(7) The logical system C,p, % Cp 4 + (A8), neN, is sound and complete for the class of
models based on finitary n-ACSA.

We also have the following relationship between satisfiability in subclasses with an
unbounded number of agents and the corresponding subclasses with only a bounded
number of agents.

Theorem 3.3. Let % range over CSA, ACSA, finitary CSA and finitary ACSA. Let n@,
neN, denote the correspondmg class with a bounded number of agents n. Then
SAT,=v,SAT,,.

We now give a detailed example of how communication between agents can be
specified in #g,. Consider a distributed database accessed by n processes which
communicate with each other by exchanging messages. A protocol is needed whereby
the processes can commit to a distributed transaction. When each committed process
knows that all the others have also committed it can go ahead and perform its local
share of the distributed transaction. For this, the following requirement must be met.

If any process commits to the transaction then it eventually knows that all processes
in the system have also committed.

Such distributed transaction commit protocols commonly arise in the design of
distributed systems (Pinter & Wolper 1984, pp. 28-37).

We now specify the protocol requlrement in our logical language Let {cqy...,¢0}
be a set of atomic propositions, gvhere ¢; is read to mean “process j has commltted
to the transaction”. The formula

/\(t,-/\ci: <>,.</\ @icJ.)), (1)
3 l J

expresses the requirement above.

160 Kamal Lodaya et al

A two-stage implementation of this protocol may use two local boolean variables
in each process P;:

e avariable |;in which process P; records whether it can participate in the transaction
or not, and

e a variable, which we also call ¢;, to record the commitment of the process to the
transaction.

The implementation can perhaps run as follows:
Process P;:

(1) as soon as a local decision /; is made, broadcast I, to all other processes;
(2) when I is heard from all j, set c; to True;

(3) as soon as ¢; is set, broadcast it to all other processes;

(4) when c; is heard from all j, perform transaction;

(5) acknowledge all incoming messages.

All processes follow the same protocol in a symmetric manner. This is, of course, a
naive protocol. However, our aim here is to merely illustrate the use of our logical
language. Let us again, by abuse of notation, use {1, ..., l,} to denote another set of
atomic propositions. Consider now the following formulas:

A(ri: (cis A ®jlj)), ’ 2

“c; is set True only when [; is heard from all other processes P e

12

/\('ci/\.c,.: S A <>j<—>,-ci), , (3)
J
“if ¢; is set, then it will be broadcast and acknowledged”.

Note that here an agent has to assert something about the state of other agents
and this can be done only using messages from them. The formula Ci9;9;¢
says that agent i has received an acknowledgement from agent j of the message c;
sent from i to j. This is necessary because we assume that messages may be lost in
this network.

It is easy to verify that the formulas (2) and (3) together imply the requirement (1)
above. In fact, we can use the axiom system C and logically deduce the requirement
from (2) and (3). This verifies that the simple protocol above meets its specification.

Note that the protocol above works for only one transaction, in the sense that the
commitment is stable; once a process commits to the transaction, it stays committed.
When a protocol is needed for several transactions, we can index the transactions by
sequence numbers and modify the specification above appropriately.

While the preceding example illustrates the specification of a protocol which
assumes complete connectivity in the network of communicating agents, we can also
specify protocols which demand specific patterns of connectivity. Since agents are
syntactically mentioned in formulas, this logic is particularly suited for describing
communications which name specific agents. We illustrate this point with another
detailed example.

Assume that processes Py, P,,...,P,_, are connected in a ring and communicate
with each other only by exchanging messages. A process P; can communicate only

-

Models and logics for true concurrency : 161

with its neighbours P;_, and P,., on the ring. Here and in the sequel, addition and
subtraction are assumed to be modulo n.

Assume that each process P, maintains a variable x; taking values in N and whose
value initially is v;, for 0 <i<n— 1. It is described to specify a distributed protocol
which computes the greatest common divisor (GCD) of the values vy, ...,v,_,. Let
result denote the value of the constant ged(vg, y,...,v,-;). When the computation
terminates, the variables x;, ie{0,...,n—1} should satisfy

Xo =Xy =...=X,_, =result.

Since our logical language is propositional in nature we cannot express values of
variables and hence assume countably many propositions X}, keN, to denote “x, = k”,
With this understanding we write such propositions as equalities. Similarly we assume
propositions to denote “k <", “k=i—j" etc. The protocol requirement is then
specified by

AT A(xy=0) 2 O A ©4(x, = result)).
i k

An algorithm for computing the GCD can be described as follows: process P;, at any
state, compares the current value of x;, with the current values of its neighbours, x;_,
and x;,,. In case x; is smaller, nothing needs to be done; if x;_; is smaller, x; is
updated to be x; —x;_,; similarly, if x,,, is smaller, x; is updated to be x; —x;, .
Whenever the value of x; changes, this is communicated to the neighbouring processes.
Eventually, all values stabilize at the greatest common divisor.

As before, we assume that messages may fail and hence received messages are
always acknowledged. Let <, jo abbreviate the formula 7, A ;¢ ;90 (In some

sense, this stands for “i sends the message « to 7 and receives an acknowledgement”.
v g J

Our protocol can now be specified as

Ao 0,6 A 5,6)

i

where 6‘3—350 Ady ANd, A by is given by:

50:(xi= VD A Oi_,j(xi= U))

je{i~1,i+1)
“neighbours are always kept informed of current x; value”
Op:(x;=v> Oy(x; =0 o' <))
“values are never increased”
02:00=vA ©,_{(x;_; =0)Av'<v>D Cilx;=v"Av" =v—7))
“if x;—; <x; then x;: = x; — x;_,”
83:05 =0 1415y =) AY <05 Oy =1" A o' = v — 1))

“if xi+1 < x,» then xi: = xi - xi+ 1,,.
- Itiseasy to see that this specifies a distributed implementation of Euclid’s algorithm
for computing the Gcp.

162 Kamal Lodaya et al
4. Discussion

In this paper, we have looked at models for distributed systems which emphasize
their nonsequential behaviour and considered their logical characterization using an
assortment of modal logics.

A fair amount of theory has been developed for the models we have considered.
Our notion of a distributed transition system is only one of several that have been
considered; alternative formulations include those of Degano & Montanari (1987)
and Boudol & Castellani (1988). Stark (1989) had defined a related class of models called
concurrent transition systems. In net theory, more general net systems include Petri
nets, predicate/transition nets and coloured nets (Brauer et al 1987). As far as event
structures are concerned, we have only considered prime event structures in this
paper; other classes of event structures include stable event structures and general
event structures (Winskel 1987. pp. 325-392) as well as flow event structures (Boudol
1990, pp. 62-95). Systems of communicating sequential agents were introduced in
Lodaya et al (1989b), as a generalization of the n-agent event structures described in
Lodaya & Thiagarajan (1987, pp. 290-303).

The models that we have dealt with in this paper are closely related to each other.
We have described how labelled net systems and labelled event structures give rise
to distributed transition systems in a natural way. A strong relationship also exists
between elementary net systems and prime event structures (Nielsen et al 1980, 1990).
The connection between CSA and event structures is described in Lodaya et al (1989b).
By establishing formal connections between models in this manner, we can translate
results obtained using one class of models to other classes.

As for the logics that we have described here, the main results that we have are
sound and complete axiomatizations for different classes of models (see Lodaya et al
1987, 1989a, pp. 508-522, 1989b, 1991, Mukund & Thiagarajan 1989, pp. 143-160,
1991, and Mukund 1990). For the logic for distributed transition systems, we also
have various decidability and undecidability results (Lodaya et al 1991). However,
for the logics for event structures and CsA, the decidability question remains open.

Several attempts have been made to use logics to characterize the behaviour of
distributed programs. Temporal modalities have been traditionally interpreted over
different types of tense structures (Burgess 1980, 1984, pp. 89-133). Using the
interleaving approach to modelling concurrency, various authors have used temporal
logics defined on sequences and trees to describe concurrent computations (see e.g.
Pnueli 1977, pp. 4657, Gabbay et al 1980; Clarke et al 1986). Pmter&Wolper(1984
pp. 28-37) have extended this work to true concurrency by explicitly using partial
orders to represent concurrent computations. Katz & Peled (1989, pp. 489-507) have
defined a first-order temporal logic over sets of partial orders.

However, the use of classes of behavioural structures for distributed systems as
frames for logics seems to be relatively new. Penczek (1988) has used event structures
as frames and is the first to use an explicit modality to represent conflict. Reisig (1986,
pp. 603-627) is working on logws which directly use elementary net systems as frames.
Christiansen (1989) has worked with CSA-like frames; he uses an indexed A modality
in his logic to describe concurrency across agents.

Trace theory is a language theoretic approach to describing concurrency which we

have not considered. This formalism also gives rise to models of distributed systems.

with true concurrency. Here, along with an alphabet of actions, one is given an
independence relation declaring which actions in the system are concurrent. Instead

!
#
|

1

Models and logics for true concurrency 163

of viewing a computation as a string of symbols from the alphabet, one now considers
sequences made up of sets of concurrent actions (sequences of concurrent steps, in
our framework), which are called traces. Like strings, traces form a monoid, called a
partially commutative monoid, and so one can meaningfully talk about trace
languages. A syntactic Kleene-like characterization of regular trace languages has
been given by Ochmanski (1985), while a characterization in terms of automata has
been obtained by Zielonka (1987). The pomsets of Gischer and Pratt (Pratt 1986) are
similar to traces. :

Logics for trace theory have not been considered in the literature. We believe that
results like the ones in §3.1 can be obtained (Lodaya et al 1991).

Another widely prevalent approach to modelling concurrency is algebraic. One
way of describing sequential nondeterministic programs is through regular expressions,
by interpreting the operators e, + and * as sequential composition, choice and
iteration. Similarly, in the algebraic approach to concurrency, one introduces an
operator to denote the parallel composition of programs. Program behaviour is
specified by modelling the language operators in an appropriate semantic domain.
Popular languages for concurrency include cSP (Hoare 1984), ccs (Milner 1989) and
ACP (Bergstra & Klop 1984), and the models most often used are transition systems
(Plotkin 1981) and equational algebras (Bergstra & Klop 1984). Most of this work
has been based on interleaving models and only recently have attempts been made
to give a “truly concurrent” semantics to these languages (Olderog 1987, pp. 196-223,
van Glabbeek & Vaandrager 1987, pp. 224-242, Degano et al 1989, pp. 438-466).
An earlier denotational semantics using event structures as domains was given in
Winskel (1982, pp. 561-577).

In this framework, Hennessy & Milner (1985) have used action-indexed logics to
characterize computations of sequential nondeterministic systems. Assuming an
interleaving model of concurrency, this characterization extends to the computations
of distributed systems. This work has been considerably extended by Stirling (1987).
However, the emphasis here is on axiomatizing program equivalences using equational
logic. Our use of action-indexed logics for models exhibiting true concurrency is
inspired by this work, but we have concentrated on axiomatizing the valid formulas,
as is traditional in logic.

Logics in which the modalities are indexed by programs, rather than just actions,
arose in the framework of program verification (Hoare 1969). Programs with parallel
composition operators have been considered by several authors (e.g. Apt et al 1980,
Moitra 1983). Dynamic logics, originally defined over sequential programs (Harel 1984),
have been extended with an operator for intersection to model synchronization (Peleg
1987). However, a lot of work remains to be done on characterizing models for true
concurrency using program-indexed logics.

References

Apt K R, Francez N, de Roever W P 1980 A proof system for communicating sequential
processes. ACM Trans. Program. Lang. Syst. 2: 359-385'

Bergstra J A, Klop J W 1984 Process algebra for synchronous communication. Inf. Control
60(1-3): 109-137

Boudol G 1990 Flow event structures and flow nets. Lecture Notes in Computer Science. Vol. 469
(Berlin: Springer-Verlag) pp. 62-95

164 Kamal Lodaya et al

Boudol G, Castellani I 1988 A non-interleaving semantics for CCs based on proved transitions.
Fundam. Inf. 11: 433-452

Brauer W, Reisig W, Rozenberg G (eds) 1987 Petri nets: central models and their properties.
Lecture Notes in Computer Science. Vol. 254 (Berlin: Springer-Verlag)

Burgess J P 1980 Decidability for branching time. Stud. Logica 39: 203-218

Burgess J P 1984 Basic tense logic. In Handbook of philosophical logic 11 (eds) D Gabbay,
F Guenthner (Dordrecht: D Reidel) pp. 89-133

Christiansen S 1989 A logical characterization of linear n-agent event structures, M Sc thests,
Computer Science Department, Arhus Univ. Arhus

Clarke E M, Emerson E A, Sistla A P 1986 Automatic verification of finite-state concurrent
programs using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8: 244-263

Degano P, Montanari U 1987 Concurrent histories: A basis for observing distributed systems.
J. Comput. Syst. Sci. 34: 422-461

Degano P, de Nicola R, Montanari U 1989 Partial ordering descriptions and observations of
nondeterministic concurrent processes. Lecture Notes in Computer Science. Vol. 354 (Berlin:
Springer-Verlag) pp. 438-466

Gabbay D, Pnueli A, Shelah S, Stavi J 1980 On the temporal analysis of fairness. Proc. 7th
ACM Symp. Principles of Program. Lang. (New York: ACM Press) pp. 163-173

van Glabbeek R, Vaandrager F 1987 Petri net models for algebraic theories of concurrency.
Lecture Notes in Computer Science. Vol. 259 (Berlin: Springer-Verlag) pp. 224-242

Harel D 1984 Dynamic logic. In Handbook of philosophical logic II (eds) D Gabbay,
F Guenthner (Dordrecht: D Reidel) pp. 497-604

Harel D 1985 Recurring dominoes: making the highly undecidable highly understandable.
Ann. Discrete Math. 24: 51-72

Hennessy M, Milner R 1985 Algebraic laws for nondeterminism and concurrency J. Assoc.
Comput. Mach. 32: 137-161

Hoare C A R 1969 An axiomatic basis for computer programming. Commun. ACM 12: 576-580,
583 .

Hoare C A R 1984 Communicating sequential process (New York: Prentice-Hall)

Katz S, Peled D 1989 An efficient verification method for parallel and distributed programs.
Lecture Notes in Computer Science. Vol. 354 (Berlin: Springer-Verlag) pp. 489-507

Lodaya K, Parikh R, Ramanujam R, Thiagarajan P S 1992 A logical study of distributed
transition systems, Report IMsc/92/07, Inst. Math. Sci., Madras

Lodaya K, Ramanujam R, Thiagarajan P S 1989a A logic for distributed transition systems.
Lecture Notes in Computer Science. Vol. 354 (Berlin: Springer-Verlag) pp. 508522

Lodaya K, Ramanujam R, Thiagarajan P S 1989b Temporal logics for communicating
sequential agents: Int. J. Found. Comput. Sci. (to appear)

Lodaya K, Thiagarajan P S 1987 4 modal logic for a subclass of event structures. Lecture
Notes in Computer Science. Vol. 267 (Berlin: Springer-Verlag) pp. 290—303

Mazurkiewicz A 1989 Basic notions of trace theory. Lecture Notes in Computer Science. Vol. 354
(Berlin: Springer-Verlag) pp. 285-363

Milner R 1989 Communication and concurrency (New York: Prentice-Hall)

Moitra A 1983 (Letter) ACM Trans. Program. Lang. Syst. 5: 500~501

Mukund M 1990 Expressiveness and completeness of a logic for well branching prime event
structures, Report Tcs-90-1, School of Math., spic Science Foundation, Madras

Mukund M, Thiagarajan P S 1989 An axiomatization of event structures. Lecture Notes in
Computer Science. Vol. 405 (Berlin: Springer-Verlag) pp. 143—160

Mukund M, Thiagarajan P S 1991 A logical characterization of well branching event structures.
Theor. Comput. Sci. (to appear)

Nielsen M, Plotkin G, Winskel G 1980 Petri nets, event structures and domains 1. Theor.
Comput. Sci. 13: 86-108

Nielsen M, Rozenberg G, Thiagarajan P S 1990 Behavioural notions for elementary net systems.
Distrib. Comput. 4: 45-57

Ochmanski E 1985 Regular trace languages, Ph D thesis, University of Warsaw, Warsaw

Olderog E-R 1987 Operational Petri net semantics for CCSP. Lecture Notes in Computer Science.
Vol. 266 (Berlin: Springer-Verlag) pp. 196-223

T

Models and logics for true concurrency 165

Parikh R 1989 Decidability and undecidability in distributed transition systems. In A perspective
in theoretical computer science — commemorative volume for Gift Siromoney (ed) R Narasimhan
(Singapore: World Scientific) pp. 199-209

Peleg D 1987 Concurrent dynamic logic. J. Assoc. Comput. Mach. 34: 450-479

Penczek W 1988 A temporal logic for event structures. Fundam. Inf. 11: 297-326

Pinter S, Wolper P 1984 A temporal logic for reasoning about partially ordered computations.
Proc. 3rd ACM Symp. Principles of Distrib. Comput. (New York: ACM Press)

Plotkin G 1981 A structural approach to operational semantics, Report DAIM IFN-19, Computer
Science Dept, Arhus Univ, Arhus

Pnueli A 1977 The temporal logic of programs. Proc. 18th IEEE Conf. Foundations of
Comput. Sci. (New York: IEEE) pp. 46-57

Pratt V 1986 Modelling concurrency with partial orders. Int. J. Parallel Programming 15: 33-71

Reisig W 1986 Towards a temporal logic for causality and choice in distributed systems. Lecture
Notes in Computer Science. Vol. 354 (Berlin: Springer-Verlag) pp. 603627

Stark E W 1989 Concurrent transition systems. Theor. Comput. Sci. 64: 221-269

Stirling C 1987 Modal logics for communicating systems. Theor. Comput. Sci. 49: 311-347

Thiagarajan P S 1990 Some behavioural aspects of net theory. Theor. Comput. Sci. 71: 133153

Wang H 1961 Proving theorems by pattern recognition IL. Bell Syst. Tech. J. 40: 1-41

Winskel G 1982 Event structure semantics for CCS and related languages. Lecture Notes in
Computer Science. Vol. 140 (Berlin: Springer-Verlag) pp. 561-577

Winskel G 1987 Event structures. Lecture Notes in Computer Science. Vol. 255 (Berlin:
Springer-Verlag) pp. 325-392

Zielonka W 1987 Notes on finite asynchronous automata. RAIRO Inf. Theor. Appl. 21(2):
99-135

