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Order and chaos in soft condensed matter
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Abstract. Soft matter, like colloidal suspensions and surfactant gels, exhibit strong re-
sponse to modest external perturbations. This paper reviews our recent experiments on
the nonlinear flow behaviour of surfactant worm-like micellar gels. A rich dynamic behav-
iour exhibiting regular, quasi-periodic, intermittency and chaos is observed. In particular,
we have shown experimentally that the route to chaos is via Type-II intermittency in
shear thinning worm-like micellar solution of cetyltrimethylammonium tosylate where the
strength of flow-concentration coupling is tuned by the addition of sodium chloride. A
Poincaré first return map of the time series and the probability distribution of laminar
length between burst events show that our data are consistent with Type-II intermittency.
The existence of a ‘Butterfly’ intensity pattern in small angle light scattering (SALS)
measurements performed simultaneously with the rheological measurements confirms the
coupling of flow to concentration fluctuations in the system under study. The scattered
depolarised intensity in SALS, sensitive to orientational order fluctuations, shows the same
time-dependence (like intermittency) as that of shear stress.
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1. Introduction

Soft condensed matter (SCM) systems are ubiquitous in nature. Colloidal sus-
pensions, surfactant gels and polymeric systems are just a few examples [1]. Soft
matter is middle ground between two extremes: the fluid state, where thermal
fluctuations are very important, and the solid state. However diverse these sys-
tems are, they share certain common features: (i) The constituents that make
up soft matter are large polyatomic structures. The focus is not on atomic de-
tails and a coarse grained approach is taken in understanding these materials. (ii)
Self-organisation is a very important feature of these systems. The polyatomic
molecules self-assemble to form large heterostructures on changing either their con-
centration or increasing/decreasing temperature. For example, on changing the
concentration of the amphiphilic molecules, one can go from monomers to micelles
to cubic/hexagonal/lamellar phases. (iii) These materials show strong response to
modest external perturbations like shear flow, electric, magnetic and gravitational
fields and hence are interesting candidates for the study of non-equilibrium phe-
nomena. (iv) These materials are weakly connected and have low density. The
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Figure 1. Schematic of a Couette flow between two parallel plates. (a) Ho-
mogenous flow and (b) shear banded flow. The arrows indicate the magnitude
of the flow velocity.

elastic constants are very low compared to atomic systems. For example, a col-
loidal gel/crystal has typical elastic modulus ∼10 Pa whereas the elastic modulus
of steel is ∼1012 Pa [2–4].

The effect of shear flow on these materials has aroused immense interest in recent
times. Figure 1a shows a schematic of the planar Couette flow arrangement [5], one
of the standard ways to apply shear. The material of interest is held between two
parallel plates separated by a distance d and the top plate is moved with a velocity
v while the bottom plate is held fixed. The shear rate γ̇ is given by, γ̇ = v/d.
Shear has units of 1/s and hence τShear = 1/γ̇ is the time-scale set by the shear
flow. The typical relaxation time of stress, τRelax, in soft materials is 10−3 s, unlike
conventional solids where the relaxation time τRelax ∼ 10−12 s. The large relaxation
time of SCM systems imply that γ̇τRelax ∼ 1 can be achieved in these systems. Thus
in SCM systems shear flow is coupled to the microstructure unlike conventional
solids, where one needs to apply incredibly large shear rates that are unattainable
in a typical experiment before one sees such a coupling. It is useful to define a
dimensionless number called the Peclet number Pe given by Pe = τDiff/τShear where,
τDiff is the Brownian diffusion time and is given by τDiff ∼ 6πηa3/kBT . Here a is
the radius of the macromolecule, η is the viscosity, kB is the Boltzmann constant
and T is the temperature. If Pe ¿ 1 (i.e. τDiff ¿ τShear), Brownian motion is able
to maintain an unperturbed state. If Pe À 1 implying τDiff À τShear, the shear
flow modifies the structure and Brownian motion is unable to restore structure on
a time-scale set by the shear rate.

The main focus of this article is our ongoing study of worm-like micellar gels of
surfactant cetyltrimethylammonium tosylate which shows a rich dynamic behaviour
under shear flow.

2. Surfactants

Surfactants are amphiphilic molecules comprising of a polar head group and a hy-
drophobic long chain hydrocarbon tail [6]. This amphiphilic nature of the molecule
gives rise to a variety of phases in an aqueous medium since the polar head group
prefers to stay in water whereas the hydrocarbon tail tries to shield itself from
water. In a polar solvent at very low concentrations, they exist as monomers.
On increasing the surfactant concentration beyond critical micellar concentration
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Figure 2. Phase diagram of CTAT [8]. I: Isotropic phase, H: hexagonal
phase and C: cubic phase.

(CMC), they form spherical micelles with the polar head groups pointing out and
tails pointing in. At higher concentrations, these spherical micelles can elongate
to form long flexible cylindrical micelles which above the overlap concentration c∗

entangle to form viscoelastic gels [7]. At very high concentrations they can form
ordered phases like hexagonal, cubic and lamellar phases. The phase behaviour
of the cationic surfactant CTAT has been well-characterised by Soltero et al [8]
(figure 2). Above the Krafft temperature of 23◦C and at concentrations 0.04 wt%
< c < 0.4 wt% cylindrical micelles are formed which, at c > c∗ = 0.4 wt%, entangle
to form viscoelastic gels.

3. Experimental

The CTAT/water and CTAT/NaCl/water samples were prepared by dissolving
known amounts of CTAT (formula wt: 455.7, Sigma Aldrich) in water and brine,
respectively, and this study mainly focuses on the latter. The samples were filtered
through 200 nm pore size filters to remove dust impurities and left to equilibrate
for two days. The experiments were carried out on a MCR 300 stress-controlled
rheometer (Anton PAAR, Germany) with small angle light scattering attachment
(SALS) at a temperature of 26.5◦C (figure 3). The rheometer is intrinsically stress-
controlled and was used in the feedback mode for strain-controlled experiments.
All experiments were carried out in a cylindrical Couette geometry with top and
bottom windows made of quartz glass (inner cylinder diameter 32 mm, height 16.5
mm and gap 2 mm). A vertically polarised (V) laser beam (λ = 658 nm and spot
size = 1 mm) enters the gap between the cylinders (the beam is close to the in-
ner rotating cylinder and cannot be translated across the gap) along the vorticity
(∇ × v) direction, where v is the velocity field. An analyser below the Couette
geometry allows us to select either the vertically (referred as VV) or the horizon-
tally polarised (referred as VH) scattered light from the sample without disturbing
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Figure 3. Schematic of the rheo-small angle light scattering set-up.

the measurements. A condenser beneath the analyser collects the scattered light
dominantly from a plane 6 mm above the bottom plate and forms the image on
a screen in the (v,∇v) plane. The imaging was done using a 8-bit colour CCD
camera (Lumenera 075C, 640 × 480 pixels, maximum frame rate = 60 fps) at a
frame rate of 1 frame/750 ms. About 3000 images were grabbed for each polar-
isation while stress relaxation measurements were simultaneously going on. The
intensity at various wave vectors from the noise filtered image was measured and a
time series was generated by repeating the process over each image.

4. Background

In a linear rheology experiment, one studies the response of a material to very small
stresses (i.e. small compared to the thermal fluctuations in the material) [9]. Non-
linear rheology describes the response of a material to large stresses and it is in this
regime one sees novel flow behaviour [5]. As the name suggests, the strain developed
in the sample changes nonlinearly with the applied stress in this regime. The nonlin-
ear flow behaviour is characterized by shear thinning or thickening, the presence of
non-zero yield stresses and normal stress differences, flow-induced phase transitions
and the phenomenon of shear banding. Systems of giant worm-like micelles formed
in certain surfactant solutions are known to show very unusual nonlinear rheology.
In a controlled stress measurement of the flow curve the stress is known to satu-
rate beyond a critical shear rate, while the first normal stress difference increases
roughly linearly with shear rate. Cates and coworkers were the first to predict this
kind of flow behaviour and they attribute this to a mechanical instability of the
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shear banding type [10]. In shear banding systems, the system splits into coexisting
bands that support the same stress but have different average shear rates (figure
1b). The high shear rate band is lower in viscosity and is the nematic phase, while
the low shear band has a higher viscosity and is the isotropic phase. This kind of
behaviour may be understood in terms of the reptation-reaction model which in-
volves the reversible breakage and recombination of worm-like micelles along with
reptation dynamics known for polymer solutions. The flow curve can be measured
under controlled stress or strain rate and depending on the time interval between
the collection of data points, we can obtain metastable or steady state branches,
respectively.

In shear thinning worm-like micellar solutions of surfactant cetyltrimethylam-
monium tosylate (CTAT) that shows a plateau in the flow curve, Bandyopadhyay
et al found interesting time dependence in the relaxation of the stress and nor-
mal force in step shear rate experiments for shear rate values fixed in the plateau
region [11]. A time series analysis of the stress data using the delay-embedding
method, done using the TISEAN software [12], showed the existence of a positive
Lyapunov exponent, a measure of divergence of trajectories in phase space, and a
fractal correlation dimension >2 implying that the signal was chaotic rather than
the stochastic noise. This has led to many theoretical [13–17] and experimental
studies of this striking effect, termed as ‘rheochaos’, in a wide variety of other sys-
tems including shear-thickening worm-like micellar solutions [18], lamellar, onion
and sponge phases of surfactants [19] and dense colloidal suspensions [20]. NMR
velocimetry and rheo-optical experiments suggest that rheochaos is closely linked
to the phenomenon of shear banding [21]. These experiments have shown that the
interface between the shear rate bands is not stable as predicted [10], but shows
complex spatio-temporal dynamics and this is accompanied by stress/shear rate
fluctuations. Spatial heterogeneity should play a role in understanding rheochaos
as exploited in recent theoretical models [22,23].

These experiments raised three important questions that have remained unad-
dressed in experimental literature so far:

1. What is the route to rheochaos?
2. Does a concentration difference between the shear bands affect rheochaos?
3. What is the role played by the nematic alignment of the worm-like micelles

on rheochaos?

There are primarily three routes to chaos: the period-doubling route, the quasi-
periodic route and the intermittency route. The intermittency route is mainly
characterised by bursts of chaos disrupting nearly periodic (laminar region) oscilla-
tions. Pomeau and Manneville [24] have established that within the intermittency
route there are further three types. Type-I appears with an inverse tangent bifur-
cation, Type-II with a Hopf bifurcation and Type-III is associated with a period
doubling bifurcation. Experimentally, all three types of intermittency have been
observed in a variety of hydrodynamical and electrical systems [25], although there
are fewer examples of Type-II intermittency which sets in via quasi-periodicity.
Our experiments, we show below, are consistent with Type-II intermittency route
to chaos.
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5. Motivation

In a recent theoretical study, Fielding and Olmsted [26] have taken into account the
effect of concentration coupling in shear banding worm-like micellar systems that
are far from zero-shear isotropic–nematic (I–N) transition. Their d-JS-φ model
(spatially non-local Johnson–Segalman model with concentration coupling) calcu-
lations predict a positive value for the slope of the plateau in the banded region
of the flow curve, and the slope increases with the strength of the coupling be-
tween flow and concentration fluctuations (figure 4). In a recent experimental
work, Bandyopadhyay and Sood [27] have shown that the slope α of the stress
plateau, which we find is a power law σ ∼ γα, for worm-like micellar solutions of
surfactant cetyltrimethylammonium tosylate (CTAT) can be tuned by adding salt
(NaCl) (figure 5).

These results motivated us to study the consequences of flow-concentration cou-
pling on the stress relaxation dynamics in this class of systems.

6. Results and discussion

Figure 6a (filled circles) shows the flow curve for CTAT 2 wt% in a controlled-stress
experiment. The flow curve shows a near-plateau for γ̇ > 0.1 s−1. The observed
weak departure (slope α = 0.07 in the log–log plot) from a true plateau is very likely
due to the small inhomogeneity of the stress field arising from curvature effects in
the cylindrical Couette geometry [26]. The increase in stress due to geometry
curvature alone has been calculated using the relation:

∆σ

σ
=

2∆R

R
. (1)

Here, ∆σ is the increase in stress across the plateau due to cell curvature, σ is the
stress at the plateau onset, ∆R is the gap between the cylinders and R is the radius

Figure 4. Theoretical prediction for a system showing flow-concentration
coupling. The red line B′F′ is when the shear bands have different concen-
trations. The line BF is for a system that does not show a concentration
difference between the shear bands [26].
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Figure 5. Magnitude of slope of the flow curve plotted against NaCl con-
centration for CTAT surfactant concentration of 2 wt%.

Figure 6. (a) Flow curves for CTAT 2 wt% (solid circles) and CTAT 2 wt%
+ 100 mM NaCl (hollow circles). Inset: Flow curve for CTAT 2 wt% + 50
mM NaCl. (b) SALS profiles for (i) and (iii) CTAT 2 wt% for VV and VH
polarizations and (ii) and (iv) CTAT 2 wt% + 100 mM NaCl for VV and VH
polarizations [30].

of the inner cylinder. The increase in stress calculated using (1) is 1.6 Pa for pure
CTAT 2 wt% which is in good agreement with the experimental value of ∼1.3 Pa.

Figure 6a also shows the flow curve for CTAT 2 wt% + 100 mM NaCl (hollow cir-
cles). The stress shows a much stronger shear rate dependence (α = 0.32 for CTAT
2 wt% + 100 mM NaCl and α = 0.24 for CTAT 2 wt% + 50 mM NaCl; see figure
6a, inset) above γ̇ > 1 s−1 which cannot be due to geometry effects alone. We at-
tribute this slope to a concentration difference between the shear rate bands [22,26].
Berret et al [23] found similar values of slope for the system CpCl/hexanol/NaCl
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for concentrations just below the I–N coexistence concentration of 32 wt%. Our
system is in the semi-dilute region and is far from a zero-shear I–N transition ∼27
wt% for pure CTAT and >30 wt% for CTAT + 50 mM NaCl. Hence, a large slope
α is not due to I–N coexistence. A concentration difference between the shear rate
bands can arise from a Helfand–Fredrickson mechanism [28]. In a sheared micellar
solution, the portion of the micelle mired in the low viscosity shear band, on re-
laxing will move more than the micelle trapped in the high viscosity region. Hence
on average the molecule moves towards the low shear rate band. This mechanism
provides a positive feedback whereby micelles can move up their own concentration
gradients and thereby lead to flow-enhanced concentration fluctuations. The high
shear rate band is predicted to be lower in concentration than the low shear rate
band. If so, our SALS experiments should show a ‘Butterfly’ light scattering pat-
tern with the wings of the butterfly stretched along the flow direction [29]. Figure
6b shows the SALS pattern in VV geometry for CTAT 2 wt% and CTAT 2 wt% +
100 mM NaCl. The ‘Butterfly’ pattern is absent for the pure CTAT 2 wt% (figure
6b(i)) and is present for CTAT 2 wt% + 100 mM NaCl (figure 6b(ii)) and (iii) and
(iv) in figure 6b show corresponding patterns in VH geometry. We have carried out
experiments at six different salt concentrations 10 mM < cNaCl < 1 M, which yield
plateau slopes ranging from 0.07 < α < 0.4 (figure 5). We find that a minimum
slope of 0.12, corresponding to a salt concentration of 25 mM NaCl, is essential to
see a ‘Butterfly’ pattern indicating the onset of flow-concentration coupling at this
α value [30].

Figures 7a–e show the stress relaxation dynamics for various shear rates fixed in
the plateau region for the system CTAT 2 wt% + 100 mM NaCl. At a γ̇ = 0.05 s−1

the stress does not show any dynamics. As the shear rate is increased to γ̇ = 10 s−1,
the stress oscillations look periodic (figure 7b). At γ̇ = 20 s−1 the system shows
oscillations with two modes that appear twice during the course of the experiment.
Figure 7d shows the stress relaxation dynamics at γ̇ = 23 s−1, The signal looks
periodic, but a closer inspection reveals finer features that do not repeat exactly.
Figure 8 shows the power spectrum of this signal. Apart from the two primary
frequencies centered around ω1 = 0.049 Hz and ω2 = 0.061 Hz and their higher
harmonics, there are other frequency components centered at linear combinations
of ω1 and ω2 like ω2 − ω1 and ω2 + ω1. These extra features are hallmark of
a 2-frequency quasiperiodic signal [31]. In figure 7e, there are bursts of chaos
breaking in between the quasiperiodic signal γ̇ = 25 s−1. The power spectrum of
the quasiperiodic laminar region once again shows two frequencies centered around
ω1 = 0.057 Hz and ω2 = 0.063 Hz, implying a decrease in the time period with
increasing shear rate. The stress relaxation dynamics at γ̇ = 27.5 s−1 (figure
7f) was completely chaotic (characterised by a positive Lyapunov exponent ∼0.14
and an exponential Fourier power spectrum [32]). Although the exact shear-rate
values at which the sample displayed the above features was found to differ to some
extent from run to run, the main features, namely, quasiperiodic oscillations and
intermittent bursts were found in all the runs. We do not observe any quasiperiodic
and intermittent behaviour for CTAT 2 wt% (figure 9a–e) and CTAT 2 wt% + 10
mM NaCl, which have α < 0.12, for different shear-rate histories. All systems
with α > 0.12, implying moderate to strong flow-concentration coupling, showed
quasiperiodicity and intermittency [30].
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Figure 7. Stress relaxation at various shear rates for CTAT 2 wt% + 100
mM NaCl. (a) 0.05 s−1, (b) 10 s−1, (c) 20 s−1, (d) 23 s−1, (e) 25 s−1, (f)
27.5 s−1 and (g) 40 s−1.

Figure 8. Fourier power spectrum for the time series shown in figure 7d.

Figure 10a shows the partial time series at γ̇ = 22 s−1 obtained during a differ-
ent run. Judging by the nature of the signal during the laminar phase, Type-III
intermittency can be ruled out, since, for this type of intermittency there is a sub-
harmonic mode with increasing amplitude. We follow the method described by
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Figure 9. Stress relaxation at various shear rates for CTAT 2 wt%. (a) 0.05
s−1, (b) 10 s−1, (c) 20 s−1, (d) 40 s−1 and (e) 300 s−1.

Berge et al [33] and reconstruct a Poincaré plot by taking the successive minima
of the stress in the laminar region after a chaotic burst. In figure 10c, we plot the
value of the stress at the Nth minimum against its value at the (N−1)th minimum.
This plot exhibits a spiraling behaviour characteristic of Type-II intermittency.
The spiraling behaviour is time inverted and we call this time inverted Type-II
intermittency after Sacher et al who found similar behaviour in a semiconductor
laser with external feed back [34]. The above behaviour implies that the system
oscillates back to the laminar phase after a disturbance that caused a burst event.
A standard test for Type-II intermittency is the probability distribution of laminar
lengths L between burst events that scales as P (L) ∼ L2 for small times and shows
an exponential tail at larger times [35]. Due to an insufficient number of burst
events, this test could not be carried out for the above-mentioned time series. In
figure 10b we show the time series obtained for CTAT 2 wt% + 50 mM NaCl
(α = 0.24) at γ̇ = 19 s−1 which shows about fifty bursts in a 2 h run. The
probability distribution of laminar lengths clearly shows the exponential tail (figure
10d) expected at large times. This test rules out Type-I intermittency, for which
P (L) increases at longer times, and confirms the Type-II intermittency route to
chaos in the present study.

Recent theoretical attempts to explain rheochaos treat our systems as nemato-
genic fluids, and consider the spatio-temporal evolution of the shear stress asso-
ciated with the nematic order parameter. These models, while ignoring the com-
plexities of breakage, flexibility and branching, capture the essential flow-induced
orientability of worm-like micelles [17]. Light scattering measurements in the VH
geometry are sensitive to orientational fluctuations while VV geometry is influ-
enced by concentration and orientational order fluctuations. We describe below the
results of these measurements.

SALS measurements were done with VV polarisation for half the duration and
VH polarisation for remaining half of the stress relaxation run [30]. The appearance
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Figure 10. (a) Partial stress time series for CTAT 2 wt% + 100 mM NaCl
at γ̇ = 22 s−1 for a different run. Inset: Full time series. (b) Complete
stress time series for CTAT 2 wt% + 50 mM NaCl at γ̇ = 19 s−1. (c) First
return Poincaré plot for (a). The arrow shows the spiraling direction. (d)
Probability distribution of laminar lengths between bursts for (b). The line is
an exponential fit [30].

of an anisotropic VH scattering pattern in our SALS measurements (figure 6b(iv))
at the onset of shear-thinning implies that our systems are nematic. The time series
for VV and VH intensities at a fixed wave vector, q = 0.75 µm−1, are shown in
figures 11a, b and c. Figures 11a and 11b show the time series of VV and VH
intensities obtained during the stress relaxation measurement shown in figure 7a.
Qualitatively, the VH intensity follows oscillations in the stress whereas VV does
not. A power spectrum of the VH time series shows that the two primary frequency
components (ω1, ω2) coincide with those obtained from the stress time series. The
frequency components at ω2 − ω1 and ω1 + ω2 shown in figure 8d for the stress
are absent. This may be due to the averaging procedure we have used to remove
CCD noise. Figure 11c shows the VH time series for γ̇ = 25 s−1. This time series
captures the quasiperiodicity as well the chaotic burst seen in the corresponding
stress relaxation measurement (figure 6b). At higher shear rates the VH time series
was chaotic. We also observe that the entire VH profile shows periodic breathing
patterns for γ̇ = 23 s−1 and γ̇ = 25 s−1. This has been quantified by measuring the
anisotropy (εs) and the orientation angle (χs) obtained from the second moment
tensor of SVH(q, t) given by [36]

εs = [(〈XX〉 − 〈Y Y 〉)2 + 4〈XY 〉2]1/2 (2)
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Figure 11. The VV intensity time series (a) and the VH intensity time series
(b) for CTAT 2 wt% + 100 mM NaCl at γ̇ = 23 s−1. Experiment was done
with VV polarisation to the left of the break shown in the stress time series
(figure 2a) and with VH polarisation to the right. (c) The VH intensity time
series at γ̇ = 25 s−1 (see figure 2b). (d) and (e) show the anisotropy and the
orientation angle of SVH(q, t) for (c) [30].

and

tan(2χs) =
2〈XX〉

〈XX〉 − 〈Y Y 〉 , (3)

where 〈XY 〉 =
∫

dq qXqY SVH(q, t), 〈XX〉 =
∫

dq qX qXSVH(q, t) and 〈Y Y 〉 =∫
dq qY qY SVH(q, t). Figures 11d and 11e show the time series of the anisotropy

and orientation angle at γ̇ = 25 s−1. The anisotropy and the orientation angle of
the major axis of SVH(q, t), which is a measure of the instantaneous orientation of
the nematics, seems to follow the stress oscillations (figure 6b). The orientation
angle shows regular oscillations from ∼20◦ to ∼80◦ when the system is in the lami-
nar/quasiperiodic region and shows no periodicity when the system shows a chaotic
burst.

To summarize, we have shown for the first time, intermittency in stress relaxation
dynamics for the systems that show coupling between flow and concentration. We
have also shown that the VH intensity at a fixed wave vector, anisotropy and the
orientation angle shows dynamics similar to the dynamics seen in stress oscillations.
In all our experiments, the ‘Butterfly’ pattern is always accompanied by intermit-
tency in stress dynamics. We believe it is essential to have flow-concentration
coupling to observe the rich dynamics we have seen since, this could provide a
mechanism by which mechanical shear banding instabilities could cross over to
shear induced demixing instabilities. The model by Rienacker et al [14] predicts
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both temporal intermittency as well as period-doubling behaviour, in different parts
of the phase diagram, for various components of the alignment tensor. To the best
of our knowledge, there are no theoretical models that predict temporal intermit-
tency in the stress for worm-like micelles that show shear banding. Interestingly,
in the rheochaos model by Fielding and Olmsted [16], spatio-temporal intermit-
tent behaviour is seen for moderate to strong coupling strength between the flow
and the micellar length. Spatio-temporal intermittency route to chaos has also
been predicted by [17]. A complete theoretical understanding for temporal inter-
mittent behaviour in systems that show flow-concentration coupling is lacking at
the moment. Our experiments further reinforce the case that rheochaos, far from
being mere irregularity in the flow of a complex fluid, lies squarely in the domain
of chaotic nonlinear dynamical systems. We hope that our results will motivate
further experiments and theoretical modeling.
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