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Abstract. Experimental infrared and Raman data for molecular rotations in dense
phases often lie in between the results predicted by the J-and M-diffusion models of
Gordon. In this paper, we present a theory which is similar in its basic approach to
Gordon’s extended diffusion models (EDM) but in which the restrictions of the J
and M limits are removed. The outcome is a scheme which allows one to describe
situations which fall between the two extreme pictures of the J and M models. Ap-
plication of this scheme to experiments is discussed.

Keywords. Molecular rotations; infrared line shapes; Raman line shapes; genera-
lised extended diffusion models. :

1. Introduction

Molecular rotations in dense phases as studied by Raman and infrared spectroscopy
is an important subject of activity. It has been widely reviewed in numerous articles
and monographs (e.g. Gordon 1968; Steele 1976; Berne and Pecora 1976; McClung
19717, etc.). For an isotropic system such as a gas or a liquid, the investigation of
vibration-rotation bands involving transitions between molecular vibrational levels
reveals quantitative information about the nature of rotational motion and through
it, important knowledge of inter-molecular torques. In many cases, one is concerned
with linear, symmetric top or spherical molecules which have at least one axis of
symmetry. Furthermore, the coupling between vibrational, translational and rota-
tional motions is such that the respective contributions can be separated. In such a
situation (the subject of the present paper), the rotational contribution to both the
infrared and depolarised Raman line shapes is contained in the following correla-
tion function (Gordon 1968):

Ci(2) = {P; (cos 0(1))>, 1)

where vibrations parallel to the symmetry axis are considered. In (1), /, the order of
the Legendre polynomial P,, is equal to one and two respectively in the infrared
and Raman cases. The angle 6(¢) measures the deviation of the symmetry axis of
the molecule in time 2. The time-variation of 8(¢) occurs due to the coupling of the
‘molecule of interest’ with all the other molecules of an interacting many-body

system, and the angular bracket {....) denotes an average over the statistical pro-
perties of such a system.
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A major breakthrough in the understanding of rotational line shapes of molecules
has been the introduction by Gordon (1966) of his extended diffusion models (EDM).
In these, the molecule is assumed to undergo free rotations unless interrupted by
random instantaneous collisions which may alter its state of motion. Two versions
of the EDM were worked out by Gordon (1966) in analytic forms for the case of a
linear molecule—the J- and M-diffusion models. A feature that is common to both
these is that a collision completely randomises the direction of the angular velocity.
In addition, in the J-diffusion model, even the magnitude of the angular velocity is
assumed to be randomised by a collision to its thermal equilibrium value, while it is
assumed to stay constant in the M-diffusion case. The EDM were later applied to
spherical (McClung 1969, 1971a, b; Mountain 1971) and symmetric-top (St. Pierre
and Steele 1972; McClung 1972) molecules. Since the EDM properly take into con-
sideration the inertia effects of free rotation, they yield the correct short-time beha-
viour of Cy(¢). Also, in the limit in which the collisions are very rapid, the result of
the J-diffusion model agrees with that of the rotational diffusion model (Favro 1960),
the expected feature. The EDM are therefore able to provide a unified picture of
rotational motions from the gas-like phase in which free motions dominate to the
dense liquid situation in which collisional effects take over. It may be mentioned that
even if the density of a liquid is high, the free (more accurately, © torque-free ) motion
can still be important if the anisotropy of the interaction is small.

Due to their inherent conceptual simplicity and yet a wide applicability over a
large time-domain, the EDM of Gordon remain, to this date, the most extensively
used models for the analysis of infrared and Raman rotational line shapes (McClung
1977). However, a detailed comparison of the EDM results with experimental data
on a variety of systems reveals that in good many cases, the data lie somewhere in
between the pictures painted by the J- and M-models (McClung 1977; Marsault et al
1975). The situation is roughly like this. For short times, both the J- and M-models
agree with one another, and give a satisfactory account of the data points for C,(z).
For a gas-like system, the M-diffusion results seem to agree with data even at long
times. The J-diffusion model, on the other hand, explains better the long-time beha-
viour of Cy(z) for liquids in which collisional effects dominate (Marsault et al 1975).
It should therefore be desirable to generalise the EDM in order to obtain a satisfactory
agreement with the data for Cy(¢) of a liquid as it exhibits progressively a gas-type to a
diffusive behaviour with increasing density.

In § 2 we present the model and its mathematical solution. For the purpose of
keeping the mathematical discussion lucid, we restrict ourselves to the case of linear
molecules throughout the paper. The basic idea in setting up the model is akin to
that of Gordon and like him, we also assume that the molecules, in between free °
rotations, are subject to abrupt collisions whose roles are to completely randomise
the direction of the angular velocity. However, unlike in the treatment of Gordon,
the effect of a collision in so far as causing a change in the angular speed is concerned,
is taken into account in'a much more general way in terms of a collision operator.
Specific forms of this collision operator can then be assumed to describe different
physical situations. This is illustrated in § 3 by deriving as limiting cases the results
'of the M- and the J-diffusion models. We then consider a certain structure of the
collision operator which yields a closed-form solution of the correlation function
that interpolates smoothly between the M- and J-diffusion limits. In § 4, the inter-
polation model is applied in deriving infrared and Raman line shapes and correlation
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times. The usefulness of the interpolation model in explaining experimental data on
molecular rotations, which cannot be satisfactorily accounted for by the EDM, is
demonstrated in § 5. § 6 is a summary together with some comments on the limita-
tions of the present study and possible avenues for refinement.

2. Mathematical formulation

2.1. Notations

The basic theoretical problem is to calculate the correlation function in (1) which,
from the spherical harmonics addition theorem (Edmonds 1957), can be rewritten as

Ct) = 4m QIS (T3, (00), 40) Vi (60, 400D,

where the arguments of the spherical harmonics Y, are the Euler angles defining
the orientations of the molecular symmetry axis at times 0 and ¢.

- For the sake of brevity, we shall henceforth drop the subscript I. Also, for a fixed /,
we may regard Y, (6, ¢) (n=—1, ..., ) as the components of a vector Y in a (2/41)

dimensional linear vector space. Equation (2) can then be expressed symbolically
in the form of a dot product:

Cy(t) = 4m(2I+-1)7 {Y(6(0), $(0)) - Y(6(2), $(2)))- )
At this stage we introduce a time-development operator %(z) defined by
Y(6(2), $(2)) = u(z) Y(8(0), $(0)). . @
The operator () is clearly a (2/4-1) X (2/41) dimensional matrix.
If the random process which governs the change in the molecular orientation is

assumed to be stationary, the correlation function C)(¢) should be independent of
the choice of the initial conditions. Therefore, for simplicity, we may set

8(0) = ¢(0) = 0. ®)

In that case, the correlation function, using (2) to (5), can be put into the coinpact
form :

Ci(t) = {Uo(®), (6)

where the subscript zero refers to them =0 component.
To illustrate the meaning of 9/(¢), let us consider the free rotation of a linear mole-
cule which can be assumed to occur in the XZ plane. In that case, #(¢) is simply a

rotation operator (for angular momentum /) describing a rotation about the space-
fixed Y-axis with an angular speed w. Thus

Y@ = 9™ (0, wt, 0), o
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agd for the / = 1 case
Ci(1) = {20, wt, 0)y = {dl(wt)) = {cos wt, ®

the expected answer. The angular bracket in (8), in the free rotor case, specifies
simply an average over the thermal distribution of . Here, and throughout the
rest of this paper, we follow Edmonds (1957) in our notations of rotation operators.

As mentioned in § 1, we treat here the linear rotor case. At time zero, the mole-
cule, aligned with the space-fixed Z-axis, starts rotating in a plane normal to the XY-
plane (figure 1). The angular velocity of the rotor is therefore, a two-dimensional
vector which lies in the X Y-plane. Using plane polar co-ordinates, the direction of
the angular velocity vector, and therefore, the orientation of the plane of rotation, is
completely specified by the angle ¢ measured from the speed-fixed X-axis (figure 1).
Typically, a free rotation for a time # with an angular velocity w can be described by
the rotation operator

R (1) =exp [—i (@ D) 1] = exp [~it (oy Ly + wy Ly, ©

where Ly and Ly are the generators of rotation in the (27+1)-dimensional vector
space in which the spherical harmonics form the basis functions.*

2.2. Effect of collisions

The time-interval 0 to ¢ is divided into (n-+1) parts at ty Ly, ...y L, at which points in
time, the molecule is assumed to suffer instantaneous collisions (the impact approxi-
mation). In between collisions, the molecule is supposed to behave like a free rotor.

2
Iy

ot >“’\ |

X

Figure 1. Geometry of rotation of a linear molecule.

-p
*Note that L is noz the quantum angular momentum operator of the linear rotor and that the
latter is, after all, treated classically.
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The effect of a collision is assumed to be two-fold: (i) an abrupt change in the plane

of rotation, i.e. the angle ¢ caused by a rotation about the space-fixed Z-axis, and

(i) a change in the angular speed. The time-development operator % (¢) may there-
fore be constructed as** )

U@) = Rn (t—1,) ... Ty Fa (ta—1,) T; Fy (1), 10

where, for example,

-
Rn (t_tn) = eXp [—i(w, - L) (t_tn)]a ( 1)
and Ty = exp (i ¢a L), (12)
w, being the angular velocity in the (n-+1)th step, and ¢,, the change in the azimuthal
angle resulting from the nth collision.
As in the EDM of Gordon (1966), we assume that the changes in ¢ due to collisions
are uncorrelated to each other and are completely arbitrary. This means that the

average of 9/(¢) over a distribution of the ¢’s denoted by ¥ 4,, factors into a product
of uncorrelated averages:

(U @)y = Rn (t—1) ... (Ta)y R (—1) (Tp)y By (1) (3)
In the above,

2n
@05 = @y = .. Oy =o- [ déexp (4L, a4)
0
Note that
<m ‘ (CJI).ﬁ l m'> = Bmm' 8m(y (15)

The relevant matrix element of (‘u(t))qs that contributes to the correlatiox_:
function (cf., equation (6)) is given from (13) and (15) by

0| (% (1))¢ 10> =<0| &, (t—1) | 0> ... 0| &, (t—1) | 0>
X 0] g, (1) ] 0. 16)

Since any direction in the X Y-plane can be brought to the Y-axis via a rotation about
Z, it is convenient to write

0| Z, ()| 0> = <0 | exp (—iw, L,£)| 0, an

**The instants #,, #,,...2y and the number # of collisions are of course summed over in the final
expression for the correlation function (see (29)).
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where the last step follows from the fact that the matrix elements in (17) are taken
between eigenstates of L, with eigenvalue zero. Denoting

dy(t) = exp (—iw, L, 1), (18)
we can rewrite (16) as
0] () | 0y = 0| di(t—1) | 0).. )
X {0 ] dyt,—1,) | 05 0| dy(t) | 0)- )

Let Q@0 =6,
| 0|d(t—1,)| 0 = g, (t—1,); (20)

we then have
GO = &it—t) ... git—t) 811D - @
2.3. Salutton : -

The mathematical approach we have adopted is closest in spirit to that of Fixman
and Rider (1969). Albeit the formulation given here is different from the one used by
Gordon (1966), the results uptil this point are completely equivalent to those of
Gordon. Unlike Gordon, however, we do not rightaway specialise to the J- or M-
diffusion models by making specific assumptions about the w’s in the various diffusion
steps (see § 1). Instead, we regard  as-a random variable, and introduce a matrix £
which is diagonal and whose elements are the possible values of the angular speed:
wy, Wy, ..., 0, We also introduce a collision operator I whose element (w 13' | @),
for example, defines the probability of transition of the angular speed from ' to w
due to a collision. In the linear vector space spanned by the w-variables, G and 8
themselves, are matrices, and we may write from (21), )

CH=F0—t)..T8W—1TEFW, 22)
where * " F (£) = <0 | exp (— i QL,7) | 0> (cf., (18) and (20), “(23)
and () is defined to be such that ’

©]Q]e) = @b —a). . 9

The meaning of (22) becomes clear when we examine a specific matrix element of
G(t). -Using (23) and (24), we may write from (22),

@|G®)]w) =] 0 fexp (—iwLy (t— 1)) | 0 ... (w |3|>w1)

X 0| exp (— iw; L, (t; — 1) | 0) ("’1|g‘wo) , _
X 0 |exp (— iwg L, ;) | 0) dewy devg... . ‘(25)'
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Equation (25) describes a particular collision chain with angular speeds w, at =0
and w at #. At t;, a collision occurs which has a probability (w; | 7 | w,) of changing
instantaneously the angular speed from w to w;. The molecule then rotates freely with-
the new speed «, until ¢, at which point another collision changes the angular
speed, and so on. Clearly, we have to consider all possible intermediate angular
speeds so that we integrate over w,, w,, etc. Inaddition we have to take into account
collision chains with all possible end points so that the quantity which enters into
the calculation of the correlation function is given by

(G (1)), = [ desg dw p (wy) (@ | G (1) ] ep), 26)

where p () is the thermal equilibrium probability distribution of w. Assuming the
latter to be a Maxwellian, we have for a linear molecule,

P () do = (I[kg T) exp (—Iwzlng T) o do, @7

where / is the moment of inertia of the molecule, T the temperature and kp the
Boltzmann constant. S _

The model presented above, in which one views a random process as consisting of a
chain of collision events with a transition operator associated with each collision,
has been employed also in other line shape problems such as relaxation effects in
Massbauer spectra (Clauser and Blume 1971, Dattagupta 1975, 1977a) and collision
broadening of spectral lines in gases (Dattagupta 1977b). Although the form of the
transition matrix 9 may vary in different contexts, both in terms of physical contents
as well as mathematical complexity, the basic strategy for obtaining the correlation
function is the same. This involves an averaging over the location in time of the
collisions with an assumed Poissonian distribution and determining the Laplace
transform of C; (¢). Defining the latter by

€ (p) = [ G (@) exp (—pr) dt, | 28)
0

we may write, from (6), (20), (22) and (26),

Ci(p) = [ dwy dop (wo) (@] [ (P + M) T=AT]? | o), -9
where A is the average rate of collisions and g (p + A), from (23), is given by
g+ =<0+ 2+iQLy)*|0). (30)

In deriving (29), we have omitted details for which we refer the reader to the papefé
mentioned in this paragraph.

3. Models for I

Equation (29) constitutes a generalisation of the EDM results of Gordon in the sense
that the theory now has a greater flexibility in its ability to consider various forms of
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the transition operator . We discuss this below by first deriving some old results
and then obtaining additional new expressions.

3.1. The M-diffusion model

In this, it is assumed that the angular speeds do not change due to collisions, i.e.,
@[T ] wp) = 8 (0—ap). (3D

In view of (24), (29) then yields

CY(p) = [ deo p () [(f (p + W) T—A], (32)
where, from (30)

S@+0) = 0] [p+A-+iwL,] [ 0)
= [ ex0 (—~o+ V0 donas, (33)
0 .

having made use of the definitions (28) and (18).
Equation (32) is the usual M-diffusion model result (cf., equation (2.49) of Steele
1976).
3.2. The J-diffusion model
In this case, it is assumed that every collision completely randomises the angular

speed to its thermal equilibrium value. This means that the matrix element

(w] 7 | wp) is independent of the initial angular speed wy, and depends on w through
the distribution function p(w):

@]9 | = pe), | (34

where p(w) is given by (27). Note that the choice of (34) is consistent with the proba-
bility conservation condition:

[@]F g do =1, | (35)
and the detailed balance relation:
Plwo) (@] T | wg) = p(w) (o | T | w). (36)
Equations (35) and (36) are also, of course, satisfied in the M-diffusion model.
Using a matrix identity:

A7 = Bl L B (B—4) 4, ‘ 37)
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We can write, from (29),
CH(p) = [duwy dew p(ewy) (w0 | g(p+2) | o)
+ Afdwy de> p(wy) (o | g(P+NT [(g(p+2)T—AT] | wp). (38)
Applying the closure property:
faot | o) @ | =1, (39)
twice to the second term on the right of (38), and making use of (34), we can show
Clp) = CHp+N) =N, | (40)
where  CR(p-X) = [dug do ple) (| 8(p+0) [ w0)
= Jdo p@) PN, @)

from (33), (30) and (24). Equation (40) can be shown to be identical to the result
quoted for the J-diffusion model (cf., equation (2.48) of Steele (1976)).

3.3. Interpolation model

As is evident from the above discussion, the J- and M-diffusion models describe two
extreme pictures and physical situations are expected to lie somewhere in between.
In order to tackle such a case, we present below a very simple and yet a physically
interesting form of J which interpolates smoothly between the J- and M-limits. We
assume

(0] T | @) = yp(w)+(1—7)8 (0—wy), 0<y<l. (42)

Therefore, if y=0, we have the M-diffusion case (cf., equation (31)) while y=1 cor-
responds to the J-diffusion case (cf., equation (34)). Also, y=0-2, for example, implies
that a collision has an 80 %, probability of keeping the angular speed constant and 20 9,
probability of randomising it to the thermal equilibrium value. Note that (42) too
is consistent with (35) and (36). An identical form of the collision operator as in (42)
has been considered earlier by Fixman and Rider (1969) in the case of spherical mole-
cules. ’

To apply (42) to (29), we write T as

T = yI+(1—9, ' _ - (43)
where 7, is defined by

(@] ;| wy) = plw) (cf., equation (42)). (44)
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Using (37) as before, (29) can be expressed as

Cl(p) = [ duoy e | 1(p+) | )

F(A) [ dey dos plesg) (| 22040 T, [@(p+D) 1271 w,),  (45)

where  gi(p+2) = [(2+X) -2 (1—y)] | (46)
Making use of the same mathematical steps as in (39) to (41), we now derive

C () = [(fdw p(w) filp+N) =N, @7
where AN = (o) A=) )
f(p—!-)\) being given by (33). Itis easy to check that in the limits y=0 and y=1, 47
reduces to the M- and J-diffusion results of (32) and (40) respectively. It should be

stressed that (47) does not simply constitute an interpolation between the correlation
functions themselves. Thus C//(p) in (47) is not just equal to

y C;’(;j)+(1fy)CzM(p),

and is much richer in structure. A physical meaning of the parameter y is given in
Appendix A.

4. Applications of the interpolation model
4.1. The infrared case

As mentioned in § 1, the infrared case corresponds to /=1. Equation (33) then
reduces to

e . '
| f@+A)=[@+A)+m]. | (49)
From (48),
'wa -1 : .
oD = [+ = &

The infrared line shape, defined by #~! times the real part of CII (p), can now be
obtained from (47) and (50) for the interpolation model (see also the appendix B).
Figure 2a shows the line shape for A=0-3 for three different values of y:y=0 (M-
diffasion), y=1 (J-diffusion) and y=0-5 (an intermediate case).* The line profile for
A=2-5 for the same values of y are shown in figure 2b. The two values of A are chosen
to correspond to gas like behaviour (figure 2a) and highly hindered rotation (figure

*The frequency and time in all our plots are expressed in reduced units of (kg 7/I) and (/Kkgt
respectively. ) : - e ) )
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2b). In figures 3a and 3b we give the corresponding plots for the correlation
function C, (¢) which is obtained by Laplace-inverting (47) numerically.

For short times, there is not much difference between the J-, M- and the interpola-
tion model results, as expected. Also when A is small, the three models agree with each
other closely, for all times. However, as A increases, significant differences start
appearing. It is also interesting to note that the y=0-5 plot of C,(z) for A=2-5 (cf.,
figure 3b) lies closer to that of the J-diffusion model, although in this case, as much

0.7
0.6 — . A= 0.3
’“; =
£ o5k —=0
3 -——05
= —— 1.
-8 04 0
>
£
S 03
S
02—
MR
0 .
O ) 1 ) 2 3
Frequency '

Figure 23 Infrared line shapes for A=0-3 and y=0-0, 0-5 and 1-0. As mentioned
in the text, the frequency is in the reduced units of (k5 T/D?.

1-4 ‘

1.2 A=2.5
5
g1ro— . Y=

: —_—— 0
Sosl \ -—— 05
> \ —_— 1.0
g _
S

! 1 1 1

(@) 1 2 3 ) 4
Frequency

" Figure 2b. TInfrared line shapes for A=2-5 and y=0-0, 0-5 and 1-0.



434 S Dattagupta and A K Sood

1-0
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Figure 3a. Dipole correlation functions for A=0-3 and y=0-0, 0-5 and 1-0. These

léav;(bfen obtained by numerical Laplace inversion of spectral profiles plotted in
2. 2(a).

Cqilt)

Time

Figure 3b. Dipole correlation functions for A=2:5 and y=0:0, 0-5 and 1-0,
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as 509, of the collisions are M-like. This is perhaps so in view of the fact that when
the rate of collisions is large, an admixture of the J-component in the collisions
enables the system to be thermalised rapidly.

Apart from the line shape, another interesting quantity to calculate is the rotational

correlation time defined as the zeroth moment of the correlation function (Steele
1976):

n= [ C®d=C(p=0), (51)
0

where the second step follows from (28).
Using (47), the correlation time in the interpolation model is given by

o = Oj do p(@) i) — ¥, (52)

where p(w) is given by (27) which, in reduced frequency units, yields
P(@) do = wexp (— 05 w?) do. (53)

Comt;ining (50), (52) and (53), the correlation time in the infrared case can be easily
shown to be

™l =N FX) [1 — F )], (54
where x = §yA2, (55)
and F(x) = x exp (x) E,(x), (56)

E(x) being the first exponential integral defined by (cf., Abramowitz and Stegun
1965)

o]

E (%) = f dt t71 exp (— 1). (57

Therefore, as y -0 (the M-diffusion limit),
- — 1 XIn y 4+ finite terms, (58)

which shows precisely how the divergence of =, an unphysical feature of the
M-diffusion model as applied to a linear molecule, occurs (cf., McClung 1977).

In the limit y=1, (54) reduces to the expression obtained by Kluc and Powles (1975)
in the J-diffusion model. We exhibit in figure 4a plot of the correlation time ™
against the collision frequency A for different values of y (cf., Steele 1976).
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Figure 4. Correlation time «, for infrared case asa function of the collision frequency
Afor y=0-01, 0-1 and 1-0 on semi-logarithmic scales.

4.2. The Raman case

For the Raman line shape, /=2, and (33) yields
(o] .
F@+N = [diexp [— (p+2) 1] 4 (w1)
0
=|@+n + ] o+ 4, (59)
P+A -

having used the expression for dyg' (w?) (Edmonds 1957). The line shape is then
deduced from (47) by combining (48) with (59) (see also the appendix B).

The spectral line profiles have been plotted for A=125 and A=2-5in figures 5a and
5b respectively for the same values of y as have been used in figures 3a and 3b. For
Raman line shape, the difference between the J, M and the interpolation models start
becoming important for a larger value of A than that in the infrared case. This is

‘why the smallest value of A that we consider for Raman plots is 1-25 (as opposed
to 0-3 in the infrared case of figures 2a and 3a). The corresponding correlation func-
tions for the Raman case are shown in figures 6a and 6b. Again, the results for
y=0-5 lie closer to those of the J-diffusion model.

Substituting for p(w) from (53) and £, (X) from (48) and (59) into (52), the correlation
time in the interpolation model for the Raman case, can be shown to be given by

7 = (N [ Goty) (—F) 11, (60)

where x = yA (6 + 2y)7, ; (61)
and F(x) is defined by (56).
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0.6 — A=125
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Figure Sa. Raman lineshapes for A=1-25 and y=0-0, 0-5 and 1-0.
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Figure 5b. Raman lineshapes for A=2-5 and y=0-0, 0-5'and 1-0.
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Figure 6a. Raman correlation functions for A=1-25 and y=0-0, 0-5 and 1-0,
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Figure 6b. Raman correlation functions for A=2-5 and y=0-0, 0-5 and 1-0,

Again, in the M-diffusion model (y=0), =, diverges while in the J-diffusion limit
(y=1), (60) reduces to the expression derived by Kluc and Powles (1975). In order
to make the comparison between our results and those of Kluc and Powles trans-
parent, we plot in figure 7, the correlation time versus the inverse of collision fre-
quency on a log-log scale for various values of ¥.
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1000

01 | 1 | .
0.01 01 1-0 , 10-0 100.0
"

Figt'}rg 7. Correlation time <, for Raman case as a function of the inverse of the
collision frequency for y=0-01, 0-1 and 1-0 on logarithmic scales. :

5. Comparison with experiments

As stated in §1, experimental data on molecular relaxation studies fall in many cases
between the two extreme limits of the J- and M-diffusion models. In such situations,
the interpolation model can give a better interpretation of the data. We discuss this
below by comparing our results with a couple of examples from infrared experiments
on CO dissolved in N, and nuclear relaxation studies on HBr.

5.1. Infrared studies on CO dissolved in N,

Marsault e al (1975) have carried out extensive infrared measurements on the linear
molecular system of carbon monoxide in various host fluids. The rotational motion is
investigated by studying the fundamental vibrational band of CO over a wide range
of temperatures and pressures.

We discuss here the data obtained for CO dissolved in N at a fixed pressure of 80
bar and at various temperatures. At 158°K, the host N, is in a dense gas form and
the experimental rotational correlation function is well described by the M-diffusion
model. On the other hand, at 116°K, N is in the form of a dense liquid and the data
are fitted well by the J-diffusion model. However, at intermediate temperatures such
as 129°K, neither the M- nor the J-diffusion model gives a satisfactory account of the
data (figure 8). As can be clearly seen from the figure, values of A=0-5 and y=0-3
in the interpolation model fit the experimental points at 129°K very well. The fit to
the data at other temperatures requires a change in the values of both A and . '
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Figure 8. Dipole correlation function for CO dissolved in nitrogen. The dashed
line is the experimental curve from Marsault ef al (1975) corresponding to P=80 bar
and T=129°K. @ are the points calculated from our theory for y=0-30. The correla-
tion functions for y=0-0 (M-diffusion) and y=1-0 (J-diffusion) have also been shown
for comparison. .

5.2. Nuclear spin-relaxation studies on HBr

An independent experimental tool to study molecular rotational motion is.the.
measurement of nuclear spin-lattice relaxation (Gordon 1966). The latter can yield
a‘determination of the parameter A, the collision frequency that appears in the models
described here. The applicability of these models may therefore be directly tested by
comparing nuclear relaxation data with infrared and Raman band shapes.

- Based on the experimental results of Krynicki and Powles (1972) on nuclear spin-
relaxation in the linear molecular system of HBr, Kluc and Powles (1975). have
deduced a plot of the Raman correlation time Ty versus the inverse of collision fre-
quency (in reduced units) on a logarithmic scale. It is seen that the J-diffusion model
does not lead to an agreement with the data points (figure 9). We find that values of
v lying in the range 0-05 to 0-1 explain the experimental data satisfactorily.

6. Conclusions

In this paper, we have presented an attempt to generalise the extended diffusion models
of Gordon with a view to applying the theory to molecular rotation data of systems
whose behaviour is intermediate between those pictured by the M- and J-limits. The
mathematical formulation of our theory retains the simple basic idea of Gordon in
which intermolecular torques are assumed to be random. The latter aspect is modelled
in terms of abrupt collisions which are assumed to interrupt the free rotations of the
. molecule. The introduction of a collision operator J in the theory, which enables
us to generalise the EDM, is made possible by following parallel theoretical develop-
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Figure 9. Plot of correiation time =, versus inverse of collision frequency on logarith-
mie scales. The experimental results for HBr as deduced by Kluc and Powles (1975)

are shown as O. The solid lines are the theoretical curves from our theory for y=0-05
0-10 and 1-0.

ments in other line shape analyses (see § 2:3). In particular, we might mention that
the assumption involved in the J-diffusion model (cf., equation (34)) is referred to as
a kind of random phase approximation in the theory of line shapes (Dattagupta
1977a); it is also sometimes known as the strong collision approximation in the
collision broadening theory (Dattagupta 1977b).

It is evident from the discussions in § 3 that the J-diffusion model (or, equivalently,
the strong collision model) applies to the case in which there is no persistence or
¢ hang-over ’ in a collision as far as the angular speed is concerned. In contrast, in
the M-diffusion model, there is complete persistence of angular speed at every colli-
sion (cf., (31)). In the collision broadening theory, it is a common practice to treat the
opposite of the strong collision limit, called the weak collision model, in which it is
assumed that there is significant persistence of the angular speed in every collision
step. The colhslon operator I, in the weak collision limit, is assumed to satisfy a
Fokker-Planck like equation (for instance, see Dattagupta 1977¢). The weak collision
model, when applied to the present problem, resembles closely the Langevin model
of leman and Rider (1969). There also exist in the literature schemes for describing
situations intermediate between the weak and strong collision limits (Keilson, and
Storer 1952; Rautian and Sobel’man 1967). Attempts to incorporate these schemes
into the collision operator ¥ for determining the correlation function Cy(¢) are much

more complicated than the simple interpolation model descnbed here (§ 3.3) but
should be interesting to investigate.
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Not withstanding their success in explaining data in the dense phase, both the EDM
as well as the generalised model presented here, suffer from the fact that they are based
on a picture of instantaneous collisions. These models therefore ignore the memory
effects which can be very important in dense liquids, especially near the freezing point
(Marsault ef al 1975). The most general approach to handle such memory effects is
the one due to Mori (1965 a, b) which has been adapted into the present field by Berne
and Harp (1970) and Bliot et al (1972). However, the practical applications of the
memory function formalism almost always involve construction of memory kernels
on a rather ad-hoc fashion (see, for example, Berne and Harp 1970, Marsault et al
1975). There do not appear to be systematic derivations of the memory kernels in a
specific physical situation apart from some procedure of checking their validity by
comparison with moment calculations. It may be pointed out that the free rotational
motion incorporated in the EDM by Gordon constituted what amounts to inertial
memory effects that were absent in the earlier models which were based on Debye’s
idea of rotational diffusion (Hubbard 1963). It would be interesting to extend the
simple physical idea of the Gordon-type models (as discussed in this paper) to cover
situations in which ¢ other > memory effects arising from intermolecular potentials
become important. This will enable us to establish a connection between the present
study and the memory function approach. Such attempts are underway now and the
results will be reported elsewhere.
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Appendix A
Meaning of the interpolation parameter y

Three distinct features are noteworthy in the interpolation model discussed in this
paper and the EDM of Gordon. They are (i) free rotation, (ii) randomisation of the
direction of the angular velocity and (iii) randomisation of the magnitude of the
angular velocity. The last two points are simply a statement of the fact that the
random variable in the present problem is a vector. Let us now inquire into the
time-scales that are associated with the three aspects of the motion mentioned
above. The time which sets the scale of free rotation is obviously (J/kpT)2. Next,
the time-scale on which randomisation of the direction of angular velocity occurs,
is the same as the mean-free time between collisions, both in the EDM and in the
interpolation model. However, the time-scale on which randomisation of the angular



Infrared and Raman studies of molecular rotations 443

speed takes place, is different in the M, J and the interpolation models. It is this
last aspect of the problem that we wish to discuss in the following.

Let us restrict our attention to only that part of the stochastic space which contains
the one-dimensional variable w, the angular speed, and examine the structure of
(w| P(t)| wp) which defines the conditional probability that in time #, the stochastic
variable assumes the value w, given that it was w, at t=0. In terms of the model
described in § 2.2, the P-matrix can be shown to be given by (Dattagupta 1977c)

P@) =exp AT —1D1], (A1)
Equation (A1) is the solution of the Chapman-Kolmogorov-Smoluchowski equation

which describes a stationary Markov process (see for instance Van Kampen 1976).
Now, in the interpolation model (cf., (43)),

T =9, + (1—y) A=), | (A2
where 7, is defined by (44). It is easy to see that

(@]|F?| ) = [ do’ (@ |91 ] @) (@ [T ] ey

=(w|7;| @), from (44).

This implies that 9, is the idempotent matrix which satisﬁés the relations

Ir=9@m>=1,

7,1-=9) =0

(1—=9) =1-9, etc. (A3)

Using (A2) and (A3) in (Al), it is straightforward to show by direct power series
expansion that

Pt)=Y,+0—T)exp (—yAt). (Ad)
Therefore, in the J-diffusion limit y=1),
(@| P (1) o) = p (@) + [8 (w—wp)—p ()] exp (—A 1), (A3)
while in the M-diffusion limit (y = 0),
(@] P (1) | @g) = 8 (@—wy). . (A6)
Equations (A5) and (A6) imply that the time scale on which the angular speed is
randomised is X in the J-diffusion model while it is oo in the M-diffusion case. On

the other hand, the corresponding time-scale is (y A)™! in the interpolation model
(cf., (A4)). Thus (y2) is an effective rate at which collisions change the angular speed.
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Itis clear that the origin of v lies in the strength of the interaction that the * molecule
of interest * feels when it is hit by a perturber. Itis also clear that in many liquids, the
J-diffusion model overestimates the average effectiveness of a collision as far as the
randomisation of the angular speed is concerned. The interpolation model cures this
disease, in the simplest possible way, by scaling down the relaxation rate from A to
@Y. ' '

 We refer the reader to the work of Balakrishnan (1979) for further discussions on

the time-scaling properties of the interpolation model.

Appendix B..
We give below the expressions which have been used in Section 4 for computation

of infrared and Raman line shapes.
Ihe line shape in the infrared case is given by

I1g(s) = @ Zy(1—yAZY—y2Z,7] [A—72Z)2 202z, 7, (B1)
where k
Zy(s) = [ dep(w) A(s, w)/B(s, w),

Zy(s) = [dwp(w) C(s, w)/B(s, w), °
A @) = Ma— 524X+ (A y)), ‘ (B
B(s, @) = (@P—s24-yX224-52(A-yN)2,
CGs, @) = XAty D) —s(w?—s2422).
‘2:The Raman line shape is given by

e AR = @ TZ(1— 90 Z)—yAZ,2 [(A—yAZ2 9222z, 2, - (B3)
where

Z4(6) = [do p(@)E1—FE)~pFY [A—pEP+pFy
Z4s) = [do pl)[F(U—BE)+REF] [(1—~BEY-+ P,
B=21-», '

E = 0250G-+075)2s*L )R, ‘ | (B4)

I

F = 0-25 sG40-75 S22 —H)R,
G = (N-tst),
L H = (e,

R = (H*4xs,
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