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Abstract. Static structure factors S(Q) are obtained for dilute charged colloidal systems
using Brownian dynamics simulation method for the widely used screened Coulomb repulsive
Yukawa potential and the recently proposed Sogami pair potential, The latter potential has,
in addition to the usual repulsive part, an attractive term which is necessary to understand
the reentrant phase transition reported in these colloids. It is shown for the first time that
S(Q) obtained using the Sogami potential for parameters favourable for liquid-like order
agrees well with that measured experimentally. Thus it appears that the Sogami potential
explains features of a homogeneous liquid as well as phase separated states, whereas Yukawa
potential does not.
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1. Introduction

Electrostatically stabilized aqueous colloidal systems can develop structural orders
similar to those in atomic liquids (Pusey 1979; Tata etal 1987), crystalline solids
(Williams and Crandall 1974) and even glasses (Pusey and van Megen 1987; Lindsay
and Chaikin 1982; Kesavamoorthy et al 1988) when suitably deionized. The unique
feature of these systems is that one can alter the strength and range of interparticle
interaction simply by changing the impurity ion concentration n; and the particle
(also called polyball or macroion) concentration n,, making them model systems to
study the co-operative behaviour in condensed matter. It is widely believed that the
particles interact predominantly via repulsive screened Coulomb Yukawa potential
U(r) ~ exp (— Kr/r), (for a review, see Castillo et al 1984). Here K is the inverse Debye
screening length. There also exists a primary minimum (Castillo etal 1984) in the
inter particle interaction due to London-van der Waals attraction, which gives rise
to irreversible aggregation (flocculation), when n; is large. However, for suspensions
with low n; this minimum is not important due to Coulomb barrier. So far Yukawa
potential is used to explain ordering phenomena in colloids. Using this potential it
has been shown that the static structure factors for liquid like ordered suspensions,
computed using rescaled-mean spherical approximation (RMSA) (Hansen and Hayter
1982) and hypernetted chain (HNC) approximation (Schaefer 1977) agree well with
the experiments (Hartl et al 1983; Tata et al 1986). The Monte Carlo (MC) (van Megen
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and Snook 1977) and Brownian dynamics (BD) simulations (Gaylor etal 1981) have
been done with Yukawa potential to calculate static and dynamic properties of these
colloids and the results agree with the light scattering experiments. Recently Arora
etal (1988) have observed a reentrant phase transition in these colloids, wherein a
non-interacting homogeneous suspension phase separates into a rare (low polyball
concentration) and a dense (high polybéll‘cdncentration) phases as the impurity
concentration n; is reduced. This suspension once again becomes homogeneous (with
liquid or crystalline-like order) on further reduction of n;. This phenomena cannot
be explained on the basis of the pure repulsive interparticle interaction. Since a purely
repulsive interaction between particles confined in a given volume cannot lead to
inhomogeneous phases except the crystalline-liquid transition observed in a system
of hard spheres, an attractive part in U(r) is a must. Based on free energy calculation,
Arora et al (1988) showed that the observed phase transition can be understood by
considering Sogami potential (Sogami 1983; Sogami and Ise 1984) which has the
usual screened Coulomb repulsion and also an attractive part leading to a secondary
minimum. The formalism of Sogami and Ise (1984) has been questioned by Overbeek
(1987), subsequently Ise et al (1988a) have in turn shown flaws in the treatment of
Overbeek. A number of other experimental results viz. the coexistence of ordered and
disordered phases (Ise 1986), observation of Ostwald ripening in the growth of colloidal
crystals (Ito et al 1989) and the existence of stable voids-in colloidal crystals (Ise et al
1988b) also suggest the existence of a secondary minimum in the effective pair potential
(Ise et al 1988). ‘

As pointed out earlier, apart from the phase separated states colloidal suspensions
also exhibit homogeneous liquid-like and crystalline-like ordered states. To confirm
whether Sogami potential leads to these structural orders (for some physically
reasonable parameters), we obtain S(Q) of a suspension of colloidal particles interacting
via Sogami potential. As analytical calculations of S(Q) using Sogami potential on
the lines similar to that of RMSA (routinely used for Yukawa potential) is difficult,
we use BD simulation to obtain pair correlation function (9(r)) and mean square
displacement (r%(r)). S(Q) is obtained by Fourier transforming g(r). Yukawa potential
is also used in simulation for the sake of comparison. S(Q) obtained using Sogami
potential agrees equally well with the experimental S(Q). MC simulations are also
carried out for the same parameters and-compared with the BD results.

This paper is organized as follows. In §2 we present both Yukawa and Sogami pair
potentials with a brief discussion of their origin. Details of BD simulation is presented
in §3. Section 4 deals with the results and discussion. We end this paper with
conclusions given in §5.

2. Pair potentials

| 2.1 Yukawa potential

For the aqueous monodispersed colloidal system consisting of polystyrene spheres
(polyballs) of radius a, charge Ze, the screened Coulomb Yukawa pair potential
between ith and jth particles is given by (Verwey and Overbeek 1948)

Uylry)) = Z%e?[exp (Ka)/(1 + Ka)]? exp(—Kry)/er; 1)

g
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where K is inverse screening length given by

K?= 47ze2<an + ;nl,Zj)/skBT. (2)

The first term in (2) arises due to n,Z counter-ions coming from particles with
concentration n, and the second term is the contribution of the impurity ions of fth
type with the concentration ng and charge eZ;. In all our calculations the impurities
are considered as monovalent (Z;= + 1), hence n; = > php- € is the dielectric constant
of the medium and taken to be equal to 780 at room temperature T(=298°K). A

detailed discussion on the range of validity of this potential is given in the recent
work of Robbins et al (1988).

2.2 Sogami potential

For the system considered above Sogami obtained an effective pair potential U (r)
- given by (Sogami 1983; Sogami and Ise 1984)

Ug(r;;) = Z?e* (sinh Ka/Ka)*[A exp(— Kr)fry—Bexp(—Kr;)]/e (3)

where 4 =1+ Kacoth(Ka), B=K/2 and K is given by (2).
The attractive term leads to a secondary minimum in U,r) whose position (R
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Figure 1. Pair potential U(r) in units of k,T vs distance of ‘separation r in units of o,
Continuous line is Sogami potential for ¢ = 0-109 um, n,=133x10"2c¢cm™3, Z=600 with
n;=175x10"*cm™3 and dotted line is Yukawa potential for n=21x10"%cm™? with n,
and Z same as above. The vertical line is at interparticle separation 2a, = 10-35¢.
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depends on n, and n; and is given by
Ruin=[C+ 1+ {(C+1(C+3I}YK | 4)

where C = A — 1. Sogami potential has been derived from the Gibbs free energy which
takes into account counterion-counterion and polyball-polyball interaction. The
degrees of freedom of counterions are integrated out to give an effective pair potential
Ur). Figure 1 shows the U,(r) and Ur) used in the calculation. Marked on
figure 1 is the line at r = 2a,. It can be noted that the interaction at r = 24; is repulsive
in one case and attractive in the other case.

3. Simulation details

Simulations at constant volume and constant temperature are performed for a
colloidal system with partlcle density n,. N particles are taken.in a cubic cell with
cube length L given by [*= N/n,. The periodic boundary conditions are used to
remove the surface effects and simulate an infinite system. The number of particles
chosen in the simulation were N = 128 and 250. The results are same for both the
values, consistent with the earlier observation that N > 100 does not change the results
(Gaylor etal 1981). All the results presented in this paper correspond to N = 250.
The potential is cut-off at r = L/2 at which U(r = L/2) < 10~* kT, which is comparable
to the cut-off value used in simulation of Lennard-Jones systems (Rahman 1964). The
small value of U(r) at the cut-off suggests that the Ewald summation is not required
for computing the total energy. The initial configuration is that of the particles
arranged on the body centered cubic(bcc) lattice. Simulation with starting configura-
tion being random also gave the same results. The simulations are performed on
Norsk Data 560CX computer.

3.1 Brownian dynamics simulation

Based on BD algorithm of Ermak and Yeh (1974), Gaylor et al (1981) have applied
the BD*computer simulation to dilute aqueous colloidal dispersions. For these dilute
suspensions, many body hydrodynamic interactions are not significant (Gaylor et al
1981, van Megen et al 1985). The dynamics of each particle is governed by the Langevin
equation in which the random force is related to viscous damping of the medium
through the fluctuation dissipation theorem. Ermak and Yeh (1974) formalism allows
one to obtain the new positions of the particles by integrating the Langevin equation
over a time step At, which is large compared to the momentum relaxation time g
but is small compared to the time z, over which the configuration of the particles
appreciably changes. The momentum relaxation time tg =m/f, where m is the
mass of particle and the friction coefficient f= 6nna, n is the viscosity of the medium.
For polystyrene particle of diameter o(=2a)=0109 um and #=001089 Poise,
Tp=64x1071%

We have used the algorithm of Ermak and Yeh (1974) which prov1des the following
equations to generate the particle trajectorles and velocities

F(t + A = (1) + R(A) + FALy | (5)
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vt + At) = v(t)exp(—At/tp) + V;
+ [F{t + At)—F{t)exp(—At/tp) 1/ (6)

where r; (1), v(t) are the position and velocity of the ith particle at time ¢ respectively.
The R,(A?) is the Gaussian random displacement representing the net effect of the
collisions of the ith particle with other particles in the time interval At, and V, is the
Gaussian random velocity of the ith particle. Fz) is the direct force on the ith particle
due to remaining particles in the system i.c., ‘
F,= _ ¥ ,‘ZU_(’Q& (7)
' jFi 5";’;‘ Fij
~ The random displacements R; and the random velocities V; are generated by
employing central limit theorem. Here M random numbers having uniform distribu-
tion in the range 0 to 1 are selected and their sum S is calculated. This sum S is
Gaussian distributed with mean M/2 and variance M/12 and the required Gaussian
variate {() (here { =X, Y or Z component of R; or V;) with zero mean and variance
a is obtained as '

L) = /o (S//M/12)—/3/M}. 8)

The variance for random displacement is oy = 6DoAt, where Dy is the diffu-
sion coefficient of the particle (D, = kT/f) and the variance in random velocity
o, =3 kgT/m. '

As discussed above the time step chosen in BD algorithm should be such that
1p < At < 1,. For our system 1 = 64 x 107 %s. Since there is no unambiguous way
of estimating t,, we tried time steps from At=10"" to 10™*s and monitored the total
energy. It was found that for At < 10~ *s the total energy is conserved with root mean
squared deviation of ~0-7% whereas for At > 10™*s the total energy is not conserved
and showed wide excursions. Hence At = 10™*s has been chosen in our simulations.
Using the value of D, it can be seen that the paticle on the average moves ~47 of
the average interparticle distance 2a, (=2(3/4nn,)'’?) in time At. After reaching
equilibrium g(r) was obtained (for r = L/2) using the standard methods (Rahman 1964).
The structure factor S(Q) is calculated using

" S(Q)=1+4nn,,Arl'§x (g(lAr) — 1)IArsin (QIA/Q 9)

=1
for those values of wavevector Q which satisfy

Q =2n(n,,n,y,ny)/L (10)
where n,, n,, ny are integers and I, = L/(2Ar). This constraint on Q is introduced
by the finite size of the system. The same constraint limits the range of g(r) to r < L/2
and can introduce spurious oscillations or distortions in the small Q region of the
computed S(Q) using (9).

4. Results and Discussion

The parameters entering the pair potentials, (1) for Yukawa and eq (3) for Sogami
are g, n,, n; and Z. The particle diameter ¢ is 0-109 um, and the particle concentration
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in the suspension can be determined accurately by weight method (Tata et al 1987)
and was found to be n, = 1-33 x 10'?cm ™2 for which we have measured S(Q) by angle
resolved Rayleigh scattering (Tata etal 1987). The accurate determination of the
quantities n; and Z are experimentally difficult (Robbins et al 1988). The charge Z for
the diameter 0-109 um particle has been reported to be 600 + 100 (Lindsay and Chaikin
1982) and hence Z=600 is taken in all our calculations. The experimental S(Q) was
fitted to the calculated S(Q) using RMSA for the Yukawa potential (Hansen and
Hayter 1982; Hirtl etal 1983) with n; as the fitting parameter. The peak position
and peak height of the first peak in S(Q) are chosen as criteria for Jjudging the best fit.
The best fit of calculated S(Q) to the experimental data was obtained for n;=
21 x 10'° cm™3. The impurity ion concentration was estimated from the conductivity
measurements and found to be (19+0-4) x 10'*cm 3. It is interesting to note that
the fitted value of n; matches well with the measured one.

The same value of »; in the Sogami potential (eq (3)) was used to compute g(r) and
S(Q) by BD simulation. It was found that the calculated S(Q) does not match well
with the experiment. But a good agreement with the experiment was obtained for
n;=175%x10""cm™3 A small difference in n; (note this n; value is also within the

experimental accuracy) for Yukawa and Sogami potentials is not surprising since K -

- enters both the potentials in slightly different ways. Hence the results will be presented
for Sogami potential with n;=1-75x 10*5cm =3,

In BD simulation the total potential energy is monitored to find out whether
equilibrium has been reached or not. Typically 700 time steps have taken to reach
the equilibrium. The relative error in the energy after reaching equilibrium is 0-85%.
In addition to energy the virial pressure and velocity distribution of particles are also
monitored as a check for equilibrium state. After 700 time steps the virial pressure
remained constant with relative error being 0-53% and velocity distribution remained
Maxwellian. The interval Ar=0-16 was used to calculate g(r) and particle coordinates
generated from 350 time steps were used for averaging. The g(r)s thus obtained for
Sogami (continuous line) as well as Yukawa (dotted line) pair potentials are shown
in figure 2(a). Since Ar chosen is very small the g(r) obtained looks almost continuous
curve. Figure 2(b) presents S(Q)s calculated using (9). Also shown are the experimental
data with error bars. One can see from figure 2(b) that the calculated S(Q) for Yukawa
potential (dotted line) matches with the experiment. Also note that the calculated
- 8(Q) for Sogami potential (continuous line) also agrees equally well with the
experimental S(Q). To compare the equilibrium BD results with other simulation
techniques conventional Monte-carlo simulations (based on Metropolis method, see
for example Binder 1979; Hansen and McDonald 1986) were also carried out for
same parameters of the suspension. The step size of 0-56 was chosen such that trial
rejection rate was 45+ 5%. The calculations are started with initial configuration
being the particles occupying a bcc lattice and first 100,000 configurations are
discarded to allow the system to equilibrate. The total potential energy and virial
pressure of the system is monitored to find out whether equilibrium has been reached
or not. After reaching equilibrium typically 150,000 configurations are generated to
determine g(r). The relative error in energy as well as in virial pressure are same as
that in BD simulation. The errors of this magnitude are normal for a liquid-like
ordered suspension. Figure 3 shows calculated S(Q)s for the Sogami potential using
MC and BD simulations. It is not surprising to find that both the calculated S(Q)s
agree. At this stage one can compare the total computation time needed to calculate

- -wj"
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Figure 2. (a) Pair distribution functions ¢g(r) vs r (in units of o) calculated from BD
simulation for Sogami potential ( ) with n;=1-75x 10'*ecm ™3 and Yukawa potential
(===) with n;=2:1x 10> cm 2. n, and Z as mentioned in figure 1. (b) Structure factors S(Q)
vs Q (in units of 07?) calculated using eq. (9) and g(r)s of figure 2(a) for Sogami ( ) and
Yukawa (---) potentials. The parameters are same as for figure 2a. Experimental S(Q)
(+----+) is also shown for comparison. '

Qo
Figure 3. Comparison of structure factors $(Q) vs Q (in units of o™ Y célculated from MC
(——)anc BD (---}for Sogami potentials with n;= 175 x 10'*cm ™3, n, and Z as in figure 1.

S(Q). The CPU time for MC was 5h and for BD was 3 h, on Norsk Data System,
which clearly demonstrates that BD simulation saves a lot of computation time.
The dynamic light scattering experiments give a direct estimate of mean square
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Figure 4. Mean square displacement r2(t) (in units of ¢2) vs t (in seconds) calculated from
BD simulation for Sogami potential ( ) with n;=1-75x10*5¢cm "3 and for Yukawa
potential (——~) with n;=2-1x10'>ecm™3, n, and Z as in figure 1.

displacement defined as r*(t) = X)_ ; (r;(t)—r;(0))*/N. For interacting system the short

time (¢ < 7, where 7, is the mean collision time) behaviour of r(z) is like free diffusion
and the long time behaviour (¢ > t.) exhibits saturation (Pusey 1979). The short and
long time diffusion constants Dg and D, respectively can be obtained from the slope
of r*(t) vs t plot in the short and long times (Pusey 1978). Using 500 time steps of
BD simulation data r*() is calculated for both the potentials and is shown in figure
4. This behaviour of r?(r) is expected for a liquid-like ordered suspension (Gaylor et al
(1981)). One can notice from figure 4 that r?(¢) calculated for a colloidal system
interacting with Sogami potential also agrees well qualitatively and the difference in
long time behaviour of r3(t) is due to the difference in the magnitude of interaction
strengths of the two potentials. We report here Dg and D, obtained from figure 4.
Dg =24 x107® cm?/s for both potentials. D, = 0-66 x 10~ 8 cm?/s for Yukawa poten-
tial (from dashed curve of figure 4) and D, =0-71 x 10~8 cm?/s for Sogami potential
(from continuous curve of figure 4). D, for 0109 um particle in aqueous medium is
368 x 10~ cm?/s (from Stokes-Einstein relation). The D, value goes as input in
generating particle trajectories (see eq. 5). Here Dg#D,, because the time scale used
here is 10™*s. However we confirmed if smaller time scale is chosen (At=10"%5) we
obtain Dg~D,. Lower value for Dg for Ar=10"%s is because the particles start
experiencing the interaction in this time scale. Dy and D, obtained are comparable
with macroscopic values reported in the literature (Pusey 1978; Gaylor et al 1981).
D, value for both the potentials are of same order, the small difference in D, value
for both potentials could be due to differencein the interaction strengths of the
potentials. Careful dynamic light scattering measurements and accurate determination
of n; can perhaps be used to find out which potential fits better to the experiment,

5. Conclusions

We have shown that the static structure factor S(Q) obtained based on the Sogami

P
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pair potential, which has a secondary minimum, agrees well with the experimental
data. It is also shown that the mean square displacement calculated for Sogami
potential agrees qualitatively. The two features viz. the earlier mentioned reentrant
phase transition and above mentioned homogeneous liquid like ordering can be

"understood using Sogami potential. Although Yukawa can explain the second feature

it cannot explain the first feature. This suggests that Sogami potential is perhaps a
better choice for the charged colloidal systems. It will be interesting to examine some
more dynamical as well as static properties of the colloids with Sogami potential and
compare with the experiments. Such calculations are underway.
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