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Abstract. The three dominant mechanisms giving major contributions to vibrational

" relaxation in molecular systems are (a) pure dephasing, (b) depopulation (or energy
relaxation), and (c) resonant transfer. Here (¢) is not considered but the effects due.
to the simultaneous occurrence of (a) and (b) are treated within a stochastic model.
In dealing with (a), the vibrational frequency is assumed to undergo random uncor-
related ‘jump’, due to fluctuations in the environment of the active molecule
between a continuous set of values. The ensuing results are somewhat different
from those of the commonly used Kubo mode!l of vibrational dephasing, especially
at long times and appear to be better suited in interpreting certain experimental
data. The model is next extended to include the simultaneous occurrence of

~ (b).. The calculation leads to two important;conclusions: (i) the lineshape is not
just the convolution of those due to (a) and (b), and (ii) the lineshape is asymmetric,
if the intermolecular interactions are not isotropic.
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1. Introduction

Vibrational relaxation, as studied by infrared absorption, Raman spectroscopy
(conventional and picosecond) (Bailey 1974; Laubereau and Kaiser 1978), neutron
scattering (Janik and Kowalska 1965), or ultrasonic attenuation (Herzfeld and
Litovitz 1959) is an important tool for probing interactions between molecules in
gases, liquids and molecular solids (for recent reviews, see Bratos ef al 1978 and
Oxtoby 1979). In simple physical terms, the phenomenon can be understood easily
for dilute gaseous molecules for which the most dominant collision events are of the
binary type. The vibrational wavefunction of a molecule is determined by the occu-
pation number of the various normal modes and an overall phase factor. Collisions
with other molecules may induce the following three distinct effects. (1) Elastic col-
lisions cause phase shifts resulting in fluctuations of the vibrational frequency (pure
dephasing). (2) Inelastic collisions, on the other hand, may lead to direct transitions
between the vibrational levels so as to induce population or energy relaxation (de-
population). In this process, the vibrational energy is transferred to translational,
rotational or different vibrational degrees of freedom. (3) Finally, in an inelastic
collision involving a vibrationally excited molecule with a ground state molecule of
the same species, the vibrational excitation can be resonantly transferred to the
latter causing no net change in the vibrational population (resonant transfer). :
In a liquid or solid, the same relaxation mechanisms are still operative, although
many body effects make their description much more complicated than that in the
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gas phase. However in many a situation e.g. involving solute molecules in a solvent
medium, resonant transfer may be neglected and the gas type binary collision picture
of pure dephasing and depopulation is expected to provide a reasonable model
(Fischer and Laubereau 1975). Concurrently, it may be assumed that the phases of
vibrations on neighbouring molecules are uncorrelated so that the vibrational
correlation function assumes the form (@) @ (o)) where Q (¢) and Q (o) refer
to the vibrational coordinates of the same molecule (Bartoli and Litovitz 197:2;
Campbell et al 1974; Harris et al 1977). This is the situation to which we restrict
our discussion in the present paper.

Recently, there have been several attempts to show that pure dephasing and reson-
ant transfer are not independent (Lynden-Bell 1977 ; Wertheimer 1978; Oxtoby
et al 1978). In other words, the vibrational correlation function cannot be factored
as C(2) = C;(t) C, (t) where C, (¢) and C, (t) refer to pure dephasing and resonance
transfer respectively. One of the aims of this paper is to demonstrate, withu_:l a
simple stochastic model, that a factorization of C(2) is not permitted even when Jl}st
pure dephasing and depopulation are present and resonant transfer is absent, Le.
C() # Cy(2) C, (2), where C, (¢) specifies the contribution to the correlation functlczfn
due to population relaxation. This result is contrary to what is usually assumed in
the literature (Fischer and Laubereau 1975; Schoreder et al 1977a, b; Oxtoby and
Rice 1976).

Before we address to the task mentioned in the preceding paragraph, we shall first
consider pure dephasing alone. This is done with two reasons in mind (1) in recent
experiments using picosecond laser excitation, it has been possible to separately
measure contributions to the vibrational correlation function of pure dephasing
(Laubereau and Kaiser 1978), (i) we ought to be able to construct a model of pure
dephasing which facilitates the subsequent generalization to include the simul-
taneous presence of depopulation.

Now, the most widely used stochastic model of pure dephasing is a Kubo oscillator
for which the frequency is assumed to be a continuous, stationary, Gaussian-Markov
process (Kubo 1969; Rothschild 1976). If the frequency modulation is viewed to
occur due to a collision process, the corresponding collision operator, which descripes
the transition of the frequency (from  to o', say) obeys a Fokker-Planck equation
(Kubo 1969). In other words, each collision:is assumed to alter the frequency by a
very little amount. Accordingly, the Kubo model (abbreviated hereafter as Km)
bhas also been termed as a weak collision model in the theory of collision broad-
ening of spectral lines in gases (Rautian and Sobel’man 1967). In the latter area of
research, it has been a common practice to treat the other extreme of the weak colli-
sion limit, the so-called strong collision model (scM) in which each collision is
assumed to completely randomise the frequency to its equilibrium value. In addition
to the study of collision broader.ing in atomic spectroscopy (Rautian and Sobel'man

1967; Dattagupta 1977), the scm and its equivalents have been extensively applied

in recent years to various lineshape problems involving time-dependent hyperfine

spectra (for a recent review, see Dattagupta 1981). Furthermore, the widely used
J-diffusion model of rotational relaxation (Gordon 1966) in infrared and Raman

spectroscopy, is also based on an assumption of strong collision nature (Dattagupta

and Sood 1979). Despite this wide range of applications in numerous lineshape

problems, the use of scM in the study of vibrational relaxation has not been con-
sidered so far, to the best of our knowledge. We shall show (§ 2) that in some cases
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the scM gives a betteri nterpretation of the data on pure dephasing than the xm.
The scM has the further advantage that it can be generalized in a straightforward
manner to account for the combined effects of pure dephasing and depopulation, the
stated objective of the present work.

The paper is organized as follows. In § 2 we present the scM and its comparison
with the kM in the application to pure dephasing. It is found that C SM (¢) differs
from C¥M (¢) appreciably at long times, the latter falling off faster. This difference
appears to be important for a better agreement with the data on vibrational dephasing
in certain systems studied earlier (Schroeder 1977a). In §3, we deal with the situation
in which the effects of pure dephasing and depopulation are present simultaneously.
As the treatment relies heavily on our earlier work on collision broadening (Datta-
gupta 1977), with appropriate changes in the interpretation of various terms, only the
main results will be presented in § 2 and § 3. Finally, § 4 contains a brief summary
of the paper and possible extensions to include resonant transfer as well.

2. Pure dephasing: Strong collision model

[3
As stated in § 1 we assume that the phases of vibration of different molecules are
uncorrelated. Hence the vibrational lineshape is given by the real part of (the analytic
continuation to § = jw) the Laplace transform of a “single-particle’ correlation func-
tion (Oxtoby 1979).

I(w) = Re [ drexp (—st) Tr (o 0+ (0) Q (), o)
0 ‘

where ‘p is the density matrix of the entire system, Q(0) is the vibrational transition

operator, and Q(¢) describes its time-development in the Heisenberg picture.  We
adopt here a stochastic model for evaluating the statistical average in (1). In this,
the effect of the interactions between the molecule of interest and the other degrees
of freedom is assumed to render the vibrational part of the Hamiltonian Ff, randomly
tnne-dependent Accordingly, we may write

0 t
I(@) =Re [ dtexp (—st) Tr, {p, Q* ©O) [(expp (i [ I (¢)dr))
0 : .0 ‘

% 2Ok | @

where Tr, {....} is carried out over the vibrational degrees of freedom with the aid of
the density matrix p,, exprp (....) denotes a suitable time-ordering of the operators,
and (... indicates an average over the stochastic properties of ¥, (t). The supet-
script X on J, defines the Liouville operator associated with Ft, (Blume 1968). .
We shall, for the sake of convenience, be concerned here with the ground and first
excited vibrational levels, that is, the effect of hot bands will be neglected. It is
most convenient to deal with the problem in a pseudo-spin language. The two lower
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most vibrational levels can be represented by the eigenstates of the z-component

S, of a pseudo-spin operator S (S = }). The vibrational part of the Hamiltonian
may be modelled as
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H, (1) = [w, + Aw ()] S., ®
where w, specifies the static part of the vibrational frequency and Aw(?) the fluctua-
tions with zero mean. In this representation, ‘

pe = o (— By 5) (2 cosn 0], @ 1

while the transition operator O+ (or 0-) may be replaced by S+ (or S-). The line-

shape for Stokes Raman scattering or infrared absorption may be written from @
and (4) as

I; (@) = exp (} Buwy) (2 cosh P_jﬁ)—l Re fwdt exp (—st)
e J 0
L xm, {so[ewl, 0 (ot b @) s2) >s+ ] }
0

w0

=ZRefdt exp[-—— (s — iwg) t] <exp(iftdt' Aw(t") )>, (5)
0 0

where Z is a temperature-dependent prefactor, and we have used in the last step the

matrix representations of Liouville operators in carrying out the trace operation.
Assuming (as did Dattagupta 1977) that the fluctuations in the environment cause

Aw(2) to ‘jump’ instantaneously from one value to another with a probability

governed by a stationary Markov process, the lineshape in the strong collision
model can be expressed as '

(@) = ZRe [{° (o + W} — ), NG

whete p = s— fwg, v is & parameter which defines the mean rate of ‘jump’ of Aw(f)
from one value to another, and

+ .
UWp+v)= f d(Aw)p (Aw) [p + v — i Aw] 7Y, (7

P (Aw) specifying the sfationary distribution of the continuous random variable A w.
A special case of (6) when the frequency can take only two values yields the results

of the exchange model of dephasing (Harris et al 1977, 1978; Shelby et al 1979). We
shall assume for p (Aw) a Gaussian distribution :

P(Aw) = (4 )12 exp [ — (Aw)/d o?]. L ®
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This choice is dictated by two reasons: (i) in the limit of a large number of possible
frequency values, the central limit theorem applies and (ii) the stationary frequency
distribution in the KM is also given by (8) and therefore, the comparison of the
KM with the scM is facilitated by the chosen form in (8) Equatwn (7) can then be
written as - -

4 (p+ ) = VTexp (Y erfe (), ’ ©)

o

where erfc (x) denotes the complementary error function of its argument x
defined as

x=(+92 | o),

Substitution of (9) into (6) completes the solution to the vibrational lineshape in the
SCM. '

The normalized correlation function C5M (¢) in the strong collision model, may be.

obtained directly from the inverse Laplace transform of (6). This task, however, i§
to be performed numerically, a route that is usually time-consuming and marred by
trunca.tlon errors. Instead we find 1t more suitable to adopt the followmg scheme

tion is taken to obey a Volterra equation

t
%cﬁCM(t).—__ f dt’ K (1) CSOM (¢ — 1Y), )
0

where the kernel K(z) has the structure
K(1) = K1) exp (— vt), (12)

and K9(t) obeys an equation similar to (11) in terms of the Known function Co(2):

d(;o(z) f dt' Kot') C° (t — 1), | ' | (13)
4

o (f) = f d (Aw) p (Aw) exp (i Awt)

= exp (— o? 12). o (14)

It may be easily verified by taking repeated Laplace transforms and using the con-
volution theorem that the set of equations (11)—(14) is entirely equivalent to
the derived expression (6) for the lineshape in the scM. The numerical method
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(Bagles and McClung 1973) then consists in solving (13) for K°(z), determining
K(2) from (12), and finally evaluating C5 (¢) from (11).

We are now in a position to compare the preceding result of the scM with the one
obtained in the kM. In the latter, Aw(z)is assumed to be a stationary Gaussian-
Markov process so that (Kubo 1962)

t t )
(exp (i f Aw(t)dt)y = exp[ — f (t — I Aw(®) Aw(0))d], (15)
0 0
in which  ( Aw(r) Aa(0)) = { (Aw)’) exp (— 17y, * ()

where the correlation time 7, may be identified as v~ if the XM is interpreted as a
weak collision model (§ 1). Assuming further that the stationary distribution of Aw
is governed by the same probability function as in equation (8), we have

{(Aw)? Yy =2 o2, (17)
Therefore, the lineshape function in the kM is given from (15—17) by '

[¢ o]

L (@) = Z Re f dt exp (— pt) CEM(p), | (18)
0 | |
where CEM) =exp{— 20 v2[exp (—wt) — 1 + vi]} (19)

In ﬁgtires la-1c, we presenta comparative study of the computed values of CSM(z)
and CX¥M (1) plotted forthree different values of the Kubo parameter (o7.). We find
that the results differ significantly at long times, especially for larger values of o7,.
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Figure 1. a-c. The vibrational correlation function in the case of pure dephasing in
the KM and the SCM for three different values of the Kubo parameter o 7e.

: As the kM neglects the cumulants of order higher than the second (Kubo
b} 1969), the corresponding correlation function decays more rapidly than the one
in the scM. It can be seen from figure 1b that for o7, = 0-45, the difference
between the values of C5 (z) and CXM (¢) is ~ 509 for ¢ ~ 10 7, (¥ difference
= 100 x (C5™ — CEM)/CXM,
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To test the applicability of the scM, we consider now the experimental data on
pure dephasing obtained by Shroeder et a/ (1977a) on CHZCN and CD,CN. As can
be scen from figures (5)—(8) of Shroeder et al (1977a), the fit of the data to the kM
is not satisfactory at long times. The scM, on the other hand, gives a better account
of the data. In order to highlight this, wc single out the data on CH,CN at 60°C
and 0-03 kbar which have been analysed here on the basis of the kM with a value of
the Kubo parameter or, = 0-21. Figure 2 shows clearly that the scM provides a
better interpretation of the data for 7. = 0-11 psec (and hence o = 1:91 psec-1).

3. Dephasing and depopulation in the SCM

In this section we would like to deal with a situation in which the effects of dephasing
and depopulation are simultaneously present. The physical idea behind our model
is the following. Vibrational relaxation is viewed to occur as a result of ‘fluctuations’
in the environment of the active molecule, the origin of which, at a microscopic level,
can of course be traced to basic intermolecular interactions. Now, the environment
is a system with a large number of degrees of freedom, and therefore, may be assumed
to possess negligible memory. Accordingly, the fluctuations in the environment may
be taken to be short-lived and hence modelled as instantaneous ‘collisions > which
perturb the active molecule. Each collision may induce pure dephasing through an
alteration in the frequency-separation of the two levels involved in the transition, 2s
described in §2. Additionally, a collision is expected also to have a finite probability
of causing a direct transition between the two levels thereby giving rise to population
relaxation. Thus, if the vibrational state immediately prior to a collision is |+ %)
in the pseudo-spin language, population relaxation implies that the state is changed
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Figure 2. Experimental data on pure dephasing i °
phasing in CH3CN at T = 60°C and

P = 0-03 kbar (Schroeder et al 19772 and compari i )

values of the parameters ¢ Te = O'ZI?T(_. = o~1f§§§g.n with the KM and the SCM for
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to (C|4+ %) + C- | — } )) immediately after a collision, where C, are arbitrary
amplitude factors. It is evident that such a process can be incorporated in the pre-
sent model by adding to the Hainiltonian in equation (3), a term of the form
g‘l S-h; & (¢t — t,) where h; is an ‘effective’ field which depends on the strength of the
interaction between the active molecule and its surroundings at the ith collision. The
field h,, in the present formulation, is of course a random variable which should
be averaged over in the final expression for the lineshape (see below).

As mentioned in § 1, a model that is very similar in spirit to the one outlined above,
in which each. collision is viewedto cause simultaneous dephasing and depopulation,
has been treated in detail earlier in a different context of collision broadening in
atomic spectroscopy (Dattagupta 1977). Borrowing the results of Dattagupta (1977),
the lineshape can now be written as a straightforward extension of equation (6):

I()=ZRe{[4(p + ] —v (A — 1} (20)

where the parameter y depends on the averages of certain functions of the magnitude
and direction of the field h;:

y = [sint (2) 2 — sin? 6)],, + J (sin () cos 6),, @)

The azimuthal angle ¢, specifying the orientation of h; does not appear in (21) as h;
is assumed to be cylindrically symmetric.

It may be noted from (20) that the case of pure dephasing can be retrieved by
‘ switching off ° the field # and hence y. On the other hand, in a circumstance in-
volving pure depopulation, (or energy relaxation), o? = 0, and therefore (7), (8)
and (20) yield

I, (@) = ZRe (p + vy) Y, S (22)

which gives rise to a Lorentzian lineshape. The corresponding normalised correla-
tion function in the case of pure depopulation is evidently

C,(t) = exp (— vyt). _ (23)

Our next task is to demonstrate that in the general case in which both dephasing
and depopulation are simultaneously operative, the normalized correlation function
C(2) (obtained from the inverse Laplace transform of (20)) does not equal G(t), where

G(t)=C,1) Cy (1), | (24)

C, (t) being given by the solution of (11). This has been performed numerically
for different values of the parameters v and y. First, the h-fields are assumed to be
isotropic and hence y isreal. Instead of Laplace inversion of (20), C(¢) was obtained
directly by numerical solution of an inhomogeneous Volterra equation:

cw_

P =—vyC() —fdt'fc(r') Cl— 1), ' (25)
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along with (12)—(14). This route yields more accurate results than the ones
obtained by numerical Laplace inversion of (20) (Purniah 1981). Even in this case,
discrepancies exist between C(t) and G(t) as shown in figure (3a). Second, y is taken
to have an imaginary component also which, as discussed earlier, would arise from
an anisotropy in the h-fields (see (21)). In this case, it is more convenient to plot the
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Figure 3 a. The correlation functions C(2) and G(2) versus time in units of 7.. The
solid curves represent C(¢) and the dashed curves represent G(¢). Values of y are

indicated in the figure,
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lineshape in the frequency-space. Figure (3b) represents the actual lineshape I(w)
and the convoluted form Gy, (@) where G, (0) = [*2 [, (@) Ip (0—o') do'.
An interesting feature to note in figure (3b) is that the line profile J(w) is not simply

shifted as is the case of G, (), but is asymmetric also. Thus the statistical de-

pendence of pure dephasing and depopulation on each other is more pronounced
when the h-fields and hence the intermolecular forces are anisotorpic. The above
discussion implies that the total linewidths cannot always be taken to be equal to
the sum of individual linewidths (due to dephasing and depopulatlon) in contradic-
tion to the frequently adopted procedure.

4. Concluding remarks

In this paper we have treated the phenomena of dephasing and depopulation asso-
ciated with vibrational relaxation in molecular systems within a stochastic theory
approach. The analysis has been carried out in two distinct stages. First, pure
dephasing, which can be imagined to arise on account of random frequency modula-
tions of the vibrational levels, is dealt with in a strong collision model. In this, the
vibrational frequency is assumed to ‘jump’ at random, due to fluctuations in the
surroundings of the active molecule, from one value to another among a spectrum of
continuous values. The resulting lineshape is shown to provide, in some cases, a
better account of the data on pure dephasing than the commonly used Kubo
model. An extension of the theory is next made to include the simultaneous
occurrence of depopulation effects. Two noteworthy features of the lineshape
emerge from the analysis: (a) it is not merely a convolution of the individual
lineshapes due to dephasing and depopulation; (b) it is asymmetric as a result of
anisotropy in the intermolecular interactions.

We have restricted the present analysis to circumstances in which resonant transfer
is not important. Certain nontrivial generalizations of the stochastic theory have to be
carried out in order to include also the presence of resonant transfer along with
pure dephasing and population relaxation. First, correlation functions of the type
(0:(0) O2)), i # j have to be considered. Second, resonant transfer which is
essentially a cooperative effect, has to be treated in the pseudo-spin formalism, by
including in the Hamiltonian, terms of the form Jy; (S;” S; + S; S7) where S* are
the usual raising and lowering angular momentum operators. The term J;; represents
the strength of the overlap between two active molecules i and j, and is expected to be
a random function of time in the fluid phase. Attempts are underway now to investi-
gate the combined effects of dephasing, depopulation and resonant transfer within a
stochastic model and the results will be reported elsewhere.
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