Vacuum Squeezing of Solids: Macroscopic
Quantum States Driven by Light Pulses
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Femtosecond laser pulses and coherent two-phonon Raman scattering were used to
excite KTaQ, into a squeezed state, nearly periodic in time, in which the variance of the
atomic displacements dips below the standard quantum limit for half of a cycle. This
nonclassical state involves a continuum of transverse acoustic modes that leads to
oscillations in the refractive index associated with the frequency of a van Hove singularity

in the phonon density of states.

Squeezing refers to a class of quantum me-
chanical states of the electromagnetic field
and, more generally, of harmonic oscillators
for which the fluctuations in two conjugate
variables oscillate out of phase and become
alternatively squeezed below the values for
the vacuum state for some fraction of a cycle
(I). Thus, a squeezed electromagnetic field
provides a way for experimental measure-
ments to overcome the standard quantum
limit for noise imposed by vacuum fluctua-
tions. As such, the generation of squeezed
light with various nonlinear processes has
attracted much attention as a means of re-
ducing noise in optical interferometry and
light-communication networks (1).
Following the work on photons (1), a
variety of intriguing proposals were put for-
ward dealing with squeezed states of other
bosons—particularly those associated with
atomic vibrations in molecular (2) and con-
densed-matter systems (phonons) (3)—as
well as polaritons (4). In addition, squeezed
phonons were considered in variational ap-
proaches to the ground state of strongly
correlated electron-phonon problems (5).
Here, we report an experimental demon-
stration of phonon squeezing in a macro-
scopic system (6). We have generated a
squeezed mechanical state by exciting a
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crystal, KTaOj;, with an ultrafast pulse of
light. The measurements were performed
with the standard pump-probe setup (Fig.
1). Second-order coupling of the photons
with the lattice vibrations [specifically,
transverse acoustic (TA) modes] amounts
to an impulsive change in the phonon fre-
quency that gives rise to squeezing; this
mechanism is closely related to that used to
generate two-photon coherent states in
quantum optics (7). We monitored the
squeezed state by measuring the transmis-
sion of a second (probe) pulse that is sensi-
tive to changes in the refractive index aris-
ing from the modulations in the mean
square displacement of the atomic posi-
tions. Our state comprises a continuum of
modes, but the probe transmission is domi-
nated by a single frequency associated with
a van Hove singularity in the phonon den-
sity of states.

The Hamiltonian rL]cvant to our pmh-
lemis H= X (H, + U,), where H, = (P2
+ (12 22 1s the harmonic contribution
to the lattice energy and (8, 9)
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Fig. 1. Schematic snapshot

Here, Q, is the amplitude of the phonun of
frequency (), and wave vector q, P, is the
associated canonical momentum, F is the
magnitude of the electric field, ? =
2,Pee,P.(q) is the second-order polariz-
ablllty tensor associated with Raman scat-
tering (RS), and e = F/F is a unit vector
(for clarity, we omit the phonon branch
index). Equation 1 describes an effective
interaction between two phonons of oppo-
site momenta and two photons and reflects
the quadratic term in an expansion of the
electronic susceptibility in powers of atomic
displacements (10).

The generation of the squeezed state is
best understood at temperature T = 0. Let
E denote the pump field, and consider the
assumption, valid in our experiments, that
the period of the relevant phonons is large
compared with both the time it takes for
the pulse to cross the sample and the
optical pulse width 7, that is, we ignore
the dependence of the field on position
and approximate F? = E*(t) (4ml,/
ngc)d(t) in Eq. 1 (I, is the integrated
intensity of the pulse, ng is the refractive
index, c is the speed of the light, and & is
the Dirac delta function). Then, if " is
the wave function (the ground state) of a
given mode at t = 0~ immediately before the
pulse strikes, integration of the Schrod-
inger equation gives the wave function at
t=0"

. i€, Q,Q7 )
q = expl b, (2)

where £, (wloP[2enpQ)) and £ is
Planck’s constant divided by 2. It follows
that (Q,(¢)) = O (the brackets denote ex-
pegtatmn value). We use the equation of
motion for Qf; and the initial conditions
from Eq. 2 to obtain the variance

diagram of the experiment
(not to scale). The stronger
pump pulse drives the sam-
ple into an excited time-

varying state, which per-
turbs the weaker probe
pulse that follows behind.
Here, the signal of interest is
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the transmitted intensity of the probe beam as a function of the time delay 7, as measured by the relative

distance between the two pulses.



(Q2(1)) = (Q%(0))
[sd, + (42 = 1)Y5in(2Qt + 9,)]  (3)

Here, s, = (1 + 2§2 ) and tan(¢,) = —§,.
The time evo]utmn Dflij can be represenv
ed by a variance trajectory (Fig. 2A), which
shows squeezing similar to that obtained for
the electromagnetic field in two-photon co-
herent states (7). As in the latter case, the
motion described by U has no classical an-
alog (11, 12). Parenthetically, we note that
the same method can be used to reduce
thermal noise, other than quantum fluctu-
ations (Fig. 2B) (13). Classmally, the equa-
tion of motlon is Q + ﬂqu =
2,0 Q. 8(1) Thus.Q(+ = Q,07),

g™ g

whereas Q0") = Q (0 )+ ZéqﬂqQ (0).
It can then be shown that the isotropic
equilibrium distribution becomes an ellipti-
cal one that rotates at twice the harmonic
frequency (13).

The previous discussion centered on the
behavior of an excitation of a well-defined
wave vector. However, our experiments
concern themselves not with single phonon
but with real-space squeezing involving an
average over all of the modes. Here, we use
the fact that the wave functions of the solid
as a whole are ¥~ = TLy; (¢t < 0) and
vt = qub+ (t > 0) tu calculate the

variance

M
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which provides a measure of the squeezing
(14); u(l) and M(l) are, respectively, the
deviation from equilibrium and the mass of
the Ith atom in the unit cell, N is the
number of unit cells, and My = ZM(]).
Because (Q;: ) depends only on the mode
frequency, u-space squeezing pertains to the
phonon density of states, that is, the char-
acteristic frequencies for {(U?) are those of
van Hove singularities where the phonon
density is large. Thus, the zero-temperature
description is an accurate representation of
experiments performed at temperatures for
which kT (the thermal energy; k;; is Boltz-

mann's constant) is very small compared
with the van Hove phonon energies.

The data were obtained from a ~3
mm X 10 mm X 0.5 mm single crystal of
KTaQO; oriented with the [001] axis perpen-
dicular to the large face at 10 K (15). As a
light source, we used a mode-locked Ti-
sapphire laser providing pulses of full
width =70 fs centered at 810.0 nm at a
repetition rate of 85 MHz and an average
power of 60 mW focused to a 70-pm-diam-
eter spot. Spontaneous RS measurements
were recorded in the backscattering config-
uration with 30 mW of a continuous-wave
Ti-sapphire laser also tuned to 810.0 nm, or
an Ar laser operating at 514.5 nm (16).

The scattering of the probe pulse by the
squeezed state relates to the nonlinear polar-
ization PN" = 3x" E' (t). Here, E’ is the
probe flcld X = (ZV) I3, ’]”,,(Q( ) is the
second-order Raman susccpnb]llty, and V is
the scattering volume. Consider a Gaussian-
shaped probe pulse of width 7, centered at
frequency w,, that is, E (1) = exp[—@?/
273)]lcos(wqu), with u = t — 7 (7 is the time
delay between the pump and probe pulses).
Using well-established results for coherent
phonons (17) and in the limit & — 0, which
is relevant to the experiments, we obtain the
7 dependence of the normalized change in
the probe transmission at frequency w

AS 4rriw(ow — )
3 npcV
X 2 P (@)E(QA0))eos(20,T)exp(—20272)
q
(5)
where ' = 3, P,¢/ ¢ and ¢’ = E'[E". Using

Egs. 3 to 5 and nenlectmg the weak depen-
dence of 2 on g, we obtain Uy foe = AT|T.
Accordingly, the integral of AT /T probes the
variance (U?), which measures the strength of
the squeezing. The proportionality constant as
well as (U*(0)) can be unequivocally deter-
mined from our measurements.
Time-domain results are shown in Fig.
3A. The Fourier transform F(Q) =
J(AT T )cos(Qr)dr (Fig. 3B) is dominated

by a narrow peak, strongly dependent on

Fig. 2. (A) AP = (F2(t))"/ ver-
sus AQ = (Q2(1)""2 in units of
(722 and (h/2Q0)"2, re-
spectively. Dots denote val-
ues immediately before (t =
07) and after {t = 0%) the
pulse is applied. The circular
arc is the trajectory for t = 0.
Shaded regions represent
quadrature-squeezed states.
Minimum-uncertainty  states
lie on the hyperbola (dashed

AP

1.0

curve). (B) Classical phase- 1.0
space diagrams showing the

circular (t < 0) and elliptical (f > 0) noise distributions.

temperature, that appears very close to
twice the frequency of the TA mode at the
X point of the Brillouin zone, as measured
by neutron scattering (18). On the basis of
this peak and the comparison between the
time-domain (Fig. 3B) and the spontaneous
RS measurements (Fig. 3C), we ascribe the
structure to the 2TA overtone. The sharpness
and strength of the 2TA peak reflects to
some extent the flatness of the phonon
dispersion near the zone boundary (18, 19).
For a given irreducible component, it can
be shown from previously derived expres-

sions (8, 9) that F,(Q) « F(Q)exp (073
2)/C( 29 where $((}) is the second-order
RS cross section and C() = (#/2Q)[1 —
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Fig. 3. (A) Normalized transmitted intensity of the
probe pulse as a function of the delay for the
A, g-Symmetry configuration. (B) Fourier transform
of the time-domain data. (C) Weighted second-
order Raman cross section J(Q)exp(—Q273/2)/
C(2()) obtained at 810.0 nm.
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Fig. 4. Experimental time dependence of the
squeezing factor & = 1 — [(U())/(U0)]"? at
integrated pulse intensity /, = 19 pJ/cm?. (Inset)
Amplitude of & as a function of /.



exp(—fiQ/k,T)]'. The comparison between
Figs. 3B and 3C indicates that this theoretical
prediction is in reasonable agreement with
the experimental data. However, there are
significant differences concerning the line
shape that are not understood.

To further support our interpretation, as
well as to provide a quantitative estimate of
the variance (%), we obtained the absolute
RS cross section by comparing KTaO; with
the standard CaF, using the 514.5-nm laser
line. From these measurements, if we ignore
the dependence of the polarizability on the
wave vector, we find that for the A, com-
ponent, P, = Py, = Py =a= (6 £12)
X 10" c¢mfg, which compares favorably
with the value a = (4 = 1) X 10"° cm/g
that we obtain from the pump-probe exper-
iments using Egs. 3 and 5. From these val-
ues, we determine the proportionality con-
stant relating #{U%)/at to AT/T, and from
the spontaneous RS measurements (20),
we obtain (U%(0)), which corresponds to
the standard quantum limit AP, = QAQ
= (#£/2)"2. Combining these results amj
integrating AT /T, we get (WU (¢)}{U*(0)).
In Fig. 4, we plot ¥ = — [¢ux(e)y/
(U*(0))]"?, which is referred to as the
squeezing factor (21); u-squeezing corre-
sponds to F > 0. We notice that, for §, <<
1, Egs. 3 and 4 predict that & (<< 1)
should be proportional to the pump energy
density I,. This prediction is well obeyed
for densities in the range I, = 5 to 20
w)/em? (Fig. 4, inset).
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