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2LEMA, UMR 6157 CNRS-CEA, Université François Rabelais, 37200 Tours, FRANCE and

3Department of Chemical Engineering,

Lehigh University, Bethlehem, Pennsylvania 18015, USA

(Dated: February 6, 2008)

Abstract

We use classical molecular dynamics simulations to study the collapse of single (SWNT) and

double-walled (DWNT) carbon nanotube bundles under hydrostatic pressure. The collapse pressure

(pc) varies as 1/R3, where R is the SWNT radius or the DWNT effective radius. The bundles show

∼ 30 % hysteresis and the hexagonally close packed lattice is completely restored on decompression.

The pc of DWNT is found to be close to the sum of its values for the inner and the outer tubes

considered separately as SWNT, demonstrating that the inner tube supports the outer tube and

that the effective bending stiffness of DWNT, DDWNT∼2DSWNT . We use an elastica formulation

to derive the scaling and the collapse behavior of DWNT and multi-walled carbon nanotubes.

PACS numbers: 81.07.De, 02.70.Ns, 62.20.Dc, 62.50.+p
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I. INTRODUCTION

Since their discovery, carbon nanotubes have been subject to intense theoretical and

experimental investigations due to their fascinating structural, electronic, and mechanical

properties1. Carbon nanotubes are showing great promise in such diverse fields as nano-

electronics, actuators, sensors2, nanofluidics, hydrogen storage, and high-strength materials.

The mechanical properties of carbon nanotubes depend on the number of coaxial graphitic

rings that go into their making. Significant advances have been made in the understanding

of single (SWNT) and multi-walled (MWNT) carbon nanotubes. Double-walled carbon nan-

otubes (DWNT) have been observed and synthesized3,4 more recently. Being the simplest

of the MWNT, they are ideal systems to study the evolution of various properties from the

single to the multi-walled regime.

High-pressure Raman experiments on SWNT bundles5,6,7 point to a structural phase

transition at ∼ 2 GPa. The current understanding is that the initially circular nanotube

cross section is distorted to an oval shape under pressure. High pressure X-ray diffrac-

tion studies also indicate a phase transition8 from the ambient triangular lattice symmetry,

which reappears under decompression. Molecular dynamics simulations suggest that SWNT

bundles9,10 as well as isolated tubes11,12 collapse under hydrostatic pressure and that the

collapse pressure varies as an inverse power law of the tube radius. More recently, several

workers13,14,15,16,17 have used Raman spectroscopy to study bundles of DWNT under hydro-

static pressure. They conclude that the environment inside the outer tube is highly defect

free and unperturbed, that the outer tube acts as a protective shield for the inner tube and

that the inner tube provides structural support to the outer tube.

In this paper, we describe a set of molecular dynamics simulations performed to investi-

gate the behavior of DWNT under pressure, focusing on the response of the inner and the

outer tubes. These results are contrasted with similar MD simulations on bundles of SWNT.

Observed results are interpreted within the framework of the elastica theory.

II. SIMULATION METHODOLOGY

We have used DREIDING18, a standard generic macromolecular force field, in all our

molecular dynamics (MD) simulations. Table I lists the force field parameters used to
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calculate intra and inter molecular interactions. Elliott et al.9 have successfully used this

force field to study the collapse of SWNT bundles under hydrostatic pressure. Our simu-

lations have been performed using ModulaSim19, a modular and general purpose molecular

modeling package. The ensemble used was one of constant particle number, pressure, and

temperature (NPT). The temperature (300 K) and the applied hydrostatic pressure were

maintained using the Berendsen thermostat and barostat20. The simulation cell consisted

of 16 independent SWNT or DWNT arranged in a hexagonally close packed 4 × 4 bundle,

with periodic boundary conditions and pressure applied along all three mutually perpen-

dicular directions. The tubes were ten unit cells long (2.3 nm). It has been found9 that

nine independent tubes, ten unit cells long, are sufficient to avoid finite size effects. The

MD simulations were carried out on four SWNT, (5,5), (10,10), (15,15), and (20,20) and

four DWNT, (5,5)@(10,10), (7,7)@(12,12), (10,10)@(15,15), and (15,15)@(20,20) bundles

using the standard velocity Verlet algorithm to integrate the equations of motion. The gap

between the inner and the outer tubes is ∼ 3.4 Å, close to the inter-layer gap in graphite.

The bundles were initially equilibrated at atmospheric pressure and subsequently subjected

to step-wise monotonically increasing hydrostatic pressure increments, allowing the unit cell

volume to equilibrate for at least 10 ps at each step. The simulation time step was 1 fs.

Information about the structural transition was obtained by measuring the unit cell volume

after equilibration at each hydrostatic pressure step.

III. RESULTS AND DISCUSSION

All the SWNT and DWNT equilibrated at atmospheric pressure have nearly circular cross

sections, as shown in Figs. 1(a) and (c) for a SWNT and a DWNT bundle, respectively.

At atmospheric pressure, rmin/rmax ≥ 0.93 where rmin and rmax are the smallest and the

largest distances from the center to the circumference of the tube cross section. To study the

structural transition, we plot the reduced volume (V/V0), where V0 is the unit cell volume

at atmospheric pressure, for the various SWNT bundles as a function of pressure as shown

in Fig. 2 (a). It is clear that each of the four SWNT bundles undergoes a spontaneous

structural transition at a critical pressure (pc), which decreases as the radius of the tubes

increases, in agreement with previously published results9,10. Unless otherwise specified,

pc refers to the structural change pressure on the loading curve. On plotting the reduced
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volume versus pressure for the DWNT bundles, as shown in Fig. 2 (b), we once again observe

clear structural transitions at well-defined critical pressures. Up to the critical pressure, the

tube cross sections remain nearly circular with slight deformations from the circular shape.

When the applied hydrostatic pressure exceeds pc, the tube cross sections assume an elliptical

shape. Further increase in pressure results in a dumbbell shape as shown in Figs. 1(b) and

(d). The loading and unloading curves show a ∼ 30% hysteresis in all the bundles studied.

The hysteresis is calculated as 100% × [ploading
c − punloading

c ]/ploading
c . The hexagonally close

packed lattice is completely restored in all SWNT and DWNT bundles on decompression.

A closer look at the critical pressures of the DWNT bundles in Fig. 2 (b) reveals several

interesting features. First, we notice that the pc of a DWNT bundle is greater than the pc

of an SWNT bundle of the outer tubes alone. For example, the pc of the (10,10)@(15,15)

DWNT is 4.1 GPa, a value higher as compared to the pc of (15,15) SWNT (0.9 GPa). This

shows that the inner tube supports the outer tube under hydrostatic pressure. Second, the

pc of the DWNT bundle is even higher than the pc of an SWNT bundle of the inner tubes

alone. For the (10,10)@(15,15) tubes, 4.1 GPa (pc of the DWNT bundle) is higher than 3.2

GPa (pc of (10,10) SWNT bundle). Having demonstrated that the pc of a DWNT bundle

is higher than the pc of both the inner and the outer tubes, we now ask whether one can

predict the pc of a DWNT bundle with the knowledge of the pc of the inner and the outer

tubes. From Fig. 2, we see that the pc of a DWNT bundle is close to the sum of the pc of

the inner and the outer tubes. In our example, 4.1 GPa (pc of the (10,10)@(15,15) DWNT

bundle) is equal to 3.2 GPa (pc of (10,10) SWNT bundle) plus 0.9 GPa (pc of (15,15) SWNT

bundle). In section IV, we derive an analytical result that demonstrates this behavior.

Fig. 3 (a) shows the collapse pressure of the SWNT bundles versus the tube radius

along with a 1/R3 fit11,12. If we now define an effective radius of a MWNT with n walls, as

1
R3

eff

= 1
n

∑n

i=1
1

R3

i

, the collapse pressure of the DWNT bundles is found to follow a 1/R3
eff

dependence as seen from Fig. 3 (b). Let D be the bending modulus of the graphene sheet

so that the energy per unit surface area associated with curvature k is given by21,22,23,24

ue = D
2
k2. The value of DSWNT has been estimated from a plot of the single point energies

per unit surface area of seven isolated SWNT as a function of 1/R2 (Fig. 4 (a)), which

gives the value of DSWNT to be 2.90 eV. The mean curvature for a bundle was calculated

by averaging its local value at each atom of each tube (see Appendix). Using the values of

curvature and D (from Fig. 4), the values of the elastic energy per unit surface area for all
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the bundles were calculated and are plotted as a function of pressure in Fig. 5. It is clear

that the elastic energy, as expected, follows the structural transition shown in Fig. 2. The

insets show that the relative increase in elastic energy during collapse increases linearly with

radius for both SWNT and DWNT, which can be understood by the following argument.

The elastic energy per unit length of a nanotube of radius R before collapse is Ubc = Dπ/R.

After collapse, the tube has flat regions, which have no elastic energy, and bent regions.

The shape of the bent regions is invariant with respect to change in radius R. That is, any

increase in R simply increases the flat regions. Let R′ be an effective radius of the bent

regions. Then, the elastic energy of the collapsed nanotube is Uac = Dπ/R′. Since R′ is a

fixed number that is independent of R (but less than R in magnitude), the relative increase

in elastic energy on collapse is

Uac − Ubc

Ubc

=

(

Dπ/R′ − Dπ/R

Dπ/R

)

=
R

R′
− 1 > 0. (1)

This shows that the percent change in elastic energy on collapse depends linearly on the

radius of the nanotubes.

IV. SCALING OF THE RESPONSE WITH RADIUS, ADHESION ENERGY,

AND BENDING ELASTICITY.

The main results so far, 1/R3 dependence of pc and that the pc for DWNT is a sum

of the pc for packing of separate SWNT bundles, can be derived from a formulation based

on elastica theory25,26. Assume that the response of nanotube bundles to external loading

can be calculated by minimizing a properly defined potential energy functional23,24. For a

nanotube bundle of length L, assume that deformations are primarily two-dimensional in

the cross section of the bundle. Let s denote length along a path that traverses the graphene

sheets in this 2D cross section. Let S represent the complete path and SP the part of this

path on which we apply external pressure. Tubes interact with each other via an interatomic

potential that has an attractive van der Waals component and a short-range repulsion. The

latter component of the interaction effectively prohibits two surfaces from approaching each

other too closely. Therefore, the surface S can be considered as consisting of two parts.

Over the part of S where the short-range repulsion creates a flat interface, Sa, we say they

are in contact; over the remaining surface, S −Sa, we say that they are not in contact. The
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utility of this partitioning is that a material property, the work of adhesion of two graphene

sheets, can be associated with Sa. The potential energy per unit length of the bundle can

be written as23,24

V

L
=

∫

S

D

2
k2ds − WaSa −

∫

S−Sa

uext
vdwds −

∫

ST

T · vds +

∫

S

ugds, (2)

where the first term represents energy due to bending of the graphene sheet to mean curva-

ture k, the second and third terms capture adhesive van der Waals interactions, the fourth

term represents the work of external forces with T, the external traction, and v, the displace-

ment on the surface where tractions are applied, and the last term is the energy of formation

of a flat sheet (ug is the energy of formation per unit surface area of a graphene sheet). The

attractive van der Waals energy has been written in two parts. The first, WaSa, captures

regions where graphene sheets are in contact; Wa is the work of adhesion per unit area of

bringing two flat nanotube walls from infinity to equilibrium separation. For DWNT and

MWNT, there is a contribution to the work of adhesion due to interlayer contact. Because

layers deform together, this contribution does not change with deformation. It will therefore

vanish in a variation and for DWNT/MWNT Sa can be identified as the area of contact

between outermost layers. The term uext
vdw represents interactions outside the contacting

regions. Once the tubes are in contact, the change in this term with further deformation

can be neglected23,24. The scaling of the solution can be extracted simply by a suitable

normalization. Normalizing all length scales in Eq. 2 by the radius, and dropping terms

that vanish in a variation, we obtain an expression for potential energy per unit length, v,

v =
RV

DL
=

∫

S̄

1

2
k̄2ds̄ − αS̄a +

∫

S̄T

b̄ · v̄ds̄; α =
WaR

2

D
; b̄ =

TR3

D
= βn; β =

PR3

D
(3)

where b̄ is a dimensionless applied traction field, β is its (scalar) value for the case of

fixed applied pressure, and n is the unit normal. Our dimensionless formulation implicitly

assumes that no other length scale enters into the problem, for example, through boundary

conditions. A possible exception is the interlayer spacing. Prior to collapse, it has been

shown that the deformation of two nanotubes in contact is independent of this parameter23,24.

In the collapsed state the interlayer spacing perturbs only slightly the solution obtained by

neglecting it23,24. On this basis, we neglect its influence on our formulation; this assumption

is justified by good agreement between the predicted scaling and simulation results.

Therefore, within our assumptions, the deformation depends only on two dimensionless

parameters, α and β. If the dominant influence on deformation is external pressure, then
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events such as collapse or phase transitions will occur at critical values of β, say at βc. This

establishes the scaling of critical pressure to be Pc = βcD/R3. In the absence of external

pressure such events will occur at critical values of α, as already established23,24.

For commensurately packed MWNT, where difference in radius equals the equilibrium

separation between graphene sheets, this argument can be extended to DWNT and MWNT.

First, we recognize that the shape of any one shell in a deformed MWNT can be obtained

from the shape of another shell simply by a change of scale. To build up a deformed

MWNT packing, we therefore first start with a SWNT packing, say the shell with the largest

diameter. Consider Fig. 1 (a), a SWNT bundle, in the case of deformations dominated by

external pressure. At any stage of the deformation the solution k̄ is a function of α, β. Denote

by T the surface tractions needed to support the shape of this shell. Now make an identical

copy of the deformed bundle and reduce its diameter by a change in scale to a value just

small enough to fit inside the first shell. The new shape is also a solution if we scale all the

tractions according to T = βD/R3. Take the smaller bundle, separate the nanotubes, and

insert each into its corresponding tube in the larger bundle. If we assume that the interface

between the walls of a DWNT cannot carry any shear tractions, the resulting bundle is also

a solution. We note that the tractions on the inner tube have to be provided by the outer

tube. This leads to the conclusion that the net external tractions we need to apply to the

outer shell is the sum of tractions needed to bring the two constituent SWNT’s to similar

shapes. This is easily generalized to a MWNT, establishing the fact that for deformation to

the same normalized shape, the needed applied pressure is p =
∑n

i=1 pi. All the nanotubes

will collapse simultaneously and so

pc =

n
∑

i=1

pci = βcnD
1

n

n
∑

i

1

R3
i

(4)

thus establishing the result that the collapse pressure for a MWNT packing is the sum of

collapse pressures of the constituent SWNT packings, and providing the rationale for the

effective radius defined earlier.

As an independent test of this model, we have plotted the collapse pressure as a function

of Reff in Fig. 3 (b); it fits a 1/R3
eff relationship well. The fit yields a value for βcDeff = 8.92

eV. If we define the surface of DWNT to be a cylinder with radius Reff , the energy per unit
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surface area of DWNT is given by

ue =
1

2πReff

(

πD

R1
+

πD

R2
− Waπ(R1 + R2) + 2πug(R1 + R2)

)

=
Deff

2R̃2
− Wa

R1 + R2

2Reff

+ ug

R1 + R2

Reff

, (5)

where 1/R̃2 = (1/2R1Reff + 1/2R2Reff ), R1 is the radius of the inner tube, and R2 is the

radius of the outer tube. In Eq. 5, the first term corresponds to the elastic energies of the

inner and outer tubes, the second term to the interaction energy of the two tubes and the

third term to the energy of formation of the two tubes. Eq. 5 shows that the energy per

unit surface area of DWNT scales with the inverse square of the length R̃. This quantity is

readily computed for different DWNT and Fig. 4(b) plots the single point energy per unit

surface area of five DWNT as a function of 1/R̃2. A fit using23,24 ug = 0.765 and Wa = 0.4

yields a value of Deff = 6.4 eV, which is close to twice DSWNT . Together with the fit to

collapse pressure, the DWNT data yield a value of βDWNT
c = 1.39, very close in value to

the that obtained from SWNT simulations (βSWNT
c = 1.31).

V. SUMMARY

To summarize, we use classical MD simulations to show that DWNT bundles collapse

at a critical pressure pc that, like in the case of SWNT, varies as 1/R3
eff , where Reff is a

suitably defined effective radius. We find that the SWNT and DWNT bundles show a ∼

30% hysteresis and that the hexagonally close packed lattice is completely restored in all

SWNT and DWNT bundles on decompression. Interestingly, we find that the pc of a DWNT

bundle varies as the sum of the pc of the inner and the outer tubes considered separately as

SWNT bundles (a result we derive analytically), demonstrating that the inner tube supports

the outer tube and that DDWNT∼2DSWNT , where D is a bending stiffness.
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Note. After the completion of our analysis, Ye et al.27 published constant pressure MD

simulations demonstrating a hydrostatic pressure-induced structural transition for isolated

DWNT. The values of the critical pressures they obtain for isolated DWNT are 0.4 to 0.5

times the values we find for the same diameter DWNT arranged in a bundle.

APPENDIX: Calculation of mean curvatures for SWNT and DWNT bundles

The following algorithm was used for the calculation of the mean curvature for a bundle

of SWNT or DWNT. Each of the 16 tubes in the system is an armchair tube (n, n) with

ten unit cells. It can be shown that the total number of atoms per tube is 40n. The local

curvature is calculated at every atom that belongs to the middle eight unit cells (32n atoms).

The atoms belonging to the unit cells at the ends of the tubes are not considered because

these atoms do not have the sufficient number of neighbors required for our calculations (as

will be clear later).

Each of the 32n atoms is considered one at a time. For each atom, the coordinates of its

three nearest neighbors and six next nearest neighbors are found using a search algorithm.

The central atom’s three nearest neighbors are used to define a plane passing through them

and the normal to this plane is found. This is defined to be the new z-axis. The new x- and

y-axes are suitably defined to be mutually perpendicular.

A rotation matrix is now constructed using the components of the normal. The matrix

is then used to transform the coordinates of the ten atoms (the central atom and its nine

neighbors) to the new coordinate system. In the new coordinate system, a quadratic surface

of the form z = g(x, y) is fit to the ten points as follows. The expanded form of the equation is

given by z = ax2+by2+cxy+dx+ey+f . This equation can be written treating (a, b, c, d, e, f)

as the unknowns and (x2, y2, xy, x, y, z) as the coefficients. The coordinates of the ten points

give us ten equations in six unknowns. In matrix notation, we have [N ]10×6[A]6×1 = [Z]10×1,

where [A] is the matrix to be determined. The values of (a, b, c, d, e, f) are obtained by

calculating [A] using the relation [A] = ([N ]T [N ])−1[N ]T [Z].

The mean curvature of a surface, as defined above, is given by28

H = ∇ ·

(

∇g
√

1 + |∇g|2

)

. (6)
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The value of H at the central atom is now calculated using the values of (a, b, c, d, e, f) and

the coordinates of the central atom.

This process is repeated for all the 32n atoms of the tube. The local curvature values

at atoms of the other fifteen tubes in the bundle are similarly calculated to yield a total of

512n values. The average curvature for the bundle is simply the mean of these 512n values.

For bundles of DWNT, the same procedure is used, treating the inner and the outer tubes

as separate SWNT and averaging over atoms in 32 tubes.

This method gave good results for all tubes except the very small (5,5) tube, which cannot

be well approximated by a smooth cylinder even at 0 K. The calculated mean curvature,

using the method described above, for an optimized (5,5) tube at 0 K differs from the value

of the curvature of a cylinder of the same radius (given by 1/radius) by more than 5 %.
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Ebond(R) = 1
2Kb(R − R0)

2 R0 1.39 Å Kb 1050 (kcal/mol)/Å2

Eangle(θ) = 1
2Kθ(cos θ − cos θ0)

2 θ0 120◦ Kθ 100 (kcal/mol)/rad2

Etorsion(φ) = 1
2V {1 − cos[n(φ − φ0)]} φ0 180◦ V 25.0 kcal/mol n 2

Einv(Ψ) = 1
2

Ki

(sinΨ0)2
(cos Ψ − cos Ψ0)

2 Ψ0 0◦ Ki 40 (kcal/mol)/rad2

EvdW (R) = D0

{

(

R0

R

)12
− 2

(

R0

R

)6
}

R0 3.8983 Å D0 0.0951 kcal/mol

TABLE I: Parameters for the C R atom type (sp2 hybridized carbon atom involved in resonance),

in DREIDING18, a standard generic macromolecular force field used in all our molecular dynamics

simulations.
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FIG. 1: The upper figures show a 4 × 4 bundle of (10,10) SWNT at (a) p = 1.0 Atm (before

collapse) and (b) p = 6.0 GPa (after collapse). The bottom figures show a 4 × 4 bundle of

(10,10)@(15,15) DWNT at (c) p = 1 Atm (before collapse) and (d) p = 10.2 Gpa (after collapse).
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FIG. 2: Reduced volume (V/V0) as a function of applied hydrostatic pressure for (a) SWNT and

(b) DWNT bundles. The loading (solid symbols) and unloading (open symbols) curves clearly

show hysteresis.
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FIG. 3: Critical collapse pressure (pc) as a function of (a) SWNT radius and (b) DWNT effective

radius defined in the text. We estimate the values of βc for both SWNT and DWNT using Eq. 3.
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FIG. 4: Single point energy per unit surface area at 0 K as a function of 1/R2 for seven isolated

SWNT (a) and as a function of 1/R̃2 for five isolated DWNT (b). The value of D, the bending

stiffness, is obtained from the fit to Eq. 5.
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FIG. 5: Energy per unit surface area as a function of applied hydrostatic pressure for (a) SWNT,

and (b) DWNT bundles. Notice the correspondence with Fig. 2. The insets show the relative

increase in elastic energy during collapse as a function of radius.
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