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Abstract

We show experimentally that the route to chaos is via intermittency in a shear-thinning worm-

like micellar system of Cetyltrimethylammonium Tosylate (CTAT), where the strength of flow-

concentration coupling is tuned by the addition of salt sodium chloride. A Poincaré first return

map of the time series and the probability distribution of laminar lengths between burst events

shows that our data is consistent with type-II intermittency. The coupling of flow to concentra-

tion fluctuations is evidenced by the “Butterfly” intensity pattern in Small Angle Light Scattering

(SALS) measurements performed simultaneously with the rheological measurements. The scat-

tered depolarised intensity in SALS, sensitive to orientational order fluctuations, shows the same

time-dependence (like intermittency) as that of shear stress.

PACS numbers: 82.70.Uv, 83.85.St, 83.85.Ei, 82.70.Gg, 83.60.Wc
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Rheochaos - irregular time-variation in the stress/shear rate at a constant shear

rate/stress arising from nonlinearities in the viscoelastic constitutive equations - was first

observed [1] in shear-thinning wormlike micelle solutions. This has led to many theoretical

[2–6] and experimental studies of this striking effect in a wide variety of other systems in-

cluding shear-thickening wormlike micellar solutions [7], lamellar, onion and sponge phases

of surfactants [8] and dense colloidal suspensions [9]. NMR velocimetry and rheo-optical

experiments [10] suggest that rheochaos is closely linked to the phenomenon of shear band-

ing. Above a critical shear rate γ̇c, microscopic models for wormlike micelles [11] predict

a decrease in stress(σ) with further increase in the shear rate (γ̇), rendering homogenous

flow unstable. This gives rise to coexistence of high and low shear rate bands at a common

stress and shows up as a stress plateau in the flow curve. It has been shown in [10] that the

interface between the shear rate bands is not stable as predicted [11], but shows complex

spatio-temporal dynamics and this is accompanied by stress/shear rate fluctuations. Spatial

heterogeneity should play a role in understanding rheochaos as exploited in recent theoreti-

cal models [5, 6]. In this Letter we answer a crucial question that has remained unaddressed

in experiments so far: what is the route to rheochaos?. Our primary observations are sum-

marized in Figs. 2 & 3, where we show that the route to rheochaos is via intermittency for a

system of wormlike micelles with strong coupling of flow to concentration fluctuations. We

also establish, using SALS measurements, the vital role played by the nematic alignment of

the wormlike micelles (see Fig. 4) in rheochaos.

Some background material will be useful here. There are primarily three routes to chaos:

the period-doubling route, the quasiperiodic route and the intermittency route. The inter-

mittency route is mainly characterised by bursts of chaos disrupting nearly periodic (laminar

region) oscillations. Pomeau and Manneville [12] have established that within the intermit-

tency route there are further three types. Type-I appears with a inverse tangent bifurcation,

Type-II with a Hopf bifurcation and Type-III is associated with a period doubling bifur-

cation. Experimentally, all three types of intermittency have been observed in a variety

of hydrodynamical and electrical systems [13], although there are fewer examples of Type-

II intermittency which sets in via quasiperiodicity. Our experiments, we show below, are

consistent with Type-II Intermittency route to chaos.

In a recent theoretical study, Fielding and Olmsted [14] have taken into account the

effect of concentration coupling in shear banding wormlike micellar systems that are far
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from a zero-shear isotropic-nematic (I-N) transition. Their model predicts a positive value

for the slope of the plateau in the banded region of the flow curve, and the slope increases

with the strength of the coupling between flow and concentration fluctuations. In a recent

experimental work, Bandyopadhyay and Sood [15] have shown that the slope α of the stress

plateau, which we find is a power law (σ ∼ γ̇α), for wormlike micellar solutions of surfactant

Cetyltrimethylammonium Tosylate (CTAT) can be tuned by adding salt(NaCl). These

results motivated us to study the consequences of flow-concentration coupling on the stress

relaxation dynamics in this class of systems.

The phase behaviour of CTAT has been well characterised [16]. Above the Krafft tem-

perature of 23◦C and at concentrations (0.04 wt% < c < 0.4wt%) cylindrical micelles are

formed which, at c > c∗ = 0.4wt%, entangle to form viscoelastic gels. The CTAT/water and

CTAT/NaCl/water samples were prepared by dissolving known amounts of CTAT (Sigma

Aldrich) in water and brine, respectively, and this study mainly focuses on the later. The

samples were filtered through 200nm pore size filters to remove dust impurities and left to

equilibrate for two days. The experiments were carried out on a MCR 300 stress-controlled

rheometer (Anton PAAR, Germany) with small angle light scattering attachment (SALS) at

a temperature of 26.5◦C. The rheometer was used in the feedback mode for strain-controlled

experiments. All experiments were carried out in a cylindrical Couette geometry with top

and bottom windows made of quartz glass (inner cylinder diameter 32mm, height 16.5mm

and gap 2mm). A vertically polarised (V) laser beam (λ = 658nm and spot size 1mm) enters

the gap between the cylinders (the beam is close to the inner rotating cylinder and cannot be

translated across the gap) along the vorticity (∇×v) direction, where v is the velocity field.

An analyser below the Couette geometry allows us to select either the vertically (referred as

VV) or the horizontally polarised (referred as VH) scattered light from the sample without

disturbing the measurements. A condenser beneath the analyser collects the scattered light

dominantly from a plane 6mm above the bottom plate and forms the image on a screen

in the (v, ∇v) plane. The imaging was done using a 8-bit colour CCD camera (Lumenera

075C, 640 x 480 pixels, maximum frame rate - 60fps) at a frame rate of 1 frame/750ms.

About 3000 images were grabbed for each polarisation while stress relaxation measurements

were simultaneously going on. The intensity at various wavevectors from the noise filtered

image was measured and a time series was generated by repeating the process over each

image.
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We now turn to our results. Fig. 1a (filled circles) shows the flow curve for CTAT 2wt%

in a controlled-stress experiment. The flow curve shows a near-plateau for γ̇ > 0.1 s−1. The

observed weak departure (slope α = 0.07 in the log-log plot) from a true plateau is very

likely due to the small inhomogeneity of the stress field arising from curvature effects in the

cylindrical Couette geometry [14, 17]. Fig. 1a also shows the flow curve for CTAT 2wt% +

100mM NaCl (hollow circles). The stress shows a much stronger shear rate dependence

(α = 0.32 for CTAT 2wt% + 100mM NaCl and α = 0.24 for CTAT 2wt% + 50mM NaCl.

See Fig. 1a Inset) above γ̇ > 1s−1 which cannot be due to geometry effects alone [14]. We

attribute this slope to a concentration difference between the shear rate bands [14, 19]. Our

system is in the semi-dilute region and is far from a zero-shear I-N transition ≈ 27wt% for

pure CTAT [16] and > 30wt% for CTAT + 50mM NaCl. Hence, a large slope α is not due

to I-N coexistence [18]. A concentration difference between the shear rate bands can arise

from a Helfand-Fredrickson mechanism [20]. Here, the high shear rate band is predicted to

be lower in concentration due to micelles diffusing against their own concentration gradients

leading to flow-enhanced concentration fluctuations. If so, our SALS experiments should

show a “Butterfly” light scattering pattern with the wings of the butterfly stretched along

the flow direction [21]. Fig. 1b shows the SALS pattern in VV geometry for CTAT 2wt%

and CTAT 2wt% + 100mM NaCl. The “Butterfly” pattern is absent for the pure CTAT

2wt% (Fig. 1b(i)) and is present for CTAT 2wt%+100mM NaCl (Fig. 1b(ii)) and (iii) & (iv)

in Fig. 1b show corresponding patterns in VH geometry. We have carried out experiments

at six different salt concentrations 10mM < cNaCl < 1M, which yield plateau slopes ranging

from 0.07 < α < 0.4. We find that a minimum slope of 0.12, corresponding to a salt

concentration of 25mM NaCl, is essential to see a “Butterfly” pattern indicating the onset

of flow-concentration coupling at this α value.

Fig. 2-a,b and c show the stress relaxation dynamics for three shear rates fixed in the

plateau region for the system CTAT 2wt% + 100mM NaCl. Fig. 2a shows the stress relax-

ation dynamics at γ̇ = 23s−1. The signal looks periodic, but a closer inspection reveals finer

features that do not repeat exactly. Fig. 2d shows the power spectrum of this signal. Apart

from the two primary frequencies centered around ω1 = 0.049Hz and ω2 = 0.061Hz and

their higher harmonics, there are other frequency components centered at linear combina-

tions of ω1 and ω2 like ω2-ω1 and ω1+ω2. These extra features are hallmark of a 2-frequency

quasiperiodic signal [22, 23]. In Fig. 2b, there are bursts of chaos breaking in-between the
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quasiperiodic signal for γ̇ = 25s−1. The power spectrum of the quasiperiodic laminar region

once again shows two frequencies centered around ω1 = 0.057Hz and ω2 = 0.063Hz, implying

a decrease in the time period with increasing shear rate. The stress relaxation dynamics at

γ̇ = 27.5s−1 (Fig. 2c) was completely chaotic (characterised by a positive Lyapunov expo-

nent ≈ 0.14 and an exponential Fourier power spectrum [24]). Although the exact shear rate

values at which the sample displayed the above features was found to differ to some extent

from run to run, the main features namely quasiperiodic oscillations and intermittent bursts

were found in all the runs. We do not observe any quasiperiodic and intermittent behaviour

for CTAT 2wt% and CTAT 2wt% + 10mM NaCl, which have α < 0.12, for different shear

rate histories. All systems with α ≥ 0.12, implying moderate to strong flow-concentration

coupling, showed quasiperiodicity and intermittency. Fig. 3a shows the partial time series

at γ̇ = 22s−1 obtained during a different run. Judging by the nature of the signal during the

laminar phase, Type-III intermittency can be ruled out, since, for this type of intermittency

there is a subharmonic mode with increasing amplitude. We follow the method described

in [25] and reconstruct a Poincaré plot by taking the successive minima of the stress in

the laminar region after a chaotic burst. In Fig. 3c, we plot the value of the stress at the

Nth minimum against its value at the (N − 1)th minimum. This plot exhibits a spiraling

behaviour characteristic of Type-II intermittency. The spiraling behaviour is time inverted

and we call this time inverted Type-II intermittency after [26] who found similar behaviour

in a semiconductor laser with external feed back. The above behaviour implies that the

system oscillates back to the laminar phase after a disturbance that caused a burst event.

A standard test for Type-II intermittency is the probability distribution of laminar lengths

L between burst events that scales as P (L) ∼ L−2 for small times and shows an exponential

tail at larger times [27]. Due to an insufficient number of burst events, this test could not be

carried out for the above mentioned time series. In Fig. 3b we show the time series obtained

for CTAT 2wt% + 50mM NaCl (α = 0.24) at γ̇ = 19s−1 which shows about fifty bursts in

a 2 hrs run. The probability distribution of laminar lengths clearly shows the exponential

tail (Fig. 3d) expected at large times. This test rules out Type-I intermittency, for which

P (L) increases at longer times [27], and confirms the Type-II intermittency route to chaos

in the present study.

Recent theoretical attempts to explain rheochaos treat our systems as nematogenic fluids,

and consider the spatio-temporal evolution of the shear stress associated with the nematic
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order parameter [2, 3, 6]. These models, while ignoring the complexities of breakage, flex-

ibility and branching, capture the essential flow-induced orientability of wormlike micelles.

Light scattering measurements in the VH geometry are sensitive to orientational fluctuations

while VV geometry is influenced by concentration and orientational order fluctuations. We

describe below the results of these measurements.

SALS measurements were done with VV polarisation for half the duration and VH polar-

isation for remaining half of the stress relaxation run. The appearance of an anisotropic VH

scattering pattern in our SALS measurements (Fig. 1b(iv)) at the onset of shear-thinning

implies that our systems are nematic. The time series for VV and VH intensities at a fixed

wave vector, q = 0.75µm−1, are shown in Fig. 4-a,b and c. Figs 4a and 4b show the time

series of VV and VH intensities obtained during the stress relaxation measurement shown

in Fig. 2a. Qualitatively, the VH intensity follows oscillations in the stress whereas VV

does not. A power spectrum of the VH time series shows that the two primary frequency

components (ω1, ω2) coincide with those obtained from the stress time series. The frequency

components at ω2-ω1, ω1+ω2 and 3ω1+ω2 shown in Fig. 2d for the stress are absent. This

may be due to the averaging procedure we have used to remove CCD noise. Fig. 4c shows

the VH time series for γ̇ = 25s−1. This time series captures the quasiperiodicity as well

the chaotic burst seen in the corresponding stress relaxation measurement (Fig. 2b). At

higher shear rates the VH time series was chaotic. We also observe that the entire VH

profile shows periodic breathing patterns for γ̇ = 23s−1 and γ̇ = 25s−1. This has been

quantified by measuring the anisotropy (εs) and the orientation angle (χs) obtained from

the second moment tensor of SV H(q, t) [28] given by, εs =
[

(〈XX〉 − 〈Y Y 〉)2 + 4 〈XY 〉2
]1/2

and tan (2χs) =
2〈XX〉

〈XX〉−〈Y Y 〉
where, 〈XY 〉 =

∫

dqqXqY SV H(q, t), 〈XX〉 =
∫

dqqXqXSV H(q, t)

and 〈Y Y 〉 =
∫

dqqY qY SV H(q, t). Figs. 4d and 4e show the time series of the anisotropy

and orientation angle at γ̇ = 25s−1. The anisotropy and the orientation angle of the major

axis of SV H(q, t), which is a measure of the instantaneous orientation of the nematics, seems

to follow the stress oscillations (Fig. 2b). The orientation angle shows regular oscillations

from ≈ 20◦ to ≈ 80◦ when the system is in the laminar/quasiperiodic region and shows no

periodicity when the system shows a chaotic burst.

To summarize, we have shown for the first time, intermittency in stress relaxation dynam-

ics for the systems that show coupling between flow and concentration. We have also shown

that the VH intensity at a fixed wavevector, anisotropy and the orientation angle shows
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dynamics similar to the dynamics seen in stress oscillations. In all our experiments, the

“Butterfly” pattern is always accompanied by intermittency in stress dynamics. We believe

it is essential to have flow-concentration coupling to observe the rich dynamics we have seen

since, this could provide a mechanism by which mechanical shear banding instabilities could

cross over to shear induced demixing instabilities [5, 14]. The model by Rienacker et al.

[3] predicts both temporal intermittency as well as period-doubling behaviour, in different

parts of the phase diagram, for various components of the alignment tensor. To the best of

our knowledge, there are no theoretical models that predict temporal intermittency in the

stress for wormlike micelles that show shear banding. Interestingly, in the rheochaos model

by Fielding and Olmsted [5], spatio-temporal intermittent behaviour is seen for moderate to

strong coupling strength between the flow and the micellar length. Spatio-temporal intermit-

tency route to chaos has also been predicted by [6]. A complete theoretical understanding

for temporal intermittent behaviour in systems that show flow-concentration coupling is

lacking at the moment. Our experiments further reinforce the case that rheochaos, far from

being mere irregularity in the flow of a complex fluid, lies squarely in the domain of chaotic

nonlinear dynamical systems. We hope that our results will motivate further experiments

and theoretical modeling.

We thank Prof. Sriram Ramaswamy for fruitful discussions.
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(a) (b)

FIG. 1: (a) Flow curves for CTAT 2wt% (solid circles) and CTAT 2wt% + 100mM NaCl (hollow

circles). Inset: Flow curve for CTAT 2wt% + 50mM NaCl (red line: linear fit). (b) SALS profiles

(i) & (iii) CTAT 2wt% for VV and VH polarisations. (ii) & (iv) CTAT 2wt% + 100mM NaCl for

VV and VH polarisations.

FIG. 2: Stress relaxation dynamics for CTAT 2wt% + 100mM NaCl for different shear rates. (a)

γ̇ = 23s−1 (b) γ̇ = 25s−1 (c) γ̇ = 27.5s−1 and (d) Fourier power spectrum of (a).

9



FIG. 3: (a) Partial stress time series for CTAT 2wt% + 100mM NaCl at γ̇ = 22s−1 for a different

run. Inset: Full time series. (b) Complete stress time series for CTAT 2wt% + 50mM NaCl at

γ̇ = 19s−1. (c) First return Poincare plot for (a). The arrow shows the spiraling direction. (d)

Probability distribution of laminar lengths between bursts for (b). The line is an exponential fit
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FIG. 4: The VV intensity time series (a) and the VH intensity time series (b) for CTAT 2wt%

+ 100mM NaCl at a γ̇ = 23s−1. Experiment was done with VV polarisation to the left of the

break shown in the stress time series (Fig. 2a) and with VH polarisation to the right. (c) The

VH intensity time series at a γ̇ = 25s−1 (see Fig. 2b). (d) and (e) show the anisotropy and the

orientation angle of SV H(q, t) for (c).
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