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Banded spatiotemporal chaos in sheared nematogenic fluids
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We present the results of a numerical study of a model of the hydrodynamics of a sheared ne-
matogenic fluid, taking into account the effects of order parameter stresses on the velocity profile,
but allowing spatial variations only in the gradient direction. When parameter values are such that
the stress from orientational distortions is comparable to the bare viscous stress, the system exhibits
steady states with the characteristics of shear banding. In addition, nonlinearity in the coupling of
extensional flow to orientation leads to the appearance of a new steady state in which the features
of both spatiotemporal chaos and shear banding are present.

Experimental observations [1–5] of complex dynamics,
including spatiotemporal chaos, in sheared wormlike mi-
cellar solutions have stimulated the development of sev-
eral theoretical models. The linearly extended nature
of wormlike micelles leads naturally to considerations of
models [6–8] in which a nematic order parameter field
is coupled to the hydrodynamic velocity. Spatiotempo-
ral rheochaos was demonstrated [8] in the equations of
passively sheared nematic hydrodynamics, with spatial
variations allowed only in the gradient direction. This
study, however, did not find any clear signature of the
formation of shear bands observed in experiments [2–
5]. A different approach [9–12], based on the Johnson-
Segalman model [13], with an added diffusive term (DJS
model), shows shear banding but no instability of the
shear-banded state for spatial variations only in the gra-
dient direction. If spatial variations in the flow [10] or
vorticity [11, 12] directions are allowed, the shear-banded
state exhibits an instability that leads to complex, pos-
sibly chaotic dynamics.
In this Letter, we present the results of a numerical

study of a model [8] of the hydrodynamics of a sheared
nematogenic fluid in which spatial variations are allowed
only in the gradient direction but the assumption of pas-
sive advection [8] is removed, so that the effects of order
parameter stresses on the velocity profile are fully taken
into account. For parameter values such that the stress
from orientational distortions is comparable to the bare
viscous stress, the system exhibits a new steady state
where we see the characteristics of shear banding in ad-
dition to the states seen earlier [8]. Further, allowing
nonlinearity in the coupling of extensional flow to ori-
entation, leads to the appearance of new steady states.
Among these new attractors of the dynamics, the most
significant one combines the features of both spatiotem-
poral chaos and shear banding. Thus, going beyond the
passive advection approximation allows the occurrence of
banded chaotic states which were not observed in Ref. [8].
In the simplifying limit where nonlinearities arising

from the free-energy functional for nematic order are ig-
nored, our model is equivalent to the DJS model studied
in Refs. [9–11], whose results we reproduce in the corre-

sponding parameter range. However, our fully nonlinear
model also exhibits band formation in a different region
of the parameter space and, in contrast to the results re-
ported in Refs. [9–11], instabilities of the banded state
are found even when spatial variations are allowed only
in the gradient direction. These instabilities lead to a
spatiotemporally chaotic state that also exhibits features
of shear banding. Thus, order parameter nonlinearities
arising from the free-energy functional play a crucial role
in our model, leading to the appearance of new attractors
with complex dynamics that are not present in the DJS
model.
We now describe the model we consider and the nu-

merical method used in our study. The nematic order
parameter field Q(r) in our model is a traceless, symmet-
ric second-rank tensor whose eigenvectors and eigenval-
ues describe respectively the directions and magnitudes
of local anisotropy. The equilibrium behavior of Q is
assumed to be governed by the Landau-de Gennes free-
energy functional

F [Q] =

∫

dr

[

A

2
Q : Q−

√

2

3
B(Q ·Q) : Q+

C

4
(Q : Q)2

+
Γ1

2
∇Q

... ∇Q+
Γ2

2
∇.Q.∇.Q

]

(1)

with phenomenological parameters A, B and C governing
the bulk free-energy difference between isotropic and ne-
matic phases, and Γ1 and Γ2 related to the Frank elastic
constants. In mean-field theory, the isotropic to nematic
transition occurs when A decreases below A∗ = 2B2/9C.
The equation of motion obeyed by the alignment tensor
is

∂Q

∂t
+u.∇Q = τ−1G+(α0κ+α1κ.Q)ST −Ω.Q+Q.Ω,

(2)
where the subscript ST denotes symmetrization and
trace removal, u is the hydrodynamic velocity field, κ

≡ (1/2)[∇u + (∇u)T ] and Ω ≡ (1/2) [∇u − (∇u)T ]
are the deformation rate and vorticity tensors, respec-
tively. The flow geometry imposed is plane Couette with
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velocity u = y γ̇x̂. We will refer to x̂ , ŷ and ẑ as the
velocity (u), gradient (∇) and vorticity (ω) directions
respectively. In Eq.(2), τ/A∗ is a bare relaxation time
and α0 and α1 are parameters related to flow alignment,
originating in molecular shapes. Lastly,

G = − δF

δQ
= −[AQ−

√
6B(Q.Q)ST + CQQ : Q]

+ Γ1∇
2Q+ Γ2(∇∇.Q)ST (3)

is the molecular field conjugate to Q. The contribution
of the alignment tensor to the deviatoric stress is given
by

σ
op = −α0G− α1(Q.G)ST . (4)

The total deviatoric stress is σ
op plus the bare viscous

stress.
Under the passive advection assumption, the bare vis-

cous stress of the system is constant and it is sufficient
to consider σop alone, as was done in Ref. [8]. To incor-
porate the full hydrodynamics in the problem, we now
remove this assumption. We work in the Stokesian (zero
Reynolds number) and incompressible limit, as is appro-
priate for reasonable experimental realizations of the sys-
tems of interest here. Thus,

∇jσ
total
ij = 0, (5)

where σtotal is the total stress tensor in the system, and

∇.u = 0. (6)

We consider spatial variation only along the y-axis.
Then, Eq.(5) with gradient terms involving derivatives
only along the y-direction reduces to

µ
∂2ui

∂y2
= −

∂σ
op
yi

∂y
, (7)

where i = x, z, µ is the shear viscosity and u = yγ̇x̂ +
δ1x̂+δ2ẑ, where δ1 and δ2 are y-dependent perturbations
in the velocity profile. Since the fluid is incompressible,
and spatial variation is only along the gradient axis, per-
turbations in uy are zero.
Following [7, 8], time is rescaled by τ/A∗ and Q by

Qk, its magnitude at the transition temperature. Dis-
tances are rescaled by the diffusion length constructed
out of Γ1 and A∗. The ratio Γ2/Γ1 is a parameter set
to unity. We define a dimensionless viscosity parame-
ter η ≡ µ/(α0τQk) and consider two cases, η = 1 and
η = 100. The ratio of the bare viscous stress to the
stress from orientational distortions is determined by the
quantity ηγ̇ where γ̇ is the dimensionless shear rate.
When the right-hand side of Eq.(4), including nonlin-

earities arising from the free-energy functional, Eq.(1)
and the α1 term, but excluding the gradient terms, is

linearized in the deviation of Q from its uniform aver-
age value – zero, if the underlying equilibrium phase is
isotropic – the derivatives of Q in the left-hand side of
Eq.(2) are easily re-expressed as derivatives of the order-
parameter stress. This equation, with further lineariza-
tion of the nonlinear terms in G and a redefinition of
parameters, then becomes equivalent to the constitutive
equation for the viscoelastic stress in the DJS model.
Thus, the DJS model may be thought of as a simpli-
fied (linearized) version of the isotropic-phase limit of
the model considered here and the effect of the additional
nonlinearities present in our model on the behaviour ob-
served in Refs. [9–12] becomes a question of considerable
importance.

In our numerical study, a spatially discretized version
of Eq.(2) is integrated forward in time using a fourth-
order Runge-Kutta algorithm. For much of this study
we work at A = 0 and α1 = 0, as in [8], so that the
system in the absence of shear is deep in the nematic
phase, in fact at the limit of metastability of the isotropic

phase [14]. Our control parameters are λk ≡
√

2

3
α0 re-

lated to the tumbling coefficient in Leslie-Ericksen theory
[7], and the dimensionless shear rate γ̇. The two addi-
tional equations, Eq.(7), that enforce the Stokes condi-
tion, are solved simultaneously with the equation of mo-
tion, where the matrices, κ and Ω have terms involving
δ1 and δ2. Starting from specified initial conditions, we
let the equation of motion evolve and obtain the order
parameter stress. Using σ

op, Eq.(7) is then solved to
construct the updated velocity profile, which is then fed
back into the equation of motion. Spatial derivatives are
approximated by symmetric finite differences defined on
the sites of a uniform mesh of N points, Boundary con-
ditions are so fixed that δ1, δ2 = 0 at the walls. Also,
for defining derivatives at the mesh points i = 2 and
i = N − 1, we set f0 = f1, fN+1 = fN , where f is any
variable of interest.

We find that for η = 100, this model reproduces the
various steady states (“phases”) seen in [8] with only
small shifts in the phase boundaries. This is not sur-
prising: for large values of η, the velocity corrections are
small as can be seen from Eq.(7). For η = 1, where order
parameter stresses are comparable to those of the sol-
vent, and α1 = 0, we find a new phase, as can be seen
in Figs. 1 and 2. In this new phase, the steady state
is a high-stress band with spatiotemporal or only tem-
poral periodicity bounded by low-stress bands showing
temporal periodicity (see Fig.2(e)). This new phase is a
well-defined, banded periodic state between the irregu-
lar chaotic phase and the flow-aligned fixed point. The
position of the high-stress band thus formed depends on
the boundary conditions. The above case is seen when
the order parameter tensor at the two ends of the system
is aligned in the shear plane, irrespective of orientation.
If, however, the tensor at the two ends is aligned paral-
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lel to the walls of the Couette cell, i.e. along ẑ, then a
low-stress band with temporal periodicity is formed be-
tween two high-stress bands with either spatiotemporal
or temporal periodicity near the walls. Space-time plots
of the shear stress in the phases found for η = 1, α1 = 0
are shown in Fig. 2.
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FIG. 1: Phase diagram for η = 1.0 and α1 = 0. Phase bound-
aries between regular periodic, chaotic, banded periodic, and
aligned (fixed point) attractors in the γ̇−λk plane are shown.

FIG. 2: Space-time plots of the shear stress in the phases
observed [(a): regular periodic, (b)-(d): chaotic, (e): banded
periodic, (f): aligned] for a fixed shear rate, γ̇ = 3.5 and
varying λk, with η = 1, α1 = 0, A = 0.

For non-zero values of α1 and η = 1, we obtain not
only spatiotemporally periodic but also spatiotemporally
chaotic attractors, where a high-stress band coexists with
low-stress regions, as seen in Figs. 3(b) and 3(c) for
α1 = 0.3. The position of the high-stress band is not
fixed, and the steady state shows such a band of consid-
erable width along the y-axis (gradient direction), me-
andering between the two walls of the Couette cell as a
function of time. This spatiotemporally chaotic state (see
below) with a wide high-stress band is found only for rel-
atively low shear rates. At high shear rates (γ̇ > 3.7), in

the parameter-space region where a coexistence of high
and low shear stress bands is first seen, the points of in-
terfaces between the bands show complex oscillations in
time. But as one moves deeper into this banded phase
with increasing λk, the complex oscillations die down to
simple periodicity and the order parameter stress exhibits
only regular periodic character in the banded phase [Fig.
3(i)]. With further increase in λk, for a constant shear
rate, the interfaces between the high-stress band and the
adjoining lower stress bands merge and we see only tem-
porally periodic oscillations, with a phase difference be-
tween the temporal oscillations at the merging point of
the interface [Fig. 3(j)]. As λk is increased further with
γ̇ kept constant, chaotic oscillations build up from this
temporally periodic state. Obtaining a complete phase
diagram for α1 6= 0 is difficult, mainly because we find
multiple locally stable attractors (and consequent depen-
dence of the steady state on initial conditions) in some
regions of the γ̇ − λk plane.

FIG. 3: Phases for γ̇ = 3.5 with λk = 0.888(a), 0.945(b),
1.025(c), 1.055(d), 1.07(e), 1.137(f), 1.19(g), 1.33(h), η =
1.0, α1 = 0.3, A = 0. Space-time plots of the shear stress are
shown in the regular periodic [(a)], banded chaotic [(b) and
(c)], chaotic [(d)-(f)], banded periodic [(g)] and aligned [(h)]
phases. Phases for γ̇ = 4.1 and λk varying between 0.888 and
1.33 are the same as those for γ̇ = 3.5, except for λk between
0.91(i) and 1.04(j). For γ̇ = 4.1, the banded chaotic attractor
of panel (b) evolves into a banded periodic attractor of panel
(i), followed by a simple temporally periodic attractor with a
kink [panel (j)], and the chaotic attractor of panel (e) as λk

is increased.

To characterize the chaotic states found, we study their
Lyapunov spectra (LS). For a discrete N dimensional dy-
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namical system, the N Lyapunov exponents λi, i = 1 : N ,
arranged in decreasing order, form the LS. The number
Nλ+

of positive Lyapunov exponents and Σλ+
, the sum

of the positive Lyapunov exponents, are useful quantities
that can be calculated from the LS. In particular, Σλ+

provides an upper bound and often a good estimate for
the Kolmogorov-Sinai entropy that quantifies the mean
rate of growth of uncertainty in a system subjected to
small perturbations [15]. Both these quantities scale ex-
tensively with system size in spatiotemporally chaotic
systems. Since our system is an extended one with a
large number of degrees of freedom, computing the LS is
difficult owing to the inordinately large computing time
and memory space required. The LS of a subsystem gov-
erned by the same equations of motion, when suitably
rescaled, can lead to the LS of the whole system. So
instead of analyzing the whole system, we consider sub-
systems of comparatively small size NS , at space points
j in an interval i0 ≤ j ≤ i0 + NS − 1, where i0 is an
arbitrary reference point, and study the scaling of the
relevant quantities with subsystem size NS . For spa-
tiotemporal chaos, it is also expected that with increasing
subsystem size NS, the largest Lyapunov exponent would
increase, asymptotically approaching its value for subsys-
tem sizes of the order of the system size. Our analysis
shows that the embedding dimension at certain reference
points can be so high that the scaling with subsystem
size can only be partially studied due to computational
constraints. However, over the limited range of subsys-
tem sizes that we can access, we find, depending on the
choice of the reference point i0, clear evidence for spa-
tiotemporal chaos of varying dimensions in the banded
state shown in Fig.3, panels (b) and (c). As shown in the
top two panels of Fig.4, both Nλ+

and Σλ+
exhibit an

approximately linear increase with increasing NS for the
three reference points chosen. Also, the largest Lyapunov
exponent (bottom panel of Fig.4) shows the expected be-
havior as a function of subsystem size.

As mentioned above, a linearized version of our model
is equivalent to the DJS model considered by Fielding
and co-workers [9–12], and we have reproduced their
main results for a similar choice of parameters. In par-
ticular, we have found that the shear-banded state found
by them remains stable when the additional nonlineari-
ties in our model are included. However, the values of η
for which we find the banded attractors in Figs. 2 and
3 lie outside the range in which the linearized model ex-
hibits shear banding. Also, in contrast to the results of
Refs. [9–12], our nonlinear model exhibits an instability
of the banded state as λk is increased, even if spatial
variations are allowed only in the gradient direction (see
Figs. 2 and 3). These results imply that the physics of
the formation of the shear banded state, its instability,
and the coexistence of shear banding and spatiotempo-
ral chaos (for α1 6= 0) in our nonlinear model is very
different from that of the DJS model. Thus, our order-
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FIG. 4: Number of positive Lyapunov exponents (top left
panel), sum of the positive Lyapunov exponents, (top right
panel), and the largest Lyapunov exponent (bottom panel)
as functions of subsystem size Ns for η = 1.0, α1 = 0.3, γ̇ =
3.5, λk = 0.95. Embedding dimension for the time-series at
each space point is different for different i0. The largest
embedding dimension, 22, is for i0 = 245, while those for
i0 = 100, 400 are 18 and 20 respectively.

parameter based model, which includes the DJS model
as a special case, exhibits additional complex collective
dynamics arising from nonlinearities in the free energy
that describes the equilibrium behavior of the order pa-
rameter. Development of similar models for rheological
chaos in other complex fluids would be most interesting.
It would also be worthwhile to explore the consequences
of allowing spatial variations in the flow and vorticity
directions in our model.
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