
AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 

by SHREERAM SHANKAR ABHYANKARJ (1) 

w x. Introduct ion .  

Let K be any valued field. Let X1, X~, . . .  be indeterminates. For every non- 
negative integer d let A~ be the ring of convergent power series in X1, . . . ,  X a with 

coefficients in K, and let A~ be the ring of formal power series in X1, . . . ,  X~ with coeffi- 
cients in K. By an analytic local ring over K we mean an overring A* of K such that there 
exists a K-epimorphism Ad-+A* for some d. (Note that K iis allowed to be discrete, 
and in that case: K is simply an arbitrary field; A~ = Ae; and an analytic local ring 
over K is exactly a complete local ring with coefficient field K). 

The group G K(Aa) of all K-automorphisms of the convergent power series r ing A~, 
tbr d~o ,  is quite large. Namely, g~(g(X1) , . . . ,  g(X~)) gives a bijection of GK(A~) 
onto the set of all ordered d-tup]es of elements o fA a which constitute a basis of the maximal 
ideal M(Aa) in  A d. 

The group G(A~) of all automorphisms of the formal power series ring A~ is even 
richer. Namely, any isomorphism of K onto any coefficient field of A~ can be extended, 
in many ways, to an automorphism of A a. In  fact, let H'  be the set of all ordered 
d-tuples of  elements of A~ which constitute a basis of M(A~), let H* be the set of  
all monomorphisms W :  K-+A~ such that W(K) is a coefficient field of A~, and let 
H = ( ( Y ,  W) : Y a H '  and W~H*}. Then g-->((g(X1) , . . . ,  g(Xa)), g] K) gives a bijec- 
tion of G(A~) onto H. 

The genesis of the present investigation (including our forthcoming joint papers [3] 
and [4] with Moh and van der Put) was Zariski's discovery [I'o] that, like formal power 
series rings, saturated rings are also very rich in automorphisms. 

Namely, let K'  be an algebraically closed field of characteristic zero, and let B 
be a one-dimensional complete local domain with coefficient field K'  such that B is 
saturated in the sense of [IO]. Then:  

I) B has infinitely many K'-automorphisms. 

More precisely, given any transversal parameters Z and Z' of  B (i.e., Z and Z' 
are elements in B such that, upon letting D to be the integral closure of B in its quotient 
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field, we have o rdDZ=ordDZ'=min{ordDr :  reM(B)}) there exists geGK,(B ) 
that g ( Z ) =  Z' [IO, Theorem (I. I I)]. 

And: 

such 

II) Any isomorphism of K'  onto any coefficient field of B can be extended to an automorphism 

orB.  

More precisely, given any transversal parameter Z of B and any monomorphism 
w : K'---~B such that w(K') is a coefficient field of B, there exists g~G(B) such that 
g ( Z ) = Z  and g(k)=w(k)  for all keK'  [IO, Theorem (1.16)]. 

Now II) is all the more striking in view of the following two well-known facts: 
(') For every algebraically closed field K* we have that G(K*) is infinite and 

Inv G(K*)-=the prime subfield of K*, where Inv G(K*) denotes 

{ k ~ K * : g ( k ) = k  for all gEG(K*)}; 
(see (2.8)). 

(") If the characteristic of K is zero, K is not algebraic over its prime subfield, 
and R is any analytic local ring over K with R 4: K, then R has infinitely many coeffi- 
cient fields (see (2.2o)). 

We want to find out as to how far I) and II) can be generalized to analytic local 
rings. 

The results to be reported are positive in the direction of I), and negative in the 
direction of II). 

First consider II). 
In w 5 we shall prove 
Theorem 1. - -  Let L be any subfield of K such that L is finitely generated over the prime 

subfield of K. Then there exists a one-dimensional analytic local domain R over K with 
emdim R = 2  such that for every geG(R) we have g ( k ) - - k e M ( R )  for all keL;  whence, 
in particular, i f  g ( K ) =  K then g(k)= k for all keL.  

In our forthcoming joint paper [4] with van der Put, the following theorem will 
be proved: 

Theorem 1'. - -  I f  R is any analytic local ring over the complex number field C such that R 

has a nonunit nonzerodivisor, then for any geG(R) we have: g((1)=C and g(r )=r  for every 
real number r. More generally, i f  t :  R*-+R is any local homomorphism of analytic local rings 
over (74 such that t(M(R*)) contains a nonzerodivisor of R., then: t(C)=C and t ( r )=r  for 

every real number r. 
Theorems I and i '  relate to II) in view of (') and ("). 
Now we turn to I). 
We start off by proving 
Theorem 2. - -  Let R be any complete local domain such that dim R > o  and R has the 

same characteristic as R/M(R).  Let J be any nonzero ideal in R. Let R' be the integral closure 

of R in its quotient field; (it is known that then R' is a complete local domain and R' is 
a finite R-module). Assume that R'  is regular; (note that this assumption is automatically 
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satisfied if d im R-----I). Then G ( R , J )  is infinite (where G ( R , J )  denotes the " inertia 
group " {geG(R)  : g ( r ) - r e J  for all r eR}) .  If, moreover, F is a coefficient field of R 
which can be extended to a coefficient field of K' then G~(R, J) is infinite (where GF(R , J) 
denotes GF(R. ) r~G(R.,J);  note that  if R ' /M(K ' )  is separable over K/M(R.) then, by 
Hensel's lemma,  every coefficient field of R can be extended to a coefficient field of R') .  

Proof. - -  By Cohen's theorem P,.' has a coefficient field E; in case F is a 
given coefficient field of R which can be extended to a coefficient field of R '  then 
we take E to be such an extension. Let C be the conductor  of R in R' ,  i.e., 
C = { c ~ R : c r ' e R  for all r ' eR '} .  Since R '  is a finite R.-module, we know that  C 
contains a nonzero element. Now CJ is a nonzero ideal in P,. and it remains an  ideal 
in R' .  Since CJ is an ideal in R' ,  we have that  GE(R' , CJ) is a subgroup of GE(R' ) 
(see (2.1)). Given any geGE(R'  , CJ), we have g ( r ' ) - r ' e C J  for all r ' e R ' ;  since 
C J c R ,  it follows that  g ( r ) e R  for all r eR ,  i.e., g(R) c 'R;  since G E ( R ' , C J ) i s  a 
subgroup of GE(R.'), we have g - l eGE(R '  , CJ) and hence also g - l (R)  c R ;  therefore 
g ( R ) = R .  Thus  g ( R ) = R  for all geGE(R'  , CJ);  since C J c J ,  i t  now suffices to 
show that  GE(R' , CJ) is infinite. By assumption R'  is regular, and hence we may 
regard R '  to be the ring of formal power series in Xl,  . . . ,  X n with coefficients in E, 
where n = d i m  R'.  For every y e ( C J ) n  M(R')  2 we have a unique gueGE(R') such 
that  g y ( X ~ ) = X i + y  for I < i < n ;  moreover,  gueGE(R' ,CJ)  (see (2.9)).  Now 
(CJ) n M(R.') ~ is clearly infinite, and hence G~,(R', CJ) is infinite. 

In (4.2), (4.3) and (4.4) we shall prove, respectively, Theorems 3, 4 and 5 stated 
below; the actual versions of these theorems which we shall prove there will be more 
detailed than as stated below. 

Theorem 3. - -  Let R be an analytic local ring over K such that dim R = o  and R ~ K .  
Let J be any nonzero ideal in R. Then we have the following. 

I) I f  K is infinite then G~z(R,J) is infinite. 
2) GK(R, J) = { x  } ~ G(R) ={~  } ~ R consists of four elements. 

Theorem 4. - -  Let R be an analytic local ring over K such that dim R >  o. Assume that 

the zero ideal in R has an isolated primary component Q such that upon letting P = radRQ we 
have that Q 4 : P  and: 

(.) there exists a K-epimorphism u : Aa-+R, for some d, such that u - l ( Q )  is contained 
in the second symbolic power (u-l(P))  (2> of u- l (P) .  

Let J be any ideal in R with J r Q.  Then G K(R, J r~ P) n G K JR, Q]  is infinite (where 
Gg[R,  Q ]  denotes the " splitting group " {geGK(R) :  g ( Q ) = Q } ) ,  

Theorem 5. - -  Let R. be an analytic local ring over K. Let J, Q1, . . . ,  Q~, (a>o) ,  be 
ideals in R such that Q1, . . ., Q~ are primary and J n Q l n . . . n  O~={o} .  Let P , = r a d R Q  ,. 
Let v : R -+S  be a K-epimorphism where S is an analytic local ring over K and Ker v=P1 n . . .  r~ P,, 
Assume that: 

(**) there exists a K-epimorphism u : Aa--->R, for some d, such that u-~(Q~) is a symbolic 

power of u-l(Pi) for I < i < a .  
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Then v induces an epimorphism of 
a 

GK(R, J) n ,O 1GK[ R, P~] n ~  1GK[R, Q~] 
a 

onto GK(S , v(J))tai=[i]l GK[S , v(P,)]. 

In (3.4) and (3-6) we shall give intrinsic formulations of the above conditions (,) 
and (**) respectively. 

In our forthcoming joint paper [3] with Moh and van der Put, we shall prove 
several other results about automorphisms of analytic local rings. There, in addition 
to the methods of the present paper, we shall use Samuel's [7] technique by which he 
proved the algebraicity of an algebroid hypersurface with an isolated singularity. The 
following two theorems are a sample of the results which are proved in [3]: 

Theorem 2'. - -  Let R be an analytic local ring over K such that dim R>o.  Assume 
that there exists an isolated primary component P of{o} in R such that P is prime and R/P is analyti- 
cally separably generated over K (for definition see (2.2I)). Then GK(R. ) is infinite. 

Theorem 3'. - -  Assume that K is perfect (the characteristic of K may or may not be 
zero), and let R. be any analytic local ring over K such that  radR{O}={o }. Then 

Inv GK(I1. ) = K. 

w 2. Terminology and preliminaries. 

I) Splitting and inertia groups. - -  For a ring (commutative with identity) R and a 
subring K of R we set: 

G(R) = t h e  group of all automorphisms of R; 
GK(R)=the group of all K-automorphisms of R 

={geG(R)  : g ( k ) = k  for all keK}.  

By analogy with Hilbert's ramification theory, for any ideal Q i n  P~ we set: 

G [R, Q]  = the splitting group of Q in R 
={geG(R)  : g ( Q ) =  Q};  

GK[R , Q ] = t h e  splitting group of Q in R over K 
= GK(R ) n G[R, Q] ;  

G(R, Q) = the inertia group of Q in R 
={geG(R.) : g ( r ) - r e Q  for all reR}; 

GK(R , Q ) =  the inertia group of Q in R over K 
-= GK(R ) n G(R, Q). 

Clearly G[R, Q] and GK[R , Q] are subgroups of G(R) and GK(R. ) respectively. We 
claim that also 

(2. x) G(R, Q) is a subgroup of G[R, Q]. 
Namely, for any geG(R, Q) we have g ( r ) - r e Q  for all reR, and hence g ( r )eQ 

for all reQ.  Thus g(Q) c Q  for all geG(R, Q). For any geG(R, Q) and any reR, 
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upon letting s=g- l ( r ) ,  we have seN, and g - l ( r ) - r = g - l ( r ) - g ( g - l ( r ) ) = s - g ( s ) e Q ;  
consequently g - l e G ( R , Q ) ,  and hence g - I (Q)  c Q ;  since g(Q) c Q  and g - l ( Q ) c Q ,  
we get g ( Q ) = Q .  For any g and h in G(I(, ,Q) and any reR, we have 
(gh) (r) -- r = (g(h(r))-- h(r)) + (h(r)--r) and g(h(r))-- h(r) e a and h(r)--reQ,  and hence 
(gh)(r)--reQ; consequently gheG(R, Q) .  Thus G(R, Q) is a subgroup of O(R), and 
G(R, Q) c O [ R ,  Q].  

It  follows that also GK(R , Q) is a subgroup of OK[R, Q] .  Also note that: 

(2.2) / f  Q* is any ideal in R with Q * c Q  then clearly G(R, Q*)cO(R,  Q) and 
OK(R, Q*) c OK(R, Q).  

We remark that the splitting groups and inertia groups of the galois theory of 
local rings [I, w 7] are special cases OfGK[R. , Q] and GK(R , Q) respectively; also, Hilbert's 
higher ramification groups [8, chapter V, w Io] are special cases of GK(R , Q).  

We may now restrict our attention to GK(R.), GK[R. , Q] ,  OK(R , Q),  because the 
case of G(R.), G[R, Q] ,  G(P,., Q) would then follow by taking K to be the prime subring 
(i.e., the smallest subring) of P,.. 

Let v:R-->S'  be a ring homomorphism, let S = v ( R ) ,  and let L = v ( K )  (note 
that if K is the prime subring of R then L is the prime subring of S). For any 
g~GK[R , Ker v] we have a unique g'eGL(S ) such that: g'(v(r))=v(g(r)) for all r eR;  
we say that g' is induced by g. Thus we have a unique map w : OK[R , Kerv] --+ GL(S ) 
such that: w(g)(v(r))=v(g(r)) for all geOK[R , Kerr ]  and all r eR;  we again say 
that w is induced by v. 

(2.3) Clearly w : GK[R , Kerv] --+ OL(S ) is a group homomorphism, 

and Ker w = OK(R, Ker v). 

(2.4) Let P be any ideal in R. Then 

w(GK[R , K e r v ]  n GK(R. , P)) CGL(S , v(P)), 

and W(GK[R , Ker v] n GK[R , P]) COL[S , v(P)]. 

I f  moreover Kerv c P then 

and 

w-I(GL(S, v(P)))CGK(R, P), 

w-I(GL[S, v(P)]) CGK[R , P]. 

Namely, everything except the last inclusion is obvious. The last inclusion follows 
by noting that for any geGK[R , Ker v], assuming Ker vcP ,  we have the following: 
I) if w(g)(v(P))cv(P) then clearly g ( P ) c P ;  2) if w(g)eGL[S , v(P)] then, since w 
is a homomorphism, also w ( g ) - l =  w(g -1) eGL[S , v(P)]. 

(2.5) Let J be any ideal in R with Ker v c J, and let O be any subset of 
GK[R , Ker v] such that for each g:t:h in G we have g(xgh)--h(Xgh)~J for some xgheR. 
Then upon letting ygh=V(Xqh), for every g+-h in O we clearly have ygheS and 
w(g)(ygh)--w(h)(ygh)=v(g(xgh)--h(xgh))r ). Whence, in particular, w induces an injec- 
tion of G. 
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(2 .6)  Let u : A - + R  be a ring epimorphism and let K '  be a subring of A such 
that  u(K')---= K. Let t : GK,[A, Ker u] -+ GK(R ) be the homomorph i sm induced by u. 
Let v '=vu  and let w' : GK[A , Ker  v'] -+ GL(S) be the homomorph i sm induced by v'. 
Then for  any h~GK,[A , Ker u] ~GK,[A , Ker v'] we clearly have t(h)EGK[R , Ker v], and 
w(t(h))  = w'(h). 

For any subset H of G(R) we set: 

I n v H = { r e R : g ( r ) = r  for all g~H} ;  
note that  then 

(~'.7) Inv H is a subring of  R; moreover, i f  T is any subfield of  R then (Inv H) r~T 
# a subfield of  R .  

Namely,  for any o=t=xe(Inv H ) n T  and any g~H we have: 

I / x = (I/x)g(i  ) = (I/x)g((x) (I/x))  --- (I /x)g (x)g(I/x) = (I/x) (x)g(I / x) = g(I ix), 

and hence I/xe(Inv H) n T .  

(2 .8)  Let E be an algebraically closed field, let F be a subfield of E, and let F* 
be the algebraic closure of F in E. Then  we have the following: 

I) Inv  GF(E ) cF*, and if F* is separable over F then Inv  G F ( E ) = F .  

2) I f  F*:~E then GF!E ) is infinite. I f  F* is separable over F and [F* : F ] = o o  
then GF(E ) is infinite. 

[Note that it follows that i f  F is the prime subfield o r E  then Inv  GF(E)=:F and G~(E) 
is infinite.] 

To prove I) and 2), take any transcendence basis {Xb}be ~ of E over F*. Let g be 
any element in GF(F* ) (for instance g = the identity). Given any o :t:feF*, there exists 
a unique ht~GF(F*({xb}b~B) ) such that  ht (r )=g(r  ) for all r~F* and ht(xb)=fx b for 
all beB. Since E is an algebraic closure of F*({Xb}beB) , there exists gfiGF(E ) such 
that  gt(r)-=ht(r) for all reF*({Xb}beB). Now F* is infinite, and hence we see that  if 
F * + E  (i.e., if B is nonempty)  then GF(E) is infinite; since we may  assume that  the 
transcendence basis {Xb}be B includes any given element in E which is not in F*, it also 
follows that  Inv  G~(E) cF*. We have just seen that  given any geGr(F* ) there exists 
gleGF(E) such that  g~(r)=g(r) for all reF*; therefore the proof  is now completed by 
noting that  by ordinary galois theory we have the following: if F* is separable over F 
then Inv  GF(F*)=F  ; if F* is separable over F and [ F * : F ] = m  then G~(F*) is 
infinite. 

For any ideal Q i n  a ring R, by r a d R Q w e  shall denote the radical of Q i n  R. 

II) Local rings. - -  For a (noetherian) local ring R we set: dim R = max n such that  
there exists a chain P0 c P1 c . . .  c P ,  of distinct prime ideals in R ; M(R) = the maximal  
ideal in R ; endim R = the vector space dimension of M ( R ) / M ( R )  2 as a vector space over 
R / M ( R ) .  Recall that  for any N c M ( R )  we have: N R = M ( R )  ~ N R - t - M ( R ) ~ = M ( R ) ;  
whence, in particular,  emdim R = t h e  number  of elements in any i r redundant  basis 
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of M(R).  For any x~R we set: o r d a x = m a x  j such that xeM(R)J ;  recall that:  
ordRx =oo ~ x = o. Recall that: dim R = m i n d  such that there exist d elements in R 
which generate an ideal which is primary for 1Vf(R); whence, in particular, 
emdim R > d i m  R; recall that by definition, R is regulars- emdim R = d i m  R. By a 
system of parameters of R we mean a sequence (xl, . . . ,  Xd) of elements in M(R) such that 
d = d i m  R and ( x i , . . . ,  xd)R is pr imary for M(R).  Given a homomorphism v of R 
into another local ring S, we say that v is local if v(M(R)) cM(S) .  

Note that clearly G(R) = G [ R ,  M(R) ~] for all i; whence, in particular, the canonical 

epimorphism R-~-R/M(R) induces a homomorphism G ( R ) - + G ( R / M ( R ) ) .  
By a coefficient field of R we mean a subfield K of R such that K gets mapped onto 

R /M(R)  by the canonical epimorphism R - + R / M ( R ) .  

(2.9) Assume that R has a coefficient field K. Let N c R  be such that N R = M ( R ) ,  
let J be an ideal in R, and let geGK(R ) be such that g ( x ) - x e J  for all xeN. Then 

ge GK(R , J).  
Proof. - -  By induction on m (m any positive integer) we shall show that if xl, . . . ,  x,~ 

are any elements in N then g(x l . . . xm) - - x l . . . x , , e J ;  by assumption this is true for 
r e = i ;  so now let m > I  and suppose true for m - - i ;  upon letting x ' - - x ~ . . . x  m we 
have g ( x l ) - x l e J  by assumption, and g ( x ' ) - x ' ~ J  by the induction hypothesis; now 

g(x l .  . . x m ) -  . g ( x l ) g ( x ' ) -  x lx '  

= g(xl)g(x' ) --g(xl)x' +g(xl)x '--  xlx' 
= g(xl) (g(x') --  x') + x' (g(xl) --  xl) , 

and hence g(x i . . . x , , ) - - x l . . . xme  J. Since g is a K-automorphism, it now follows that 
g ( y ) - y e J  for all y e K [ N ] .  Let any z e R  be given. Given any nonnegative integer i 

we can find y ~ K [ N ]  with z--yieM(R)~; now g(y~)-y ieJ  and g (M(R)~)=M(R) i ;  
oo 

whence g ( z ) - z e J  q- M(R) i. Thus g(z)--  ze~_o (J -}- 1V[(R) ~) = J .  

(2. xe) Assume that R has a coefficient field K. Then K §  integral 
closure of K in R (where, as usual, K + r a d R { o  } denotes ( k §  keK,  xeradR{o}} ). 
Whence in particular: K is integrally closed in R ~ R  has no nonzero nilpotent element. 

Proof. - -  For any z~radR{o } we have z d = o  for some positive integer d, and 
hence z is integral over K,  since every element in K is certainly integral over K, it follows 
that every element in K + r a d a { o  } is integral over K. Conversely, let any y e R  be 
given such t ha ty  is integral over K. Since y ~ R  and K is a coefficient field of R, we can 
write y = k + x  with k e K  and xe?CI(R). Now k is certainly integral over K and by 
assumption y is integral over K,  consequently x is integral over K. Therefore there 
exists a positive integer n and elements ko, k l , . . . , k  n in K with k0=I  such that 
k o x " + k l x ' ~ - l + . . . - t - k , = o .  Let e be the largest nonnegative integer < n  such that 

k~:#o. Now o + k ~ e K  and 

kox~+k lx~ - l+ . . .  + k ~ = k ~ + a n  element in xR 
= k, Jr- an element in M(R) 
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and hence k o x e - ~ - k l x e - l @ . . .  +k~ is a unit in R;  since k o x n + k y ~ - ~ + . . . - + - k n = o  , w e  

must have e+n, i.e., n- -e>o .  Now 

x .... ~(kox~+klx~- t+. . .  §  § 
~ 0  

and k o x " + k l x ~ - l + . . . + k ~  is a unit in R, and hence x"-"----o. Therefore xerada{o}, 
and hence y e K + r a d R { o  }. 

(2. x x) Assume that R has a coefficient field K. Let N be any subset of R with 
N R =  M(R).  Let S be any other local ring with coefficient f ield K. Let u : R ~ S  and 
v : R-+ S be any local K-homomorphisms such that u(x) = v(x) for all xe N. Then u = v. 

P r o o f . -  Now u(x)=v(x) for all x e K [ N ] ;  also u (M(R) I )cM(S)  i and 
v(N~(R))~cM(S) ~ for all i. Let any y e R  be given. Since K is a coefficient field of R, 

given any nonnegative integer i we can find xi~K[N ] with y - -x iEM(R) i ;  by what 
o n  

we have just said we now get u ( y ) - - v ( y ) e M ( S )  i. Thus u(y)--v(y)~NoM(S)i , =  and 
hence u(y)~-- v(y). 

In the following two Remarks we recall some known facts about the uniqueness 
of coefficient fields. 

Remark (2. x2). - -Assume that R /M(R)  is a perfect field of characteristic p + o ,  
and R is of characteristic p. Then R has at most one coefficient field. 

Namely let w : R - + R / M ( R )  be the canonical epimorphism, and let K and K' 
be any coefficient fields of R. Given any z e R / M ( R ) ,  let x e K  and x ' eK '  be the 
unique elements such that w ( x ) = z = w ( x ' ) .  For any positive integer n we have 
xP-"eK, x'P-% K', and w(x p-") = ZP-"= w(x'P-"); consequently, xP-n--x'P-"EM(R) ; now 
x--x '=(xP- ' - -x 'P-")  p', and hence x - - x ' ~ M ( R )  p". This being so for all n, we must 
have x - - x ' = o ,  i.e., x = x ' .  Thus K = K ' .  

On the other hand:  
Remark (2. x 3 ) .  - -  Assume that R is henselian (for definition see [2, w I2 A]), 

M(R) +{o},  R has the same characteristic as R /M(R) ,  R /M(R)  is not algebraic over 
its prime subfield, and R /M(R)  possesses a separating transcendence basis over its prime 
subfield (note that the last assumption is automatically satisfied if R/1V[(R) is of characte- 

ristic zero). Then R has infinitely many coefficient fields. In  fact, let w : R-+R/1V[(R) be 
the canonical epimorphism, and take any subfield L of R and any nonempty family 

{Xa}a e A of elements in R such that the elements { w(x,) }a E A are algebraically independent 
over w(L) and R /M(R)  possesses a separating transcendence basis {Zb}beB over 
w(L)({W(Xa)a~a} ). Let D ={ra}ae A be any family of elements in 1V[(R) (with the same 

indexing set A). Then there exists a coefficientfMd K D of R such that L [{ x a + r~}, e A] c K D. 
(Namely, take yb~w--~(Zb), and let L'=L[{x~+ra}aeA,{yb}beB] ; then for every 
o +seL '  we clearly have w(s) 4 o  and hence s is a unit in R;  consequently R contains 

the quotient field L* of L' ,  by Zorn's lemma, L* is contained in a maximal subfield K D 

of R;  now R/M(R)  is separable algebraic over w(L*) and hence, since R is henselian, 

by a standard argument  (see the proof of [9, Corcllary 2 on page 28o]) we see that K D 
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is a coefficient field of  R.) Now M(R)  is infinite and hence there are infinitely many 

distinct families D={r~}~e A of elements in 2V[(R). Moreover, if D={ra}~s  A and 
D'={r~}aE A are any two families of  elements in M(R.) then for any a e A  we clearly 

have that: x~- t -r '~KD ~=~ r'~=r~. 

I I I )  Analytic local rings. - -  Let K be a valued field, and let X1, X2, . . .  be indeter- 

minates. For every nonnegative integer m we set: 

K [ [ X  D . . . ,  Xm] ] = the ring of formal power series in Xa, . . . ,  X,,~ with coefficients in K;  

K((X~, . . . ,  Xm) ) = t h e  quotient field of K[[X1,  . . . ,  X , J ] ;  

K [( Xt,  . . . ,  X,~)] ---- the ring of  convergent power series in X~, . . . ,  X m with coefficients 
in K;  

� 9  X m )) = the quotient field of K [ ( X l ,  . . . ,  X m)]. K( (X1 ,  

Note that if K is discrete then K [ ( X a ,  . . . ,  X m ) ] = K [ [ x ~ ,  . . . ,  X,~]]. 

By an analytic local ring over K we mean an overring R of K such that there exists 

a K-epimorphism of K [ ( X 1 ,  . . . ,  Xq)] onto R for some q. 

For properties of analytic local rings see [2]. It should be remarked that 

although in [2] we assumed K to be complete, in all the relevant (algebraic as 

opposed to the function theoretic) material this assumption was never used; alter- 
natively it suffices to note that, upon letting K* to be the completion of K, we 

have K [ ( X 1 ,  . . . ,  X m ) ] = K * [ f X l ,  . . . ,  Kin) ] n K [ [ X 1 ,  . . . ,  Xm] ]. In particular then 
K [ ( X 1 , . . . , X , , ) ]  is an m-dimensional regular local ring with coefficient field K. 

We also remark that in case K is discrete, an analytic local ring over K is exactly a 
complete local ring with coefficient field K. 

Now let R. be an analytic local ring over K. Clearly then R is a local ring with 

coefficient field K. 
For every nonnegative integer m let A m = K [ ( X 1 ,  . . . ,  X,~)]. 

We observe that given any finite number  of  elements x l , . . . ,  x,, in M(R)  there 

exists a unique local K-homomorphism v : A,~-+R with v ( X i ) = x  i for i < i < n .  
Namely, the uniqueness follows by (2. I i). To see the existence, note that by definition 

there exists a K-epimorphism s : Aq-+R for some q; take f ( X 1 ,  . . . ,  X q ) e s - l ( x i )  

for I < i < n; now define v by taking 

v(f(X1, . . . ,  X ~ ) ) = s ( f ( f ~ ( X l ,  . . . ,  Xq), . . .  , f n ( X l ,  . . . ,  Xq))) 

for all f(X~, . . . ,  X,)EA,~. For any f (X1,  . . . ,  X,)eA, ,  we define f ( x l ,  . . . ,  x,)  to be 
v(f(X1, . . . ,X,~)) ;  also we set: K [ ( x l ,  . . . , x n )  ]=v(A~)  and K( (x l ,  . . . , x , ~ ) ) = t h e  total 

quotient ring of K [ ( x l ,  . . . ,  x n)] .  For the case of a complete local ring with coefficient 
field K we may denote the corresponding objects by f (x l ,  . . . ,  Xn) , K[[xl ,  . . . ,  xn]], and 

K((xl, . . . ,  x,)) respectively. 

Note that given any finite number  of  elements x ~ , . . . ,  x,~ in M(R)  and any 

nonnegative integer e < n ,  upon letting v : A , - + R ,  and t : A ~ R ,  to be the unique 
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local K-homomorphisms  with v(X~.)=x~ for I < i < n  and t(X~)=x~ for I < i < e ,  
we clearly have t ( f ) =  v ( f )  for all l e A  e. 

The  following lemma is quite useful. 

(2. x4) Given any finite number of elements xl, . . . ,  xe in M(R.), let t : A~--~R be the 
unique local K-homomorphism with t (X i )=  x i for I <  i < e. Then we have the following: 

i) (xl, . . . ,  xe)R is primary for M(R.)cz-R is integral over K[(x l ,  . . . ,  x,)]<:~R is a 
finite K[(x l ,  . . . ,  xe)]-module. 

2) I f  (xl, . . . ,  x,)R is primary for M(R) then: dim R = e . z ~ t  is injective. 
3) (xl, . . . , x e ) R = M ( R ) ' ~ z ' t  is surjective. 

4) I f  R is a domain and (xj, . . . ,  x~) is a system of parameters of  R., then, for any z e M(R),  
upon letting F(X) to be the minimal monic polynomial of  z over K((xl ,  . . . ,  Xe) ) (where X is an 
indeterminate)  and D to be the degree ofF(X) ,  we have F ( X ) - - X D e M ( K [ ( x l ,  . . . ,  x~)]) [X]. 
(Note that  by I) we know that  if P,. is a domain  and (X~, . . . ,Xe)  is a system of 
parameters of R, then the quotient  field of R is a finite algebraic extension of 
K((xa,  . . . ,  Xe)). ) 

Pro@ - -  Take a basis (xe+~, . . . ,  x,~) of M(R.) and let v : A~-+R be the unique 
local K-homomorph i sm with v(Xi)=x~ for i < i < n .  Now I), 2) and 4) follow by 
applying [2, (23.3) and (23.Io)]  to the ideal K e r v  in A,~. To prove 3), note that  if 
(x~, . . . ,  x e ) R = M ( R ) ,  then, upon letting K ' = K [ ( x l ,  . . . ,  x~)] we clearly have 
R = R ' + M ( R ' ) R  as R'-modules  and by I) we have that  R is a finite R ' -module ,  and 
hence R = R '  by Nakayama's  lemma. Q .E .D.  

(2. xS) Given any nonnegative integer n and any basis (Y1, . . . ,  Y~) of M(A,) ,  upon 
letting h :A,~-+A,, to be the unique local K-homomorphism with h ( X i ) = Y  ~ for i < i < n ,  

by (2. I4) we have that heGK(A,). Thus we have a bo'ection of  GK(A,) onto the set of all 
ordered n-tuples (Y1, . . . ,  Y,~) of elements in M(A,)  with (Yx, . . . ,  Y , ) A , =  M(A,) .  

It  may be remarked that  the Implici t  Funct ion Theorem [2, ( Io .8)]  and the 
Inversion Theorem [2, (Io. Io)] can be deduced directly from (2. I5). 

Another  immediate  consequence of (2. I4) is that:  

(~,. x6) There exists a K-epimorphism A , - + R c z - n > e m d i m  R. 
Moreover, all these epimorphisms can be derived from one of them in the following 

manner :  

(2 .  x 7 )  Let v : A , ~ R  and t : Ae--->R be any K-epimorphisms where n is any nonnegative 
integer and e = e m d i m R .  Let b:A,-->Ae be the K-epimorphism defined by taking 
b(f (Xl ,  . . . ,  X,,)) =f (X~,  . . . ,  X~, o, . . . ,  o) for  all f(Xx,  . . . ,  X , ) e A , .  Then there exists 
heGK(A~) such that tbh=v.  (Note that  if n = e  then we get th=v . )  

Actually, we shall prove the following slightly stronger version of (2. I7): 

(a. xb) Let v : A , ~ R  and u : A,,--->R be any K-epimorphisms where n and m are any 

nonnegative integers with n>m.  Let b : A , - + A  m be the K-epimorphism defined by taking 

b( f (X  D . . . ,  X , ) ) = f ( X ~ ,  . . . ,  Xm, o, . . . ,  o) for  all f(X~, . . . ,  X , ) E A , .  Then there exists 
heGK(A,) such that ubh=v.  (Note that  if n = m  then we get uh=v. )  
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P r o o f . -  Let x~=u(Xi. ) for I < i < m ,  and let e = e m d i m R .  Since u : A , , ~ t (  
is an epimorphism, we have (xl, . . . ,  x , , )R.=M(R) and hence there exists a permuta t ion  
(a(I), . . . ,  a(m)) of (i,  . . . ,  m) such that  (Xa(l) , . . . ,  xa(e/)R.---=M(R). Since v : A , - + R  
is an epimorphism, we can take Z'a(~)eM(A,) with v(Z',(~))---=xa(~) for I < i < e ;  now 
the elements xa(~), . . . ,  x~(e)are K-independent  modulo  M(R) 2, and hence the elements 
Z'all), . . . ,  Z'a(e) are K- independent  modulo M(A,)Z; consequently there exists a basis 
(Z1, . . . , Z , )  of 1V[(A,) such that  Z,(~)----Z~(i) for I < i < e .  By (2.15) we can now 
take h'~GK(A,) such that  h'(Xi)=.:Z i for i < i < n .  Now v h ' : A , - + R  is a 
K-epimorphism and vh'(X~(il)=x~(i) for i < i < e .  Let t : A e - + R  be the unique 
local K-homomorph i sm with t(Xi.)=x~(i/ for i < i < e .  By (2. i4)  we know that  t is 
surjective, and hence there exist 

Fi(Xl, . . . ,  Xe) 6q2V[(Ae) and f~(Xl, . . . ,  X,)eM(A~) 

such that  
F~(xa(t) , . . . ,  x~(e))=vh'(X~.) for I < i < n ,  

and ~(Xa(1) , . . . ,  x~(~))=xi for I < i < m .  

Let 

iX~.--F~(X,(1), . . . ,  X~(~)) fGr m < i < n ,  

Y i =  IX~ for ie{a( i ) ,  . . . , a ( e ) } ,  

Xi.--F~(X~(1) , . . . ,  X~(~))+f~(Xa(1) , . . . ,  X~(e)) for I < i < m  with i r  . . . , a ( e )} .  

Then  clearly (Y1, . . . ,  Y~) is a basis of M(A,) ,  and 

vh ' (Y i )=x i for i < i < m ,  and vh '(Yi)=o for m < i < n .  

Since (Y~, . . . ,  Y,) is a basis of 2VI(A,), by (2. I 5 )  w e  can take h*eGK(A,) with h*(X~.) = Y  
for I < i < n, and  then we have 

vh'h*(X,:)----x~ for i < i < m ,  and vh'h*(X~.)=o for m < i < n .  

Let h = h * - W  -~, and let X~=h'h*(X~) for I < i < n .  Then  heGK(A,) , (X;, . . . ,  X',) 
is a basis of 1VI(A~), 

v(X~) = vh'h*(X~) = x i = u(Xi. ) = ubh(X~) for I < i < m, 

and v(X~.) = vh'h*(X~)= o = ubh(X~) for m<i  <n. 

Thus ubh : An-+R and v : A , - + R  are both local K-homomorphisms,  
t t (X~, . . . ,  X,)A,----- M(A,) ,  

and ubh(X~.)=v(X~) for I < i < n ;  consequently by ( 2 . I I ) w e  get ubh=v. 

Using (2.17) we shall now prove 

(~,. xg) Let v : A , ~ R  be any K-epimorphism where n is any nonnegative integer, let J 
be any ideal in An, and let w : GK[An, Ker  v] ~ GK(R ) be the homomorphism induced by v. 
Then 

W(GK[A,, Ker v] r~ GK(A,, J)) -= GK(R , v(J)). 
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Proof. - -  Let e = e m d i m  R., and take a basis (xl, . . . ,  x,) of M(R).  Let t : A e ~ R  
be the unique local K-homomorphism with t ( X i ) = x  ~ for I < i < e ;  by (2.I4) we 
know that t is surjective. Let b : A,~-+A~ be the K-epimorphism defined by taking 
b(f(X~, . . . ,  X , ) ) = f ( X 1 ,  . . . ,  X~, o, . . . ,  o) for all f(X1, . . . ,  X,,)eA,~. By (2.17) we 
can find h~GK(A,) such that tbh=v.  

Let any g '~GK(R,v(J))  be given. Then g'(x~)--x~ev(J)=tbh(J) for I < i < e ,  
and hence there exists 

(i) Z ~ J  for i < i < e  

such that upon letting 

(2) Z~ = h(Zi) for i < i < e  

we have g'(x~)--x~=tb(Z~) for I < i < e .  Now 

(3) t(X~+b(Z~))=g'(x~) for ~ < i < e ;  

since g' is an automorphism of R, we have (g ' ( xa ) , . . . ,  g ' (Xe))R--M(R ) and 
hence the elements g'(xl) , . . . , g ' ( x , )  are K-independent  modulo M(1L)2; since 
t : A , - + R ,  is an epimorphism, in view of (3) we deduce that the elements 
Xlq-b(Zt)  , . . . ,  X~ q-b(Z~) are in M(A~) and they are K-independent  modulo M(Ae) 2. 
Therefore (XI+b(Zl ) ,  . . . ,  X ~ + b ( Z , ) ) A , = M ( A e )  ; now b :A,<+A, is an epimorphism 
with K e r b = ( X , + l ,  . . . , X , ) A ,  and b(X~q-Z~)=Xi+b(Z~) for i < i < e ;  conse- 

quently, we must have (X 1 + Zl, . . . ,  X,  + Z~, X~ + 1, . . . ,  X,,)A,~= M(A,) .  By (2.15) 
we now get h'eGK(A,) such that 

(4) h'(X~)=X~.-t-Z~ for I < i < e ,  and h'(X~)=X~ for e<i<n .  

Since t(X~.) = x~ for I < i < e, by (3) and (4) we see that 

f o r  I < i < e :  tbh'(X~)=g'(x~)=g't(X~)=g'tb(X~), 

for e < i < n :  tbh ' (X i )=o=g ' tb (X~) ;  and 

thus 

(5) 
Let 

(6) 

Then geGK(A,~), 

(7) 

tbh'(Xi)=g'tb(Xi. ) for I < i < n .  

g = h-  lh'h, 

and 

By (2), (4), and (6) we get 

g(X~) = X~+ Z~ 

and ~.* = h-  t (Xi) for i < i < n. 

(X~, X,~) A,, = M(A,,) �9 . , ,  �9 

for I < e < i ,  and g(X~)=X~* for e<i<__n; 

consequently, in view of (I) and (7), by (2.9) we see that g~GK(A, ,J) .  Since tbh=v,  
by (5) and (6) we get that for I < i < n :  

vg(X~) = (tbh ) ( h -  l h'h) h-  t(X,) = tbh' (X,) 
= g'tb (X,) = g' (tbh)h-a(Xq.) ---- g'v (X~.*). 
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Thus vg(X~)=g 'v (X~)  for i < i < n ;  now vg : A n ~ R  and g'v : A ~ R  are both local 
K-homomorphisms, and by (7) we have (X~, . . . ,  X~)An= M(A,,); therefore by (2. I I) 
we get 

vg =g 'v .  

From this it follows that geGK[A~, Ker v] and g ' = w ( g ) .  

Since, in view of (2.4), we have 

w(G~:[A,o Ker v] n GK(A,, J)) cGK(R , v(J)), 

we now conclude that 

w(Gi([An, Kerv]  n GK(A,, J))--- GI((R, v(J)). 

Remark (2.20). - -  By [2, (2o.6)] we know that R is henselian. Whence, in parti- 

cular, Remark (2.13) is applicable to R. 

Definition (2 .2  x ). - -  An analytic local domain S over K is said to be analytically separably 

generated over K / f  there exists a system of parameters (y , ,  . . .  ,Yd) of  S such that the quotient 

f ie ld  of S is separable over K((y l ,  . . .  ,Ye ) ) .  Given a prime ideal P in R, R/P  can be considered 
to be an analytic local domain over K by identifying K with its image under the canonical epimorphism 

R ~ R / P ,  and hence the above definition applies to R/P. 

Equivalently, upon regarding R/P  to be a K-algebra, in view of (2.14) we have that:  
R /P  is analytically separably generated over K~- there  exists a local K-monomorphism 
u : A,,-+R/P, for some m, such that R/P  is integral over u(Am) and the quotient field 
of R/P  is separable over the quotient field of u(Am) (note that we must then have 
m = dim R/P).  

It is known that if K is perfect then every analytic local domain over K is analy- 
tically separably generated over K. For the case when K is an infinite perfect field 
see for instance [2, (24.5) ] . In  [3] we shall give an elementary proof of this which 
applies also when K is finite. 

It may be noted that in case of characteristic zero, by definition every field is 
considered to be perfect and every algebraic extension is considered to be separable. 

For some other criteria of analytic separable generation reference may be made 
to [5] and [6, Exercises i to 4 on page 202]. 

w 3. Symbolic powers.  

Recall that for a pr imary ideal Q i n  a noetherian ring R: exponen t~Q=min  n for 
which (radRQ) n c Q;  and l eng thRQ= max n for which there exists a chain of distinct 
ideals Q 1 c Q 2 c . . .  c Q n  in R such that Q , , . . . ,  Q~ are primary for radRQ and 
0~1=O. Also recall that for a prime ideal P in a noetherian domain R, the n -th symbolic 

power of P is denoted by p/~/, i.e., p(~l=_ M(Rp)~r~ R; also note that if Q i s  an ideal in R 

which is primary for P, then upon letting e = exponentRQ we have that:  Q is a symbolic 
power of p~:~Q=p(e/. As usual, by (j) we denote binomial coefficients. 
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(3. x) Let A and R be noetherian rings, let u : A ~ R  be an epimorphism, and let Q be a 
primary ideal in R. Then exponentRQ=exponentAu- l (Q) ,  and lengthaQ=lengthAu- l (Q) .  

Proof. - -  The assertion about  length is obvious. The assertion about  exponent 

follows by checking that if Q'  and Q* are any ideals in R and n is any positive integer 
then: Q*ncQ'  ~=~ (u - l (Q~) )ncu- t (Q ' ) .  

(3 .2)  Let P and Q be ideals in a regular local ring A such that P is prime and Q c  p(2). 
Then Q r  M(A) 2 and emdim A / Q =  dim A. 

Proof. - -  Suppose if possible that there exists xeP  (~) with x~M(A) 2. Now Ap 
is a regular local ring with dim A e = d i m  A - - d i m  A/P, A / x A  is a regular local ring 

with dim A / x A  = dim A - -  I ; P/xA is a prime ideal in A/xA,  and (A/xA)p/x A is a regular 

local ring with dim(A/xA)pI~ A = dim A / x A - -  dim(A/xA)/(P/xA) ; consequently 

emdim (A/xA) P/xA = dim (A/xA) v/.A 
---- dim A / x A  --  dim(A/xA)/(P/xA) 

= dim A / x A  --  dim A/P 

= ( d i m  A - - I ) - - d i m  A/P 
= ( d i m  A - - d i m  A / P ) - -  I 

= dim A v --  I 
= emdim A 1, --  I. 

Also, by the permutabili ty of  residue class ring and quotient ring formations we know 

that (A/xA)p/~ A is isomorphic to Av/xAv; whence we get that 

emdim Av/xAp = emdim Av--  I. 

However,  xeP  (2/cM(AP) 2 and hence 

emdim Ap/xAp = emdim Ap 

which is a contradiction. 

Thus we must have P(2)cM(A)2. Therefore Q c M ( A )  2 and hence 

emdim A / Q =  emdim A = dim A. 

(3" 3) Let P and Q be ideals in a regular local ring A such that P is prime and Q is primary 

for P. Then: 

QcP(2/~* - dim A = emdim A / Q =  emdim (A/Q)p/Q + dim A / Q .  

Proof. - -  Since Q is pr imary for P, we have dim A / Q = d i m A / P ;  also 
emdim Ap = dim A v = dim A - - d i m  A/P;  consequently, 

emdim Ap = dim A - - d i m  A/Q.  

Also, by the permutabili ty of residue class ring and quotient ring formations we know 

that Ap/QA v is isomorphic to (A/Q)v/q , and hence 

emdim Ap/QA v = emdim (A/Q)  vlq" 
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Clearly : dim A = emdim(A/Q)e/Q-t- dim A / Q  ~ dim A--  dim A / Q =  emdim(A/Q)p/Q, 
and hence by the above two displayed equations we get that 

dim A = emdim(A/Q)p/q + dim A / Q  ~:~ emdim Ap = emdim Ae/QA P. 

Clearly: Q c P  (~)~ Q ApcNI(Ap)2~ emdim A e = e m d i m  Ap/QAp, and hence by the 
above displayed implication we get that 

Q c  p(2) ~:~ dim A = emdim(A/O )e/q + dim A/Q.  

Our assertion follows from this in view of (3.2). 

Proposition (3.4). - -  Let P and Q be ideals in a local ring R such that P is prime and Q 
is primary for P. Then we have the following. 

I) I f  u : A ~ R  is any epimorphism such that A is a regular local ring and 
u- l (Q)  c (u-l(P)) (~), then dim A = emdim R. 

2) Now assume that there exists an epimorphism B-+R such that B is a regular local ring 
with dim B = e m d i m  R. (note that by (2.16) we know that this assumption is satisfied 
if R is an analytic local ring over a valued field K). Then the following three conditions 
are equivalent: 

(,) There exists an epimorphism u : A - + R  such that A is a regular local ring and 
u-I(Q) c (u-l(P)) 

(**) I f  u : A - + R  is any epimorphism such that A is a regular local ring with 
dim A = e m d i m  R, then u- l (Q)  c (u-l(P)) (2/. 

(***) emdim R = emdim R / Q =  emdim(R/Q)p/Q + dim R/Q.  

Proof. - -  Follows from (3.3) by noting that if A ~ R  is any epimorphism such 
that A is a regular local ring, then 

dim A >  emdim R >  emdim R./Q. 

(3 .5)  Let P and Q be ideals in a regular local ring A such that P is prime, Q is primary 
for P, and Q4=P. Then the following two conditions are equivalent: 

(,) Q is a symbolic power of P. 

(**) dim a = emdim A / Q  

and l e n g t h n / Q { o } = ( e m d i m A / Q - - d i m A / Q + e x p ~ 1 7 6  exponentA/Q {o} 

Proof. - -  Since Q is primary for P, we have dim A/Q----dimA/P; also 
dim A p = d i m  A - - d i m  A/P; consequently: if dim A = e m d i m  A / Q  then 

emdim A/Q--  dim A / Q =  dim Ap. 

Therefore, in view of (3-i) and (3-2), we see that our assertion would follow from the 
following: 

(i) Q is a symbolic power of P ~ length AQ=/~dim Ap + exponent A Q -  I~. \ 
exponentAQ \ / 
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To prove (I), let e=exponentAQ. 

(2) 

Also: 

(3) 

Then P(~) C Q and hence 

Q =  p(~) <~ lengthAQ= lengthAP (e). 

Q is a symbolic power of P ~=~ Q =  p(e). 

Now Ap is a regular local ring, and hence 

(4) lengthAP(~) = (dim AP + e-- I) " e 

Now (I) follows from (2), (3) and (4). 
Proposition (3- 6). - -  Let P and Q be ideals in a local ring R such that P is prime, Q is 

primary for P, and Q +  P. Then we have the following: 

i) I f  u : A-+R is any epimorphism such that A is a regular local ring and u- l (Q)  is a 
symbolic power of u-l(P), then dim A = e m d i m  R. 

2) Now assume that there exists an epimorphism B-+R such that B is a regular local ring 
with dim B = emdim R (note that by (2. I6) we know that this assumption is satisfied 
if R is an analytic local ring over a valued field K). Then the following three conditions 
are equivalent: 

(,) There exists an epimorphism u : A-+R such that A is a regular local ring and u-~(Q) 
is a symbolic power of u-l(P). 

regular local ring with (**) I f  u : A - + R  is any epimorphism such that A is a 
dim A = e m d i m  R, then u- l (Q)  is a symbolic power 0f u-l(P). 

(***) emdim R. = emdim R./Q 

and lengthR/q{o} = (emdim R / Q - -  dim R/Q-I- exp~176 -- I) .  exponentR/q{O} 

Proof. - -  Follows from (3.5) by noting that if A-+R is any epimorphism such 
that A is a regular local ring, then 

dim A >  emdim R > emdim R/Q.  

w 4- P r o o f  o f  T h e o r e m s  3, 4 and 5" 

Let K be a valued field. Let R be an analytic local ring over K. Let Xl, X2, . . .  
be indeterminates, and for every nonnegative integer d let A~=K[(X1,  . . . ,  Xd} ]. 
By card we shall denote cardinal number; note that for any infinite set N, 
card(N) = card(N)-- I. 

(4. I) Let d be a positive integer. Let P be a nonzero prime ideal in A a. Let Q be an 

ideal in Aa such that Q is primary for P, and Q c P  r Let J be an ideal in A d such that J C Q .  
Let G0=GK(Ad,JnP  ) nGK[Aa, Q]. Then we have the following: 
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I) There exists G ' c G  o with card(G' )>card(K)-- i  such that g ( X l ) - - h ( X l ) 6 (  ~ 

for all g 4: h in G'. 

2) I f  there exists ZeJnM(Aa)  with ZCQ such that either Z~M(Aa) 2 or 
Z6X1Ad+M(Aa) z, then  there exists G*cG o with card(G*)>card(K) such that 

g(X1)--h(X~)r for all g * h  in G*. 
3) G0CGK(Aa, Q) ~ d = I ,  card(K)=2,  and Q=pr 
4) I f  P + M(Ad) then there exists an infinite subset G 0fG 0 such that g(X1)--h(Xl) 6 Q  

for all g + h in G. 

Proof. - -  Since J r  Q,  there exists ZeJ  with Z6Q;  in the general case we fix 
any such Z, and in case of 2) we take ZeJnM(Ad) with Z 6 Q  such that either 
ZeM(A,~) 2 or Z$X1A~+M(Ae) ~. Since Q is primary for P, there exists a positive 
integer m such that PmcQ, and then ZP'~cQ; now z P ~ 1 6 2  therefore there exists 
a unique nonnegative integer n such that upon letting B =  ZP" we have B r Q and 
BPcQ.  Since P is a nonzero prime ideal, we must have M((Aa)e)4:o; consequently 
N[((Ad)p)+M((A~)p) 2, and hence p4:p(2); since Q c P  (2), we get P c Q .  Now Qi s  
primary for P, B P c Q ,  and P C Q ;  therefore BcP.  Since B = Z P ' ,  it follows 
that B c J n P .  

Let any HeGK(A~, B) and any q e Q  be given. Since B o P  and HeGK(Aa, B), 
by (2.I) and (2.2) we see that H(P )=P .  Since q e Q c P  (~), we can write 

r q = i ~  yiz  i with reAd, rCP, yieP, zieP. 

Now 

also 

because HeGK(Ad, B), and 

H(y~) eP 

because H ( P ) = P ;  therefore 

H(r) (H(q) -- q) = q(r-- H(r)) + H(rq) -- rq 
e 

= q(r -- H(r)) + ,~1 (H(y,z,)--y,z,) 

e 

= q(r --  H(r)) + ,=~1 (H(y~)(H (z,) --z,) + z~(H(y,) --y,)) ; 

H(z~)--z~eB and H(y~)--y~eB for I < i < e  

and zieP for I < i < e  

H(r) (H(q) --  q) e Q +  BP. 

Since B P c Q ,  we thus get H(r ) (H(q ) - -q )eQ;  since rCP and H(P )=P ,  we must 
also have H(r)6P; since Q is primary for P, we conclude that H ( q ) - - q e Q ,  and hence 
H(q) eQ.  

Thus we have shown that H ( Q ) c Q  for all HeGK(A~, B). Given any 
HeGK(Ad, B), since G~(A~, B) is a subgroup Of GK(Ad) by (2. I), we have H-leGK(Ad, B) ; 
consequently by what we have just shown we get that H(Q) c Q  and H- I (Q)  c Q ;  
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therefore H(Q)  = Q. Thus GK(A~, B) CGK[Ad, Q] ; since B cJ  n P, by (~.2) we also 
have GK(Aa, B) CGK(Aa, J n P). Therefore 

(5) G(A~, B) c G o. 

If  d = I  and ca rd (K)=~  then for any basis (X[) of M(Ae) we would have 
X' t - -XteM(Aa)2=P (2). Therefore, in view of (~.9) we get the following: 

(6) If  d = I  and ca rd (K)=~  then GK(As)= GK(Aa, P(e)). 

Since B C Q ,  we can take YeB with YCQ. Since YeB and B c P c M ( A j ) ,  
we have YEM(Aa). 

For a moment suppose that P#M(Aa).  Then X/6P for some j .  For every 
positive integer t we have M(Ad)=(XI+X]Y,  X 2 , . . . ,  Xa)A a and hence by (2.I5) 
we get h,~GK(Aa) with h,(X~)----KI+X~Y and h , (Xi )=X ~. for 2 < i < d ;  now X]Y~B 
and hence by (2.9) we see that ht~GK(Ad, B). For any integers o < t < s  we have 
ht(X~)--h,(Xt)=X]Y(i--X;-t); since X~6P, Y6Q,  and Q i s  primary for P, we get 
that X~Y6Q; also i - X ~  -* is a unit in Aa, and hence ht(X~)--h~(X~)$Q. In view 
of (5), this completes the proof of 4). 

Now, reverting back to the general case (i.e., without assuming P#M(Ae)) ,  
in view of (5) and (6) we see that I), ~) and 3) would follow from i'), 2') and 3') 
respectively: 

I') There exists 

for all g # h  in G'. 
2') If  ZsM(A~) 

G*CGK(Ae, B) with 
in G*. 

(7) 

G' CGK(Ad, B) with ca rd(G ' )~card(K)- -  I such that 

g(Xl ) -  h(x ) CQ 

and either Z~M(Ad) 2 or Zr 2, then there exists 
card(G*)>card(K) such that g(X~)--h(X~)r for all g#h 

3') If either d>2 or card(K)>2 or Q#p(2), then GK(A~,B).d:GK(A~, Q).  

We now proceed to prove i'), 2') and 3')- 

Since Y~M(Ad) , there exist unique elements k~, . . . ,  k~ in K such that 

Y + k~X~ + . . .  + keXde M(Aa) 2. 

Let 

(8) Ko = t 

f 

( 

{ k e K : k # I / k l }  if k l# :o=k  2 . . . . .  ke, 

K otherwise. 

If  k2 . . . . .  k~=o then let (X'2, . . . ,  X~)=(X~, . . . ,  Xa); and if kj4=o for 
some j with 2<j<d then let (X'2, . . . ,  X~)=(Ks, . . . ,  Xj_I, Y, Xj+l,  . . . ,  Xd). Now 
M(A~)=(X1, X'2, . . . ,  X~)A a and hence by (2.15) we get g*EGK(Ad) with g*(X1)=X~ 
and for 2<i<d. Forany keK0 we have M(Ad)=(XI+kY, X'2, . . . ,  

* * * t and hence by (2.15) we get gk~GK(A~) with gk(X~)=X~+kY and gk(X~.)----X~ for 
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2 < i < d ;  let gk=g*kg*-~; 

for 2 < i < d ;  since kYeB, 

(9) 

then gkeGK(Ad) with gk(X~)=X~-t-kY and gk(X~)=X~ 
by (2.9) we see that gkeGK(A~, B). Thus we have found 

gkeGK(Ad, B) for all keK 0. 

For any k . k '  in K 0 we have gk(X~)--gk,(X~)=(k--k')Y; now YCQ and k- -k '  
is a unit in As; consequently gk(X1)-g~,(X1)r Thus 

(Io) for all k # k '  in K 0 we have gk(X1)--gk,(Xl)r 

By (8) we have card(K0) >card(K)--1  , and hence 1') follows from (9) and (Io). 
Now YeZAd; consequently by (7) and (8) we see that if ZelV[(Ad) and either ZeM(Ad) 2 
or ZCXtAd4-M(Ad) 2 then K 0 = K ;  therefore 2') also follows from (9) and (lO). 

Now only 3') remains to be proved. 

By (9) and (IO) we see that if card(K0)>I then GK(Aa, B)r Q) ;  since 
always card(K)>2,  by (8) we see that card(K0)>i ; therefore we get the following: 

(11) If card(K0) + 1 then GK(A~, B) r GK(A , Q).  

(12) 

( I3 )  

If d>2  
(2.15) we get 

By (8) we get (12) and (i3): 

If card(K)+2 then card(K0)+1. 

If card(K0)= I then k l + o = k  ~ . . . . .  k~. 

and k 2 = o  then M(A~)----(X1, X z + Y , x 3 ,  . . . , X a ) A  d and hence by 
g'eGK(Ae) such that g ' (X1)=Xl ,  g ' (X~)=Xz4-Y, and g ' (X~)=X 

for 3<i<_d; since YeB, by (2 .9 )we  have g'eGK(Aa, B); since Y$Q,  we also have 
g'r Q).  Thus we have proved the following: 

(14) If d>2  and k~=o then GK(Ad, B ) ,  GK(A~, Q) .  

If d = i  and kiJeo then clearly Y A a = X 1 A d = M ( A d ) = P ;  since YEB and 
BP c Q c  p(2), we then must have Q =  p(2). Thus we have proved the following: 

(15) If d = I  and kl+O then Q=P(2). 

Now 3') follows from (I I), (I2), (I3) , (14) and (15). 
Theorem (,t.2). - -  Assume that dim R = o  and RoeK (i.e., equivalently, dim R = o  

and M(R) +M(R)Z). Let x be any element in M(R) with xr 2. Let J be any nonzero 
ideal in R. Then we have the following. 

I) G K ( R  , J) = { i }  
-~emdim R = i, card(K) = 2, and M(R) z = {o} 
~ -ca rd (K)=  2 and R is K-isomorphic to A1/(X~A1) 
-~card(K) =-2 and R is isomorphic to A1/(X~AI) 

~*card(R) = 4 
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2) There exists G'CGK(R,J  ) with ca rd (G ' )>ca rd (K) - - i  such that g(x) +h(x) 
for all g 4= h in G'. 

3) I f  there exists o +z~J  n M(R) such that either zeM(R) ~ or z(~xR + M(R) 2, then 
there exists G*CGK(R,J ) with card(G*) >card(K)  such that g(x) +h(x) for all g:~h in G*. 

4) I f  either e m d i m R + i  or 1V[(R) 2+{o}, then there exists GcGK(R ) with 
card(G)>card(K)  such that g(x)+h(x) Jbr all g + h  in G. 

5) I f  ca rd (R)+4  then there exists gCGK(R) such that g(x) +x. 

Proof. - -  Upon letting d = e m d i m  R, we can take x 2 , . . . ,  x~l in R such that 
M(R)=(x ,  x2, . . . ,  xd)R. Let v : A , ~ R  be the unique local K-homomorphism with 
v(X1)=x and v(X~)--~x i for 2 < i < d ;  by ( 2 . 1 4 )  we  know that v is surjective. Let 
Q = K e r v .  Now Q is primary for M(Ad),QcM(Ad)2=M(A~)(2) ,v- t (J)r  and 
GK(A~, v-l(J) n M(A,~))= GK(Ad, v-~(J)). Also, we have the following: 

6) If  z is any nonzero element in J n M ( R )  such that either zeM(R) 2 or 
z~xR-t-M(R) 2, then upon taking any Z~v-l(Z) we have that Z~v-l(J) nM(A~), 
Zq~Q, and either Z~M(Ad) 2 or ZCX~Ad-kM(A~) 2. 

Let G0=GK(Ad, v-~(J))nGK[Ad, Q] .  By (4.1) w e  get I'), 2') and 3'): 

I') G o c GK(A ~, Q) ~=~ d =  I, card(K) = 2, and Q =  M(Aj) 2. 
2') There exists G0cG 0 with card(G0)>card(K)-- i  such that g(XI)--h(X~)r  

for all g + h  in G O . 
3') If there exists Zev-~(J) nM(A~) with ZCQ such that either ZeM(Ad) 2 or 

ZCXaA~-klV[(AS", then there exists GocG o with card(G~)>card(K) such that 
g(X~)--h(X1)r for all g:bh in G o . 

Let w : GK[Ad, Ker v] -+ GK(R ) be the homomorphism induced by v. Then 
by (2.3) and (2.4) we have Ker w-=GK(A~, Q)  and w(G0) cGK(R,J) .  In view 
of (2.5), 2) now follows from 2') by taking G' to be w(G0). In view of (2.5) and 6), 
3) follows from 3') by taking G" to be w(G;). 

Since K e r w = G K ( A ~ , Q )  and w(G0) CGK(R,J), by I ' ) w e  get that: 

GK(R, J )={ I  } =~ d-----l, ca rd(K)=2 ,  and M(R)2={o}. 

Clearly: d =  1, card(K) = 2, and M(R) 2 = {o} 

=~card(K)=2 and R is K-isomorphic to A1/(X~A1) 
=~card(K)=2 and R is isomorphic to AI(X~A 1) 
~ card(R) = 4; 

and: G(R) = {I } ~- GK(R) = {I } ~ G~:(R, J) = {~ }. 

For a moment suppose that c a r d ( R ) = 4 ;  now card(K)>2,  xCK, I-kxCK, and 
X+l-L-x; therefore we must have ca rd (K)=~  and R = ( o , I , X , l - l - x } ;  for any 
g~G(R) we must have g ( o ) = o  and g(1)=1;  also g ( x ) = x  because M(R.)={x}; 
hence also g(I@X)=I-~-X; therefore g is the identity automorphism. Thus: 
card(R.)= 4 ~ G(R)----{~}. This completes the proof of ~). 
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To prove 4) assume that  either d:t=I or M(R)2#{o} .  I f  d=t=i then let Z=X2; 
if d =  I and M(R)2~={o} then let z be any nonzero element in M(R) 2. Now in both 
cases o e e z e M ( R )  and either zelVI(R)" or z~xR  q - M ( R )  2. So take J to be zR and 

apply 3)- 
Finally, 5) follows from I), 2), and 4). 

Theorem (4.3).  - -  Assume that dim 1L ~= o. Let Q be an isolated primary component 
of{o} in R,  and let P = r a d R Q .  Let Q ~ = O ~ t n . . .  nO~b where 0_~.,, . . . ,  Off_. b are any finite 
number of primary ideals in R with 0.~ el= P for I < i < b. Let J be any ideal in R with J r Q .  
Let x be any element in M(R) with xCM(R) ~. Assume that Q~=P and: 

(.) there exists a K-epimorphism u : A a ~ R ,  for some d, such that u - l ( Q )  c (u-l(P))  (2). 

Then there exists an infinite subset G of GK(R, J o P n Q') n GK[R, Q ]  with 
e a r d ( G ) > c a r d ( K )  such that g ( x ) - - h ( x ) r  for all g=l=h in G. 

(Note that  by (2.~) and (2.2) we then have GCGK[R , P] and GcG~:[R,  Q~i] 
for I < i < b . )  

(For an intrinsic formulat ion of (*) see (3.4).) 

(Note that  if we assume Q =  P but  keep all the other assumptions unchanged,  then:  
P = Q = { o } + J o Q ' o M ( R ) ~ , d > o ,  and u is an isomorphism. In view of (2.15) we 
can now identify R with A a so that  x gets identified with X a. We can take 
o 4 = y e J n Q ' o M ( R )  2. For every positive integer n and every keK,  in view of (~.9) 
and (2.I5), we get gk, neGK(P,.,Jc~Q') with gk, n ( X ) = x + k y  ~ and gk,,(Xi)=X~- for 
2 < i < d .  Clearly gk,,,(x) ~=gk,,,,(x) whenever (k, n) =t=(k', n').) 

Proof. - -  By (3-4) we know that d = e m d i m  R, and hence we can take x2, . . . ,  x~ 
in R such that  M(R. )=(x ,x~ ,  . . . , x d ) R .  Let v : A e - + R  be the unique local 
K-homomorph i sm with v (X1)=x  and v(X/.)=xi for 2 < i < d .  By ( 2 . I 4 ) w e  see 
that  v is surjective, and then by (3-4) we see that  v - l ( Q )  r (v-*(P)) (~). Now d>o ,  v-l(P) 
is a nonzero pr ime ideal in A d with v-*(P) =t= M(Aa) , and v-~(Q) is pr imary for v-l(P) .  
Since e is an isolated pr imary component  of {o} in R, we have { o } = Q n Q *  with 
Q * = O ~ l o . . .  oQ* a where O.~1,..., Q~ are pr imary ideals in R with Q*ir P for I < i < a .  

Let J0=JnQ*nQ.'. Then  J 0 r  and hence v - ~ ( J 0 ) r  Let 

O o = GK(Aa, v-l(Q*)) o GK(Ad, v-*(J n P n O_~)) n GK[Ad, v - l ( Q ) ] .  

Now GK(Ad, v-*(Q*))n GK(Ad, v - ' ( J n P n  O~))= GK(A,, v- '(Q*) n v - * ( J n  P n  Q')) 

and v-l(O~) n v - l ( J  n P n Q ' ) =  v-*(Jo) n v-*(P). 

Therefore by (4. i) there exists an infinite subset G' of G O with 
such that  g(X,)--h(Xl)r for all g , h  in G'. 

By (2.I)  we have 

and clearly 

and 

card(G')_> card(K) 

GK(Ad,/)-I(Q*)) CGK[Ad ' /)-I(Q*)], 

GK[Ad, V--I(Q*)] O GK[Aa, v-*(Q)]  CGK[Ad, v - t (Q *) o v- ' (Q)]  

v - l ( Q  *) n v - l ( Q )  = Ker  v. 
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Therefore G0CGK[A~, Ker v]. Let w : GK[Aa, Ker v] ~ GK(R ) be the homomorphism 
induced by v. Now, in view of (2.4), we see that 

w(G0) CGK(R,J n P n  Q ' ) n  GK[R, Q] .  

In  view of (2.5) we see that w induces an injection of G', and g(x)--h(x)(~Q for all 
g+h in w(G'). Therefore it suffices to take G to be w(G'). 

Theorem (4.4). - -  Let J, Q i , . . . ,  Qa (a>o) be any ideals in R such that 
Q , , . . . ,  Qa are primary and J ~ n Qo= {o}. Let P i =  radRQi.  Let v : R@S 
be a K-epimorphism where S is an analytic local ring over K and Ker v = P1 n . . .  n Pa" Let 
w : GK[R , Ker  v] -+ GK(S ) be the homomorphism induced by v. Let 

a a 

G = GK(R,J ) n 0 GK[R , P,] n 0 GK[R , Q,] ,  

a 

G'= %(S, __fl, O [S, v(V,)]. and 

Assume that: 

power 

sense 

(,) there exists a K-epimorphism u : Aa-+R, for some d, such that u- l (Qi )  is a symbolic 
of u-~(V~) for I < i < a .  

Then w (G) ---- G'. 

(Note that clearly GK[R , P1] n . . .  n GK[R , Pa] CGK[R, Ker v], and hence it makes 
to talk about w(G).) 

(Note that ( ,)  is automatically satisfied if Q i = P i  for I < i < a ,  because then 
we can take u to be any K-epimorphism Aa-+R. For the case when Qi4:P~ for some i, 
for an intrinsic formulation of (*) see (3.6).) 

Proof. - -  Let t : GK[Aa, Ker u] ~ GK(R ) be the homomorphism induced by u. 
Let v ' =  vu and let w' : GK[A,~, Ker v'] ~ GK(S ) be the homomorphism induced by v'. 
Let any g ' eG '  be given. 

Clearly v'(u-l(J))=v(J),  and hence by (2.I9) there exists heGK[Aa, Kerv ' ]  
such that heGi~(Aa, u - l ( J ) )  and w'(h)=g'. By (2.I)  we see that h(u- l ( j ) )=u- l (J ) .  

Now K e r v ' c u - i ( P i )  and v'(u-l(P~))=v(Pi), and hence by (2.4) we get 
that heGK[Aa, u-~(Pi)], i.e., h(u-~(Pi))=u-~(Pi). Therefore there exists a unique 
automorphism of the quotient ring B i of Ar with respect to u-t(Pi) such that 
hi(x)=h(x) for all xeA d. For every positive integer n we now have 

h(N{(B,) "n  Ad) = h,(M(B,)" n Ad) = h,(M(B~) n) n h,(Aa) = M(B,)" n A~ ; 

since u- l (Qi)  is a symbolic power of u-t(Pi),  we conclude that h(u-i(Q~))= u-l(Qi).  

Thus h(u- l (J) )=u- ' (J)  and h(u-~(Qi))=u-l(Qi) for ~ < i < a ;  clearly 

Ker u=u-l(J) n u-l(Q1) n . . .  r u-i(O~),  

and hence h(Ker u ) = K e r  u. Thus h~Gg[Aa, Ker u] and upon letting g = t ( h ) ,  in 
view of (2.6), we see that g~GK[R. , Kerv]  and w(g)=w(t(h))=w'(h)=g' .  Now 
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h~GK(Aa, u-*(J)),heGK[Aa, u-I(P~)] for I< i<a ,  and heGK[Aa, u-l(Q~)] for I < i < a ;  
consequently, in view of (2.4), we have geG.  

Thus we have shown that, given any g ' eG '  there exists gEG with w(g)=g'. 
Now, in view of (2.4), w ( G ) c G ' ,  and hence we conclude that w ( G ) = G ' .  

w 5" Rigid subfields. 

Let K be a valued field. Let A = K [ ( X ) ]  where X is an indeterminate.  
Let zl, . . . ,  z~ be any given finite number  of elements in K. Let L be the field 

generated by zl, . . . ,  z~ over the prime subfield of K. 
Take Z0=I.  We can take positive integers m, n, q, d such that:  q+qe<m; 

m+q+qe<n;  n is not divisible by the characteristic of K; n + m < d ;  and n and da re  
coprime. Now we can take Y = Y ( X ) ~ A  such that the coefficient of X ~r in Y(X) is 
nonzero and 

Y = X " + m +  ~ ziX~+m+q+qi@Y ' with Y'eX'~+'~ +~+q'+lA. 
i = 0  

Let R - - K [ ( X " ,  Y) ] .  Then clearly R is a one-dimensional analytic local domain 
over K, with emdim R =2 .  

(5. x ) A is the integral closure of R in the quotient field of R. 
Pro@ - -  Clearly A is the integral closure of R in K ( ( X ) ] ,  K ( ( X n ) )  is contained 

in the quotient field of R, and [ K ( ( X ) )  : K ( ( X " ) ) ] = n ;  consequently it suffices to 
show that [ K ( ( X " ) ) ( Y )  : K ( ( X " ) ) ] > n .  Let K'  be an algebraic closure of K. Let v 
be a primitive n -th root of I in K'. We have a unique K'-automorphism hj of K ' [ [X] ]  
such that h j (X)=vJX;  hj extends uniquely to an automorphism of K' ( (X))  which we 
continue to denote by h~; clearly hj is then a K'((X"))-automorphism of K' ( (X)) .  Now 

Y = ~ y ~ X  ~ with y ~ K  for i = o , I , 2 , . . . ,  and y a + o ;  we have hj(Y)=~y~vi~X'; 

since n is not divisible by the characteristic of K, and n and d are coprime, we see 
that v 4~, . . . , v  a" are pairwise distinct; since ya+o ,  we get that h~(Y), . . . , h , ( Y )  
are pairwise distinct. Thus Y has n distinct K'((X"))-conjugates in K' ( (X)) ,  and 
hence [K'((Xn))(Y) : K ' ( (X" ) ) ]>n .  Since K ( ( X " ) )  cK ' ( (X") ) ,  we must also have 
[K((  X~ )) (Y) : K ( ( X ~ ) ) ]  >n.  

(5 .2)  Let rsR be such that o<ordAr<2n .  Then ordAr=either n or n+m. 

Proof.--Since r e R  and o r d a r > o  , we can write r = a X " + b Y + r '  where aeK,  
beK,  and r ' = s X 2 ~ + t X " Y + u Y  ~ with s~R, teR, ueR. Since o r d A Y = n + m > n  , 
we have ordAr'>2n. Since ordAr<2n , we see that ordAr=ordA(aX"+bY)=either n 
or n+m. 

(5 .3)  Let g be anyautomorphismofR. Then g(z ) - - zeM(R)  for all z~L. Whence, 
in particular, i f  g ( K ) = K  then g ( z )=z  for all zeL. 

(Note that by (2. r2) we know that if K is a perfect field of nonzero characteristic 
then g ( K ) = K  for all geG(R) . )  
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Proof. - -  In view of (5. I ) ,  w e  can uniquely extend g to an automorphism of A 

which we continue to denote by g. Now ordAg(X)=  i and hence there exists o ~ekeK 
with ordA(g(X ) - k X ) >  ~. 

Suppose if possible that OrdA(g(X ) -  kX)_< m. Then g(X) = kX(I q- E X  ~) where u 
is an integer with o < u < m  and E is a unit in A. Now 

g(X '~) =knX"(1-1- nEX"-t - an element in X"+tA) ; 

since n is not divisible by the characteristic of  K, we get that ord~t(g(X " ) -  k'~X ") = n + u; 
since n<n+u<n+m<2n and g(X")--knXneR, we have a contradiction by (5.2). 

Therefore g ( X ) = k X ( I + D X  ~) with DeA.  Now 

k-'~-"g(Y) = k-"-mg(Y ') -t- X~+m(x + DXm) n+ra 
e 

~- E Z kq+qixn+m+q+qi I g(,) (+DXm) "+m+q+q~" 
i=0  

since Y'eXn+m+q+q"+aA, we have 

g(y')eXn+~+q+q"+lA; 
also, for all j > o  we have 

X'~+"+J(I + DXm) '* +'* +J= Xn+m+J-} - an element in xn+zm+JA 
= Xn+m+J-t-an element in Xn+m+q+qe+lA 

e 

Consequently k - " - m g ( Y ) - - Y =  Y~ (g(z~)kq+r 
i=0  

+ a n  element in X"+~+q+q"+iA. 

Since k-"-mg(y)--YeR and n+m+q+qe<2n, in view of (5.2) we now conclude 

that g(zi)kq+qi--zieM(A) for o < i < e .  

Since Z0=i ,  we have g(z0)=I; consequently k q - - i e M ( R )  and hence kq=i. There- 
fore kq+qi=-I for all i, and hence 

g(zi)--zi~M(A) for I < i < e .  

because q + qe<m. 

Let w : A - + A / M ( A )  be the canonical epimorphism. Now g(1V[(A))=M(A) and 

hence g induces g 'eG(w(A)) .  Since g(zi)--zieM(A), we get that w(z~)eInv{g'}; 
by (2.7) we know that Inv{g'} is a subfield of w(A), and hence we must have 
w(L) r  Therefore 

g(Z)--zEM(A)nR=M(R.) for all z~L. 

Purdue University, Lafayette, Indiana, U.S.A. 
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