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One-dimensional steady state flow or a self-similar flow is represented by an integral curve
of the system of ordinary differential equations and, in many important cases, the integral
curve passes through a singular point. Kulikovskii & Slobodkina (196%) have shown that the
stability of a steady flow nesr the singulerity can be studied with the help of a simple first-
order partial differential equation. In §2 of this paper we have used their method to study
steady transonic flows in radiation-gas-dynamics in the neighbourhood of the sonic point.
We find that all possible one-dimensional steady flows in radiation-gas-dynamics are locally
stable in the neighbourhood of the sonic point. A continuous disturbance on a steady flow,
while decaying and propagating, may develop a surface of discontinuity within it. We have
determined the conditions for the appearance of such a discontinuity and also the exact posi-
tion where it appears. In §3 we have shown that their method can be easily generalized
to study the stability of self-similar flows. As an example we have considered the stability of
the self-similar flow behind a strong imploding shock. In this case we find that the flow
is stable with respect to radially symmetric disturbances.

1. INTRODUCTION

Self-similar flows and one-dimensional steady-state flows in fluid dynamics share a
common interesting feature that, some times, a singular point or a singular surface
appears in the phase space of the flow variables. The one-dimensional steady-state
flows,where the flow variables depend on just one spatial coordinate, form a particular
case of self-similar flows. The singularities of the system of ordinary differential
equations describing these flows can be classified in two groups. The singularities of
the first group represent equilibrium states or ‘uniform flows’ and they can form the
starting points or end points of the steady flows at infinite distance. The examples
of such singularities are the Rankine—Hugoniot points in the steady-state flows
(Ludford 1951; Prasad 1969; von Mises 1950) describing shock structure and
we can call them ‘natural singularities’ since their appearance is independent of the
dissipative terms, such as viscosity or heat conduction terms, included in the equa-
tions of motion. The appearance of the other group of singularities depends on the
dissipative terms included in the equations of motion and hence we call them
‘pseudo-singularities’. A singularity of the second group in the case of a self-similar
flow corresponds to states on one of the characteristics of the flow and in the case of a
steady-state flow it corresponds to those points where a characteristic velocity of
original equations of motion becomes zero, i.e. where the particle velocity equals a
sound velocity. For example, in the steady flow through a Laval nozzle, a singularity
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appears at the critical point where the particle velocity equals isentropic sound
velocity. Finally, if we consider any steady flow with viscosity as the only dissi-
pative mechanism, no singularity of the second group will appear, because the
equations of motion with the viscous terms included are parabolic in nature with
infinite speed of propagation for disturbances. Thus, the singularities in the second
group depend on our physical assumptions, and they will automatically appear in
similarity solutions. However, they play a very important role in determining the
existence and uniqueness of a possible self-similar motion. Zel’dovich & Raizer (1967)
have given an illuminating discussion of the self-similar motion of the second kind
and also of the role played by pseudo-singularities in determining the unknown but
unique exponent ¢ of the similarity variable £=7/t’. In these self-similar motions of
second kind, the equations of motion and the initial and boundary conditions contain
only one independent dimensional constant so that they are not sufficient to deter-
mine the exponent, but it can be uniquely determined from anecessary condition that
the integral curve must pass through the singular point.

Recently, Slobodkina (1966) has made a qualitative study of steady m.h.d.
flows in channels and shown that the equations exhibit all types of singularities at
the sonic point. Kulikovskii & Slobodkina (1967) have developed a general method
for discussing stability of equilibrium of arbitrary steady flows in the transonic
region from the nature of the singular point in the steady flow. Their analysis is
valid for any system of equations of motion, hyperbolic or mixed type, with the
only assumption that the characteristic speed under consideration is real and not
multiple. Their basic undisturbed flow is a steady flow with a sonic transition through
a singular point at x = 0, where z is the spatial coordinate. In the steady flow,
one of the characteristic velocities, say C, of the original system of equations vanishes
at x = 0. They perturb the original system of equations describing unsteady motion
about the steady flow and retain the most dominant terms keeping in view that they
wish to study only those waves which remain in the neighbourhood of the sonic
point for a time interval of the order of unity, i.e. those waves whose velocity of
propagation is of the order of the magnitude of C. Therefore, they approximate the
perturbed equations over a length scale of the order of the magnitude of (' in the
neighbourhood of # = 0 and over a time scale of the order of unity. Finally, they get
a simple first-order partial differential equation

2 0% ot po, (1.1)
where ¢ is the time and « and £ are constants. It isremarkable that their approximate
equation (1.1) governs not only the propagation of a perturbation of the steady flow
but also the steady flow in the neighbourhood of the sonic point. Therefore, to
obtain the constants « and £, we donot have to work out the complicated algebra
of the general theory. They are easily determined from an approximate form of the
ordinary differential equations describing the steady flow. As in the case of the
original system of equations, the approximate equation (1.1) is quasi-linear and
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hence the nonlinear effects producing a modification of the waveform are fully
taken into account by it. In fact weak shocks do appear within initially continuous
disturbances.

In §2 of this paper we have studied steady transonic flows in radiation-gas-
dynamics and then we have used Kulikovskii & Slobodkina’s method for studying
non-stationary propagation of transonic waves. In § 3 of this paper we have shown
that Kulikovskii & Slobodkina’s method can be easily generalized to study stability
of self-similar flows in the neighbourhood of a singular point. We have used it to
study the stability of the self-similar flow (studied by Guderley (1942) and also by
Landau & Stanyukovich (see Stanyukovich 1960)) behind a strong imploding
shock.

2. TRANSONIC FLOWS IN RADIATION-GAS-DYNAMICS

If we neglect radiation pressure, viscosity and heat conduction, the one-dimen-
sional equations of mass, momentum and energy are:

Pt upy+puy = 0, (2.1)
p(ut+uux) +p.’c = O’ (22)
and (pe+up,) — (vplp) (pr+up )+ (Y —1) F, = 0, (2.3)

where u is particle velocity, p mass density, p the gas pressure, y is the ratio of
specific heats and F radiation flux in positive  direction. Under the Milne—
Eddington approximation and the assumption of the local thermodynamie equili-
brium, the radiative transfer equation (for a grey gas) becomes

F, = kp(40T*—cU) (2.4)
and cU,+ 3kpF = 0, (2.5)
where ¢ is the speed of light in vacuum, U radiation energy density (with equilibrium
value (40/c) T, where o is Stefan’s constant), 7' temperature and « the mass absorp-
tion coefficient. In the frame of reference in which the motion is steady equations
(2.1) to (2.5) give us

Poty = M, (2.6)
MUy + Py = MLy, (2.7)
YPo__ 1,2 fo_

+ Jug +=2 = me,, 2.8
(=D ¥ T T (25)

du, (40 [Rp) {ug(cy —ug)}t —clj,
dr (y—1) &, ug — a2, (2.9)
and cdU,/dz = — 3k, 00 Iy, (2.10)

where we have used a suffix 0 to denote the value of the variables in the steady flow,
m, ¢;, and ¢, are constants and R, is the gas constant appearing in the equation of
state p = R,pT. We also assume that z is measured from the singular point where

Uy = Agg = Y0,/ (Y +1) = 0y (say) (2.11)
and U, = (40/cRY) {(c;— ak) alo}* = Us* (say). (2.12)
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Therefore, at = 0 the numerator and denominator of the right-hand side of (2.9)
vanish and the value of the flux at that point is

v2m2ci (2(y2—1)mec,

* = —_ 1
I 57°-1) P 1. (2.13)
If M represents the mach number, defined by
M = ujag (2.14)

we can easily find the value of M| = dM,/dx from (2.6) to (2.9) in terms of the values
of the flow variables and we can show that its value at the sonic point = 01is given
by the two roots of

(Mo)?—ou(Mo) = fr = O, (2.15)
. Soki pi(y — 1)*y2 et

where oy =— (y+ L mEd (2.16)
2_

and R ARV e (217
1

The behaviour of perturbations of the above steady-state solution in the neigh-
bourhood of the sonic point can be studied (see Kulikovskii & Slobodkina 1967) from
the Lagrange’s equation

o¢ o0

54—0%:050—1—/)’90 (2.18)

for the characteristic velocity C defined by
C = u—as (2.19)

which vanishes at the sonic point in the steady flow. Here o and  are constants and
depend only on m, ¢, and c,. Solution of the equation (2.18) can be obtained by
integrating the characteristic equations

dC/dt = oc0+,b’x,} (2.20)

and dz/dt = C.
In the neighbourhood of the sonic point we also have € = u—as~ a (M —1).
The equation (2.18) describes both steady and non-steady solutions near the critical

point. In the steady case, system (2.20) gives a solution Cy(x) of equation (2.18) in
the form G = Cy(t), x, = x,(t). The general solution of equation (2.20) is

C = A) et + BAyetet, = AeMt 4 Belet, (2.21)
where A, and A, are the two roots of the equation

X2—ad—f = 0. (2.22)
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In the case of steady flows through the sonic point we have, in the neighbourhood
of (0,0), C, = A,z or C, = Ay and since

Co(®) = wy—ag ~ alo(My—1) ~ o My,
we obtain by substituting A = a M in (2.22)
als (Mo)?—oal My—f = 0, (2.23)

which must be the same as the equation (2.15). This gives us the values of « and £

in the form
o= aja, (2.24)

and ' B =a%p,. (2.25)

The steady flows are described by the equations (2.20) with ¢ as an auxiliary
variable. As discussed in our previous papers (Prasad 1969; Prasad & Pandey 1970),
we can classify steady flows into two classes according as {2mc,(y%—1)/(y2c?)} is
less than or greater than one.

When {2mcy(y2— 1)[y2c3} < 1, we find that the elimination of p, and p, between
(2.6), (2.7) and (2.8) and substitution of F, = 0 in the resulting equation leads to a
quadratic equation in w, which has two real roots. Thus, in one of the two classes
of steady flows, it is possible to have two real uniform states (p, p, = constants and
F = dF|dx = 0) satisfying the Rankine—Hugoniot conditions. In this class we find

that

1_2_mr(y2_1)02} (2.26)

22
voe1

4B 3(y+1meR]
a2~ 128y4y—1)to2c?

is always negative and we can have two subclasses:

(i) When 48/a? < — 1, the singular point 2 = 0, Cy = 0 of the steady-state equa-
tions (2.20) is a focus and as we have discussed earlier (Prasad 1969), there does
not exist any steady flow with continuous sonic transition. A supersonic state can
be joined to a subsonic state only through an embedded shock. This case corresponds
to a physical situation where the temperature of the medium is low so that the effect
of radiation flux on the flow is small (Prasad 1969).

(ii) When —1 < 4f/a? < 0 (which implies {2m(y%—1)c,/y?c3} < 1), the singular
point is a node (A, < A; < 0) and the nature of the integral curves in (,¢) plane
fora = —1, f = — 0.1875 are shown in figure 1. This case corresponds to a medium at
high temperatures and the effect of radiation flux is very significant on the flow. We
remark here that, for any value of « and S, the phase plane of the system (2.20) re-
mains unchanged under an affine transformation €' = kC, Z = kx. Therefore, figure 1
(or 2) will remain unchanged if the scales of measurements of C' and x are reduced
or magnified by the same factor. The arrows on the integral curves represent the
direction in which a disturbance propagates. A portion of an integral curve in which
there are two values of C for a given value of 2 cannot represent a continuous flow.
We also find that there exists a continuous flow with sonic transition which joins
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Froure l.a = —1, 8 = —5%, A; = —0.25, A, = —0.75.

l A \C

N

Fioure 2. a = —4, f = 7%, A, = +0.25, 2, = —0.75.

any point in the region R, to any other point in the region R, where we have divided
(z, C) plane in four regions R, Ry, Rg, R, by straight lines ' = A,z and €' = A,z as
shown in figures 1 and 2. There is a continuous sonic transition (Prasad 1969) for
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shock-wave structure in this case and the wave propagation velocity changes sign at
z=0.

The other class of steady flows is the one for which {2mc,(y2—1)/y%3} > 1. In this
case the Rankine-Hugoniot points are complex conjugates and there does not exist
any steady flow (with constants m, ¢,, ¢, satisfying the above inequality) which can
either terminate in or originate from a uniform state. The singular point (0, 0) is a
saddle point (A, < 0 < A;) as shown in figure 2 and it is possible to have just four
steady flows with continuous sonic transition. These flows are aob, lof, aof, bol.
In the first two steady flows C changes sign at « = 0, in lob it attains a minimum
value at = 0 and in aof a maximum at « = 0.

In any case (figure 1 or 2), the sonic point o divides a steady flow into two regions
in such a way that one region may be regarded as independent of the other in a
restricted sense, since the wave propagation velocity is zero at the sonic point. This
means that we can change suitably the boundary conditions in one of the regions
(or give small disturbance in one of the regions), without affecting the flow in the
other region. If we consider the flow through a shock structure from a uniform
supersonic state at = — o0 to a uniform subsonic state at x = + 00, then

Cy=1uy—ay>0 for <0 and Cy<0 for z>0.

Any small amplitude disturbance of the steady flow at any point will move towards
the sonic point at = 0 (or an embedded shock near = 0) and if it is not amplified
during its propagation (which we shall show to be true in the transonic region of our
problem) it will ultimately die out at the sonic point. Thus a shock structure is
stable. .

We can also have a discontinuous steady flow with an embedded shock which is
uniquely and completely determined from the Rankine—Hugoniot conditions as in
Prasad (1969). If CP1and C§1 be the values of C just ahead and just behind a weak
embedded shock, we can show that Cgis approximately equal to — C¥1. One such
flow is shown in figures 1 and 2 from 4 to B with a jump in the wave velocity from
A, to B;. In this case we find that the direction of the wave velocity in each of the
regions in the front and in the back of the embedded shock is towards the embedded
shock and hence the disturbances created in these regions will be ultimately fed into
the embedded shock.

We can establish an important relation between Lagrange’s equation (2.18)
and the autonomous system of characteristic equations (2.20). Equations (2.20)
give steady-state flows but the general solution of (2.18) can also be obtained from
(2.20) by well-known methods. The equation (2.20) written in the form

dC _ aC+ px
dx
describes the space rate of change of C in a steady flow. The equation (2.18), inter-

preted as a directional derivative in (z, f)-plane, means that the space rate of change
of 0, as we move along the characteristic, is again the same quantity («C + fx)/C.

(2.27)

37 Vol. 315. A.
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Any steady-state solution Cy(x) consisting of segments of integral curves (single-
valued in z) of (2.20) can be taken as an unperturbed solution. A disturbance, at
any instant, of a steady flow will be represented by a curve C = Cy(x)+ AC(x) as
shown in figure 1. We shall consider only those disturbances which are bounded in
space and therefore any disturbance in this case will be represented by an area
bounded by a closed curve in (x, C)-plane. During the propagation different points
of the boundary curve of the disturbance will move along the integral curves of
(2.20) and the sense of propagation is shown by the arrows.

Consider on the (z, C)-plane, an arbitrary part of an area § bounded by a closed
curve whose points move in accordance with equations (2.20). Since the vector field
given by the right-hand side of (2.20) has a constant divergence

a(_lf _a_fi_g—- —/] +)\ —_I_gf?
PR TR Tl i R

S dt’
it follows that § = S,e* where S, is the value of S at ¢ = 0. In our case « is always
negative; therefore S tends to zero as ¢ tends to + oo.

To arrive at certain definite conclusions, we assume, without loss of any generality
that u, > 0, i.e. the fluid particles in the steady flow move in the positive direction
of z axis. C' = u—ay = u—./(yT), therefore the inequality AC > 0 for any distur-
bance can be physically interpreted either as an increase in speed % when the tem-
perature is kept the same as that in the steady flow or as a decrease in temperature
when the speed is kept the same as that in the steady flow or as small changes in
both » and 7" such that Au—1.,/(y/Ty) AT > 0. We can interpret AC' < 0 similarly.

Since the velocity of propagation depends on the amplitude C of the disturbance
C = C,+AC, a continuous disturbance while propagating and decaying in this
manner may develop a surface of discontinuity within it. It is possible to determine
the space rate of change in the magnitude C®(z) of a discontinuity in ¢-derivative of
wave velocity C for any disturbance by following the characteristic (2.20) as in
Prasad (1967) and Whitham (1959). Let us consider a continuous steady flow
C = Cy(x) represented by a portion of an integral curve of (2.20) and create at ¢ =t¢,
a small continuous disturbance bounded in space. The wave velocity C behind and
near the characteristic starting from the leading front of the disturbance or ahead of
and near the characteristic from the trailing front of the disturbance can be expanded

in the form

C = Cy(z) +CV(z) 7+ OO(w) 12+ ..., (2.28)
z d
where T = (t—1y)— . Cﬁow(%, (2.29)

and 2, is the position of the front or the back of the disturbance at ¢, and 7 vanishes

on the characteristic. Substituting (2.28) in (2.18) and equating various powers of 7

from both sides, we have

dco  /de,
-

fcop
"I @ G,

0

cx) ow — (2.30)
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[ a)
expia | &
which gives us OW(z) = - - , (2.31)
[ i TE]
0 Lo Og C’0
g
expi& | &
= ¢ 0/
where A= T o) (2.32)

A discontinuity appears at a point = X, where CV(z) becomes infinite and hence
X is given by

x {afwM}MzeXP{“fxo%f}

Zo 673 P Cy CO(z,) Cy()

o (2.33)

The position X, where a discontinuity appears in front of or behind any distur-
bance, depends on the particular steady flow Cy(z) and the initial location of the
disturbance. For the steady flows

Cy=Xz (i=1,2), (2.34)

the position X is determined from

alAi—2
(}—() = 1+(ﬁ_2) Ao (2.35)
0

Z, A

Here X[z, > 0 since a discontinuity, if it appears in the disturbance of the steady
flows (2.34), will appear before the disturbance reaches the critical point 0. We discuss
now the two figures 1 and 2 separately.

(i) Figurel. a=—-1,=—3 A =—} A, =—%

We have A, < A; < 0 and the singularity is a node with negative characteristic
directions. In the presence of such a singularity, the area and amplitude of any per-
turbation bounded in space tends to zero, while the leading and trailing fronts
move towards the singular point. Thus all possible steady flows are stable.

For the steady flow aob, A, = A; = — 1 and equation (2.35) reduces to

X\? Z,
(;0) =1 +_80(1) @) (2.36)

Since the wave propagates towards the point o, we have O < X/x, < 1 and, there-
fore, a surface discontinuity appears only if

1< Y0
1< S00(y) < 0. (2.37)
As CN(z,) tends to — g, X — 0 and as CD(xy) - 00, X - x,. The equation (2.87)
shows that z, and CW(x,) are of opposite sign if the discontinuity appears. C(x,)

37-2
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represents the discontinuity in the time derivative 9C/o¢ and therefore we have the
following results:

(@) When 2, > 0 a discontinuity in C appears only if the initial discontinuity
in 0C| ot satisfies CW(x,) < — §2, and it appears at the leading front of the wave when
AC(z) < 0 and at the trailing front when AC(z) > 0. Therefore, for the waves which
are approaching the singular point from right, a discontinuity appears only if the
disturbance is so strong that |C®(x)| > %, is initially satisfied.

(b) When « < 0, a discontinuity appears only if CW(z,) > — fx, and it appears
at the leading front of the wave when AC(x) > 0and at the trailing front of the wave
when AC(x) < 0.

In the case |OW(xy)| < || i.e. if the initial disturbance is sufficiently weak, a
continuous disturbance remains continuous and finally dies out at the critical point
0.

In figure 3, the dotted curves show the type of the disturbances for which the dis-
continuity appearsatthe leading front and the curves with dashes and dots represent
those disturbances for which the discontinuity appears at the trailing front.

For the steady flow lof, A; = A, = — £ and the equation (2.35) becomes

0Nt (3
(“) B {1_“ 7'1)0—} (2.38)
Zo 8 ( (:,y;o)
C
a (@
QO e N2
S0 T &5y
0 ——
4C>\0« X
\v\ .
K[ >
SN AT
Vo
ONE
faEd.a= 1 0o , Discontinuity appears at the leading front;

—+——, Discontinuity appears at the trailing front.

In this case also 0 < X/, < 1 and, therefore, a surface discontinuity appears if

_ o
() < 0. : (2.39)
Here X tends to %, or zero according as C™ (x,) tends to oo or 0. %, and OM(x,) are of
opposite sign so that a discontinuity appears at the leading front of the disturbance
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when z, > 0 and AC < 0 or 2, < 0 and AC > 0 are satisfied and it appears at the
trailing front of the disturbance when z, > 0 and AC > 0 or x, < 0 and AC < 0.
In this case there is no non-zero lower limit to |C®(x,)| for the appearance of the
discontinuity and a continuous disturbance, however weak, always ends into a
discontinuous one before reaching the point o. These results are shown in figure 3.
In the above discussion we have taken some particular values for o and £ but the
whole discussion remains true for any values of «, f provided —1 < 4f/a? < 0
and a < 0 so that the two roots A; and A, satisfy A, < A; < 0. Under these conditions

we find that
a A=Ay a A — A,

A—1—2= . > 0, /T2—2=~——)l2 <0,
that condition (2.37) becomes
a X
— Z 920
b (A1 ))\1 C0(z,) <0 (2.40)

and that condition (2.30) remains unchanged.

We can also discuss the stability of discontinuous steady flows of the type
AA,B,B with an embedded shock A;B;. We find that a disturbance is ultimately
fed into the embedded shock where it decays.

(ii) Figure2. a=—%pf=—F%, =41 A=—1%

In this case there are only four continuous steady flows aob, aof, lof and lob with
a sonic transition. Since a < 0, the area of any perturbation in (x, C)-plane asymp-
totically tends to zero as  tends to +co. For a perturbation of any part of lof the
leading and trailing fronts both approach the sonic point o but in the case of aob,
they move away from o. Each of these four flows are stable. Any other steady flow
from a supersonic state A to a subsonic state B will contain an embedded shock A;B;.
The result in the previous paragraph about the stability of such flows again seems
to be true.

For the steady flow lof, A; = A, = —2 and equation (2.35) reduces to

X\-% 3z,
G - @41

and since 0 < X[z, < 1 we find that a discontinuity will appear if the condition
(2.39) is satisfied. A discontinuity always appears at the leading front of the distur-
bance when z, > 0 and AC < 0 or z, < 0 and AC > 0 are satisfied and it always
appears at the trailing front of the disturbance when z, > 0 and AC > O orx, < 0
and AC < 0.

For the steady flow aob, A; = A; = % and equation (2.35) reduces to

X\ Z,
(Ec?,) = 1= 400G, (2.42)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on July 29, 2010

580 P. L. Bhatnagar and Phoolan Prasad

In this case, the disturbance propagates away from the critical point o so that
X/xy > 1 which leads to

X
0<—=t— <1 (2.43
400 ()
C
TN,
/AT
el
; X
S Y
o
2\
<0 S
i Corg
i
\‘\q
~ong
Womeenee \
Frovre 4. a=—4, f= —5%. ... , Discontinuity appears at the leading front;
2 1 P g

—+—, discontinuity appears at the trailing front.

As OO (z,) tends to fz,, X tends to infinity and as O (x,) tends to infinity, X tends
to . Thus a discontinuity always appears and it appears at the leading front if
AC > 0 and z, > 0 or AC < 0 and 2, < 0 and at the trailing front if AC' < 0 and
2, > 0or AC > 0and 2, < 0.

The above results, discussed only for a particular set of values of a and f, are
also true in the general case. Since A, < 0 < Ay, we have

f‘i_zziz_"_/}_l<0 ﬁ~2:~i\§jl

Y X o N <

and in the place of (2.43) we have

% _a)az_Fo_
0< ()H 2) A3 G () < 1. (2.44)

All these results are shown in figure 4. Whether the discontinuity will appear at
the leading front or at the trailing front can also be analysed intuitively by realizing
that the speed of propagation is greater at a point where |Cy+ AC| is larger.
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3. STABILITY OF SELF-SIMILAR MOTIONS IN THE
NEIGHBOURHOOD OF A CRITICAL POINT

The equations of motion of a polytropic gas are

Pe+up,+ pu,+ (v — l)p’ll//i’ =0, (3.1)
p(ut+uur) +P, = 0, (32)
and Pe+up,— (vP[p) (pr+up,) = 0, (3.3)

where v = 1, 2 and 3 correspond to one-dimensional, axi-symmetric and spherically
symmetric motions; » represents distance from a fixed plane when v = 1, from the
line of symmetry when v = 2 and from the point of symmetry when v = 3 and other
variables have their usual meanings. We introduce the non-dimensional variables
,9,v,§ and 7 defined by equations:

p(r,t) = m(t) B(t)m (€ 7), p(r,) = m(£) g (€, T),}
u(r,t) = R(t)v(&, 1), & = r/R(t),7 = SIn R(¢),
where m(t) and R(t) are two positive functions of time with dimensions of density

and length respectively and d is a constant. The equations (3.1) to (3.3) in terms of
new dependent variables 7, g, v and new independent variables £, 7 become

(3.4)

_1 R
%+w_@%+"+§f =0, (3.6)

: . R RR
and %+(U—§)”g—g{%+(v—g)95} { (v— l)m +2Rz} =0, (3.7)

We know that similarity solutions are possible for the equations (3.1) to (3.3) and
in such cases 7, g, v are functions of only one similarity variable £ so that
9, =v, =m.=0.

In the case of a self-similar flow it is necessary that the two functions R(t) and
m(t) satisfy RE
o A constant = B (say), Tz = constant = 4 (say). (3.8)

Therefore, if my(£), go(£), vo(£) represent a self-similar flow, the functions 7 (£),
go(§) and vy(§) satisfy b—£dg, dv, (v—1)n,

o gttt g tE=0 (3.9)
(%~@%%+i%?+A%=O (8.10)
and (vo— 5)[((1172’ %0%?]+[—(7—1)B+2A]=0. (3.11)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on July 29, 2010

582 P. L. Bhatnagar and Phoolan Prasad

As discussed by Sedov (1959) the set of equations (3.9) to (3.11) has many singular
points and there are a large number of physically realistic flows (Zel’dovich & Raizer
1967) for which the integral curves pass through a singular point, where the value
£+ of £is, in general, not zero. We can immediately apply Kulikovskii & Slobodkina’s
method to study the stability of these self-similar flows in the neighbourhood of
these singular points. Here £—&* takes the role of the spatial coordinate x
and 7 that of time ¢. Finally the self-similar flow, being independent of the new time
variable 7, takes the role of the steady flow. We also find that when m(t) and R(t)
satisfy (3.8), the coefficients in the equations (3.5) to (3.7) do not contain the new
time variable explicitly.

Let us now take a simple example and apply the above method to study the sta-
bility in the neighbourhood of the critical point. We imagine a spherically symmetric
flow (v = 3) in which a strong shock wave travels to the centre of the symmetry
through a gas of uniform initial density p, and zero pressure. Whatever may be the
origin of the wave, the above limiting motion (i.e. when the shock radius is very
small) must be self-similar (Zel’dovich & Raizer 196%). This problem was first
studied independently by Landau and Stanyukovich (see Stanyukovich 1960) and
Guderley (1942), and has been discussed in detail as one of the self-similar motions
of second kind by Zel’dovich & Raizer. The origin for time is taken to be the
instant of collapse when E(t), the radius of shock, is zero. Thus the time ¢ up to the
instant of collapse is negative and we can take

m = constant = p,, R() = 4(—t)°. (3.12)

Instead of working with variables 77, g and » we use a new system of dependent vari-
ables V, G and Z and new spatial coordinate % defined by

n=1In§ G@,1)=gErT),

Vg, 1) = 67](% 72, Z(n, 1) = r627—riii;v), (3.13)
and the equations (3.9) to (3.11) transform to
%@+%§%+3I{,:o, (3.14)
oy o 20 10 Sy g
and Q’"Glo)ﬁ’%—%%’— [%l_%Jr IJ Zy=0. (3.16)

We notice that when equations (3.5) to (3.7) are expressed in terms of @, V, Z, 9 and
7, the independent variable % also does not appear explicitly in the coefficients and
hence in our results the value 3* of  at the singular point will not appear explicitly.
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The characteristics of the equations (3.5) to (3.7) in (7, 7)-plane are

dy dy _
ar = V-9, = (V—20) +4Z. (3.17)
We define Mach number y by V—o
M= *;‘/*ZH (3'18)

Solving equations (3.14) to (3.16) for d;/dy, 1/G,,dGy/dn and dZy/dy and using the
relation (3.18) we can easily obtain

dpy _ _[@=D)fy]+2H+0  (v+1) (h=9) f()

- , 1
dy VZo 2z; -1 (3:19)
_ 2%/Zydu,  [3y—1 2 } :
and dn Tyf1dg {7+1 Ottt (3.20)
2(0—1
where £ = 2028 _ gy 4 v 2h 4+ 1 39), (3.21)

In order that the solution of equations (3.14) to (3.16) satisfies correct boundary
conditions at the shock and at infinity it is necessary (Zel’dovich & Raizer 1967)that
the integral curve in (Z,, V;)-plane must pass through the singular point (Z§, V§)
determined by the equations

ZE = (0—V§? and f(VE) =0, (3.22)

and this determines a unique value of the exponent d. The equation f(V§) = 0 has
two roots and V¥ is the larger of the tworoots. At the critical point yy = uf(= —1in
this particular problem) and f(V;)/(45— 1) is of the form 0 + 0. Therefore, we differ-
entiate the numerator and denominator of f(V;)/(#§— 1) and use the relation (3.20).
This gives us the following equation for du,/dy at the critical point

dyeg) 2 d
(8-
[(@=1)yl+2VE+6 (VE— A (VE—86)(1—59)
where oy = 7 F J . ST (3.24)
(V(’f—t?){?(t?—l) s }
=— 4 1-38) {(8y—1) Vi—2}. .
and R R U (A L )
Therefore, the characteristic speed (in (7, %)-plane)
C=V-0+4y2,

which vanishes at the critical point in the case of the self-similar motion, satisfies
the equation 50

a0+O~— = aC+B(n—7u*) . (3.26)

or
in the neighbourhood of the critical point.
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Here the constants o and £ are given by
o= oy /L% = —§(56—1) (3.27)
and b= == ave iR vy (3.28)

since pg = — 1 and \JZF = 6— V§.

In our particular problem we have § = 0.638 for y = 3 and tends to 1 as y tends to
1. Thus for all physically realistic values of v we have & < 0. The time 7 decreases
from co to — oo continuously as ¢ increases from — co to 0 up to the instant of collapse.

For v =1.4, we have 0=0.717, V§ = 0469, o= —1.29 and f = 0.0397,
A; = 0.030, A, = —1.322 and the singular point 3 = *, ¢ = 0 of the characteristic
equations dy/d7 = C, d0/dr = a0 + f(y —n*) is a saddle point. The phase plane will
be similar to that in the figure 2 with the only exception that the origin o of figure 2
will correspond to the point (*, 0). If we integrate equations (3-14) to (3.16) numeric-
ally from the shock boundary, we can easily verify that in the neighbourhood of the
critical point, the self-similar flow is represented by the line lof. In order to study the
growth of perturbations with time we must reverse the direction of all arrows on the
integral curves since, as time increases to zero, T decreases to —oo. After reversing
the direction of arrows we get the direction of propagation of waves as ¢ increases.
Owing to this change in direction of arrows, our case now corresponds to that of
o > 0 of Kulikovskii & Slobodkina (1967) where only one of the four steady flows
passing through the saddle point is stable. Since o < 0, the area of a perturbation
8 = 8,e*" increases without limit as 7 tends to — o0, i.e. as ¢ tends to zero from nega-
tive side. The leading and trailing fronts of a disturbance of lof moves away from the
critical point and even though the area of disturbance in (7, C)-plane increases, its
boundary tends to coincide with lof as ¢ tends to — 0 or 7 tends to — co. Therefore,
our self-similar flow is stable in the neighbourhood of the critical point for radially

symmetric disturbances bounded in space.
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