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Abstract. The two dimensional plane can be filled with rhombuses, s0 as to generate
non-periodic tilings with 4, 6, 8, 10 and 12-fold symmetries. Some representative tilings
constructed using the rule of inflation are shown. The numerically computed diffraction
patterns for the corresponding tilings are also shown to facilitate a comparison with possible
X-ray or electron diffraction pictures.

Keywords. Tilings; rhombuses; symmetry; non-periodic; diffraction.

PACS Nos 61-50; 61-55; 64-70

1. Introduction

Significant progress has been made in the study of quasiperiodic structures after the
advent of metallic phases showing five-fold symmetry (Shechtman et al 1984; Levine
and Steinhardt 1984, 1986; Elser 1985; Gratias and Michel 1986). A non-periodic
tiling of a plane with 5-fold symmetry was earlier envisaged by Penrose (1979) and
the case was further pursued by others (Bruijn 1981; Mackay 1982). At present several.
methods of tiling a plane non-periodically with five-fold symmetry are available, one
of them being the generalized projection method (Duneau and Katz 1985). The
possibility of tiling a plane with any symmetry greater than 3 was reported by
Sasisekharan (1986) in which he also showed a non-periodic tiling with 7-'fold
symmetry. The projection from hyperspace lattice has been a successful‘t'echmq.ue
not only to generate non-periodic tilings with 5-fold symmetry bu.t also lt1l'n.1gs with
12-fold symmetry (Stampfli 1986). The inflation rule method originally 1n1t1atec.1.by
Penrose in the 5-fold tiling of a plane, has been successfully used for the 8.-fold tiling
(Watanabe 1986). In this article we show in a simple manner how to tile a plane
non-periodically using inflation rules with 4, 6, 8, 10, 12-fold symme.trles'.

It is well known that in order to generate a one-dimensional quasilattice we have
to use at least two length-scales (4, B) and the sequence of arrangement of these: two
length scales is determined by a substitution rule. To generate a one-dimensional

*To whom all correspondence should be addressed.
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Fibonacci quasi-lattice the following substitution rule is applied;
B becomes A; A becomes AB.

The successive generation of the one-dimensional Fibonacci quasilattice can be showp
schematically as B; A; AB; ABA; ABAAB, ABAABABA; ABAABABAABAAB... This
substitution rule can be represented mathematically as

X, =TX,, | (1)
| B . . . |
where X ; represents a column vector 1) and T the matrix representing the recursion J
rule is given by

()

In general this idea can be extended to more than two length scales, i.e.

Xo

i

- QO o

thereby the matrix T is also extended,

tyy bz v by
Ly 3y 0 lyy
T=| . 5
bmi Lo

Thus we have infinite one-dimensional quasilattices based on the choices of X, and

T. The property of the matrix T has been worked out by Lu etal (1986) so as to
generate either a quasilattice or a lattice.

S VP

2. Inflation of 2-dimensional objects

This understanding of one-dimensional quasilattices can be generalized to N-
dimensions. For example the elements of X o will be area-scales in two dimensions
and volume-scales in three dimensions. Our interest at present will be on two
dimensional tilings. Hence the elements of X, will be area-scales i.e. P,Q,R,...,S will
be areas of planar figures. Let us say there are m-elements in X o- Accordingly the
matrix T operating on X, will be m x m.

Let us call this transfer matrix T as the inflation operator since it inflates areas to
generate a 2-dimensional tiling. Now the following aspects have to be understood:
(i) The rotational symmetry of a tiling generated by T by operating on X,.
(ii) The elements of T to generate a particular tiling. :

(iii) The values of P, Q, R,...,S and the number of plane figures required for a
particular tiling.
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Figure 1. Rhombuses as building blocks.

For the sake of simplicity let us take the areas P, Q, R,...S to be the areas of
rhombuses whose included angles are 4,, 0,, 05,...,0,, and whose side-lengths are
unity (figure 1). Again let us take 8, <0, <65--- <0, sothat P<Q <R---<S. From
figure 1 we get

P=sinf;; Q=sinf,; R=sinf,---S=sinb,.
Now
sin @,
sinf,

Xo= = smt?3

v WO

sin 9

As regards to the inflation operator T, we shall denote its eigen-value by A. (The

-number of values A takes is the order of T).

Now the first stage in the application of the recursion rule can be written as

Xl = TXo.
tyy by vt by \(SIDG, sin 0, |
tyy tya ot ty || sinG, sinf,

X, = 0o e l=A e ) )
twi 0t bym ) \SIDO,, sin4,,

The above equation shows that each area P, Q, R,...,S has been inflated by a factor
A giving rise to similar rhombuses respectively. In order to find the relations between
the various elements of T, a general derivation can be obtained along the following
lines: From (2) for a tiling with 3 rhombuses we get,

ty sinfy +t,,8in6,+t;5s8in6;=24sinb,.
tzlsingl +t228in62 '+ t23 Sin93=lsin02. (23)
t31 Sln 91 + t32 Sin 62 ‘+‘ t33 Sin 63 = A-Sin 03.

Dividing the first two equations by the third and substituting a = sin 8, /sin 0, and .
B =sin8,/sin B4 (2a) is simplified to

a0+ fypf by = olta o + 135 f + t33).

(2b)
Ey10 o+ ty3 = Plts & + t328 + t33)

When the actual values of « and f§ are available (2b) can be rearranged so that the
coefficients of all elements on one side are rational while those on the other side are
irrational. Thus if the elements of T are to be integers, both sides of (2b) after
rearrangement must vanish identically. Subsequently it can be shown that only two
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elements of T are independent for a tiling with two rhombuses and five elements are
independent for a tiling with three rhombuses.

3. 4-fold symmetry

Let us take the simplest of the cases where T is a 2 x 2 matrix.

T = (tu 112).
Ir1 Iy
From (2) we get

tyy8inf; +t,,sin6, = Asinf,
t21 Sin91 + t22 Sin 92 = lsinez.

Solving these equations,
Sin6,/sin 0, =t;,/(A—t,,) = (A—t5,)/t5;. (3)

We refer to one of our earlier results (Sasisekharan 1986) for the list containing’
the required set of rhombuses for a particular rotational symmetry and how to obtain
the rhombuses from a self-similarity principle. We reproduce the list here for
completeness (table 1). From table 1 we see that two rhombuses are required for a
4-fold non-periodic tiling. These two rhombuses are P = sin 45°, Q =sin90°.

It is generally agreed that there is one and only one global n-fold origin for a given
non-periodic tiling with n-fold symmetry. In this article the inflation rules are applied
at the global origin which is shown in the center of the tiling. From (3) we get,

Sin45°/sin90° = 1/ /2 = t,,/(A — t ) = (A — t5,)/ts; . 4

There are infinitely many sets of values for (t11.t12,t21,t5,) Which satisfy (4). But we
saw in (2b) that the elements of T are not totally independent given the areas of

Table 1.  Minimum set of rhombuses required to fill 2-dimensional space for a
few non-crystallographic axes of symmetry. As the polygon is taken to have 2n
edges, there exists in each polygon a 2n-fold axes of symmetry. Note that for

both n and 2n values, therefore, the same set of rhombises can be used for
generating non-periodic lattices.

n Rl R2 R3 R4 RS R6 6
4 (0,30)  (20,20) — — — — 45°
5 (0.40)  (20.30) — — — — 36°
6 (0,50 (20,40  (30,30) — — 30°
7 (0,600 (20,50)  (36,40) @ — — — 2570
8 (0700 (20,600  (30,50) (40,40) — — 25
9 (0.80)  (20,70)  (30,60) (40,50) — — 20°
0 0,9) (080  (30,70) (40,60) (50,50 — 18°
12

(O.110)  (20,100)  (30,90)  (40,80) (50,70) (60,60)  15°
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rhombuses. For a tiling with 4-fold symmetry (2b) reduces to

thy — 2, =\/§(t11 —135)

and therefore
tll - tzz and ZZI -'—_—2!12‘

The above result enables one to find solutions to (4) and the smallest integral solution
with non-vanishing elements to (4) is

r~(; 1)

It is worth noting that the elements of T need not be integers.

The inflation factor A=1+ \/f for the above T.

The inflation operator T operates recursively on X, to generate an infinite tiling.
The first stage of inflation can be shown as

X 1 1)/sin45°
‘“(2 1)<ﬁn%P>' ©)
The non-periodic tiling generated by such repeated operations is shown in
figure 2. The successive operation of T on X, is given by (1). It is also of interest
to note that the possibility of a non-periodic tiling with 4-fold symmetry has not been
reported so far. The tiling shown in figure 2 contains more than 1000 vertices. An
important question that arises here is the many possible decorations inside the inflated
pattern. In fact, the larger the first inflated pattern, the more the number of possible
decorations. When there are many possible decorations each will give rise to a
different final tiling but with the same inflation rule. The non-periodic tiling shown
in figure 2 is one such possible tiling with 4-fold symmetry and definitely not a unique
tiling for the symmetry. At first, the tiling shown in figure 2 would be regarded as
glassy, since more than one possible decoration inside the inflated pattern has been
used to construct the tiling. The inflation rule spells out only the number of rhombuses
of each type required for tiling non-periodically, but it does not indicate any unique
way of arranging these rhombuses inside the inflated pattern. Various arrangements
(decorations) of the rhombuses are sometimes found to be necessary to preserve the
required symmetry, as seen in figure 2. Further in order to check the non-periodic
nature of inflation we can compute T™. After diagonalizing the matrix T, it is easy to
arrive at T".

1 1
For the given matrix-T = (2 1>,

1(,‘ ) 1 ()" i)

Sy —= -2

| 2 22 . ©)
—=(A7 — 4%) 5(/'{ + A5

NG

It is easy to calculate, similar to the case of one-dimensional Fibonacci quasilattice,




410 V Sasisekharan et al

/
v

AR
[ T I [ 1]
SR N
AR S XL R
NN e N e o e MR ANV
SRS RO
NEANRNE AL ENNERNZCNNR BN OO
S O P N LSRR
Y 0 0 0o O S AR
TR TG ()
i AOHKOIHKLOHKS AL "t"‘)\“)"\"}"f\‘.
| I R NS A PP LY
RIHFL XA KL GO XL REEDS
B e m s, e e e
g RS G SR 9 S ot
N A S
Oy B R B NSNS o
A R N A SN
R I OB
SRS R iR R R RAY
"-g’»gga’a,-y,\ig:,:v'
5 L7

Figure 2. Non-periodic tiling with 4-fold rotational symmetry; Note that only the second
stage of inflation is shown in-the figure. The first stage of inflation will have only some of
the vertices of the tiling. This second stage of inflation is given by,

(. 2

the ratio of the number of P rhombuses to the number of 0 rhombuses, from T" for
a large tiling with 4-fold symmetry.

number of P’s
—_— = /2,
,,Ln; number of Q’s \[

such that T" # kT where k is any integer. Thus the inflation is non-periodic and we
have a non-periodic tiling with 4-fold rotational symmetry. :

The Fourier transform of such a tiling gives the pattern obtained in the diffraction
of X-rays or electrons from such a structure. The latter are commonly used in the
experimental studies. Therefore the diffraction pattern for the non-periodic tiling
with 4-fold symmetry at the origin has been calculated by placing unit scatterers
at the vertices of the tiling shown in figure 2. The calculation has been numerically
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Figure 3. Computed diffraction pattern of the 4-fold non-periodic tiling.

performed by
F(h k) = z_ fyexp (2mi(hx; + ky,)),

where x;, y; are coordinates of the unit scatterers with f; set equal to unity. The
numerical calculations have been carried out in DEC 1090 and VAX 11/730 systems.
The computed diffraction pattern for figure 2 is shown in figure 3.

One can see that although the tiling could be regarded as glassy, there are long
range correlations which lead to a distinct diffraction pattern. In fact, different tilings
with 4-fold symmetry generated using different inflation rules and decorations, are
found to coherently diffract although each diffraction pattern is subtly different from
one another.

4. 5-fold symmetry

An analysis similar to that of 4-fold symmetry but with rhombuses P (36°) and Q
(72°) gives the inflation rule,

1 1
T=<1 2). ™)

This is the Penrose inflation rule. The tiling with 5-fold symmetry using this inflation
rule has been studied by many authors (Bruijn 1981; Mackay 1982). Some aspects of
the Fourier transform of finite size tilings that are perfect and imperfect, have been
studied by us earlier (Baranidharan et al 1986) and will be communicated separately.

5. 6-fold symmetry

As before we shall borrow from table 1 the rhombuses required to generate a
non-periodic tiling with 6-fold rotational symmetry. Here we find that we need three
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Figure 4. Non-periodic tiling with 6-fold rotational symmetry.
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rhombuses. These three rhombuses are
P=sin30°=1/2 Q=sin60°=./3/2 R=sin90°=1.

Substituting the values for « and f in (2b) and looking for a set of integral,
non-vanishing elements of T, we get

3 42

T=14 7 4

4 8 5
with A=(2 + \/5)2. The non-periodic tiling with 6-fold symmetry is shown in figure
4 and its diffraction pattern is shown in figure 5. It is important to note that the

above splution is one of the many possible ones. As before one can calculate T" and
find that the tiling is non-periodic.

6. 8-fold symmetry

Although table 1 tells us that we require four rhombuses, one finds that it is sufficient
to use two rhombuses that were used for the 4-fold symmetry. This is because the
vertex angle of the triangle used to derive the rhombuses is 180°/n for a n-fold axis
while the n-fold axis itself is preserved about 360°. An extension of this idea leads to
the fact that for a tiling with 16-fold symmetry it is enough to use the four rhombuses
derived for the 8-fold case and so on. The inflation rule that was used to generate
the tiling with 4-fold symmetry can be used here also but with the appropriate choice
of the origin. Nevertheless for pedagogical reasons we choose the second set of small
integers as a solution to T in (3) and we get,

2 1
T=<2 2), /1=2+\/_2_.

The inflation rule is superimposed on the 8-fold tiling shown in figure 6. The T" has
the same form as in the 4-fold case with the corresponding A values. The diffraction
pattern for this 8-fold tiling is given in figure 7.

The non-periodic tiling (figure 6) is not the same tiling given by Watanabe et al
(1986). They generated a different tiling with

~ 4
T=(g 6>, l=6+4./2.

That tiling can also be generated by

w (3 2)
r,.<4 3), I=3+2./2

The tiling generated by the above T is given in figure 8. The diffraction pattern of
figure 8 is shown in figure 9. While the two tilings in figure 6 and figure 8 are very
different, their diffraction patterns are somewhat similar. The tiling shown in
figure 8 contains regions of local 8-fold symmetry and so does its transform. The
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tiling shown in figure 6 does not have regions of local site symmetry, but such a
difference is seen only in the weak peaks in its transform. Interestingly, the diffraction
from the octagonal phase (Wang etal 1987) shows the presence of local 8-fold
Symmetry everywhere. We can empirically state that peaks that are not affected by
the local site symmetries could be regarded as the primary peaks and the others as
secondary. It must be stated that the two tilings with 8-fold symmetry are generated
using different inflation rules and not using the same inflation rule with different
decoration of the inflated pattern.

Now it is quite clear that by using the same basis X,, we can generate different

non-periodic tilings with the same symmetry by appropriate choice of the inflation
operator T.

7. 10-fold symmetry

The same reasons with which we chose two rhombuses in the 8-fold case apply here
too. We choose the two rhombuses that are required for a tiling with 5-fold symmetry

although one can in principle use 5 rhombuses (table 1). The inflation operator T
used here is different from the 5-fold case as shown below: ‘

T= @ i) A=(1+./5/2)*

The inflation rule and the 10-fold tiling are shown in figure 10. The decomposition
of rhombuses inside the inflated pattern shown is the same as that shown b.y Ammann
(Grunbaum and Shepherd 1987). The computed diffraction pattern is given in figure 11.

Table 2. Some examples of matrices required to
construct tilings with 4, 5,6, 8, 10 and 12-fold symmetries.

The number of rhombuses required for a particular tiling
is given in table 1.

n Inflation matrix (T) Largest eigen-value (1)
11 -
4 1+./2
G ) v
11 ~
5 s ((1+/5)2y
342 _
6 4 7 4 2+ /37
4 8 5
21 -
8 2+ /2
(2 2) v
;2 ;
10 (1+./5)2)*
T s ({1+/5)2)
22 _
12 2.4 2 22+ ./3)
2 4 3
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Figure 10. Non-periodic tiling with 10-fold symmetry.

A comparison with the experimentally observed diffraction from decagonal phases
shown that while the positions of the peaks are correspondingly similar, the intensities
of the weak peaks do not satisfactorily match. It is speculated that tilings with 10-fold
symmetry constructed using different and larger inflated patterns may show some
resemblance to the experimental observations (Srinivasan et al 1988).

8. 12-fold symmetry

The generation of dodecagonal quasilattice by the projection technique has been
worked out by Stampfli (1986), who obtained triangle and square quasilattice. A
dodecagonal tiling made of three rhombuses was shown by Gratias (1986) alongwith
a 10-fold tiling. Here we show how to obtain a tiling with 12-fold symmetry by the
inflation method. We use the same rhombuses that were used for the tiling with 6-fold
symmetry. The inflation operator for the 12-fold tiling is given by,

2 2 1
T=(2 4 2), A=22+./3).
3

2 4

The inflation rule and the dodecagonal tiling are given in figure 12. The diffraction
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Figure 11, Computed diffraction pattern for the 10-fold non-periodic tiling given in figure 10.
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Figure 12.  12-fold non-periodic tiling,
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Figure 13. Diffraction pattern corresponding to the 12-fold hon-periodic tiling shown in
figure 12.

pattern for the 12-fold tiling is given in figure 13. Similar to the 6-fold case figure 12
is also non-periodic. One can of course use the above inflation rule to construct a
tiling with 6-fold symmetry by choosing an appropriate origin which will be different
from figure 4. '

9. Conclusions

The discovery of the crystallographically forbidden icosahedral rotational symmetry
in the electron diffraction pictures of rapidly quenched Al-Mn alloys (Shechtian et al
1984) has sparked off a considerable discussion on gquasiperiodic and non-periodic
tilings with 5-fold and various other symmetries (Steinhardt and Ostlund 1987). A
non-periodic tiling with true 7-fold symmetry and its Fourier transform was shown
by us earlier (Baranidharan et al 1988). The present analysis shows that the following
observations can be made: (i) non-periodic tilings with n-fold symmetry can be
generated using inflation rules; some examples of inflation rules used for constructing
the various tilings shown in the article are summarised in table 2; (ii) different tilings
with the same symmetry can possibly be generated by the same inflation rule but
with different choice of the decoration of the inflated pattern; (iii) still different tilings
with the same symmetry can be constructed by choosing different inflation rules; an
example is the case of tilings with 8-fold symmetry (iv) The inflation rule for a 2n-fold
symmetry tiling can be used for a tiling with n-fold symmetry.

It is not known whether all the tilings generated using the inflation rules can be
obtained by any of the projection methods. Whittaker and Whittaker (1988) has
shown that only periodic tilings with 2,3,4 and 6-fold symmetries are obtained by
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the projection method. All the tilings presented here have distinct diffraction patterns
shown by the numerical calculations. The tilings appear to possess long range
correlations. As yet there is no mathematical proof that the tilings are quasiperiodic.
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