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Flow induced in a cylindrical column by a uniformly
rotating magnetic field

By C. DEVANATHAN AND P. L. BHATNAGAR

Department of Applied Mathematics, Indian Institute of Science,
Bangalore 12

(Communicated by M. J. Lighthill, Sec.R.S.—Received 12 September 1966)

Under laboratory conditions, the magnetic Reynolds number is quite small in a conductor,

but can be made appreciable if a high frequency rotating field is applied. Moffatt investigated
this problem for high magnetic Reynolds numbers and concluded that there existed a mag-
netic boundary layer due to spiralling of field lines. Applying Fourier transforms and
solving the corrected equations, we find that at low magnetic Reynolds numbers the field
lines uniformly penetrate the cylindrical column and do not exhibit any appreciable spiral-
ling. The rotation opposes the drift due to conductivity which is evened out as one proceeds
from the centre to the surface. This uniform behaviour persists for small magnretic Reynolds
number inside and outside. When the magnetic Reynolds number becomes large, of the
order of 100 (say), the field lines passing through the axis of the cylinder exhibit spiralling
as suggested by Moffatt since the diffusion is unable to counterbalance the rotational effects.

1. INTRODUCTION

In astronomical and geophysical problems, due to large length scales involved, the
effect of the induced electromotive force predominates the small diffusion of
magnetic lines of force across the material. In laboratories, the working fluids like
mercury or liquid sodium have very small conductivity of the order of 10-5Q/s
and relatively small length scales. Consequently, unless the conducting fluid moves
across the magnetic lines of force with considerable velocity, the magnetic Reynolds
number (4muo L V) will be small. This approximation of ‘weakly conducting fluids’
has been initiated by Lundquist (1952) and studied in detail by Lehnert & Sjogren
(1960), Braginskii (1960), Murty (1963) and others. Recently, in an interesting paper,
Moffatt (1965) has given a practical method of obtaining high magnetic Reynolds
numbers by imposing a high frequency rotating magnetic field. He has concentrated
on high values of magnetic Reynolds number of the orders of 10, 102, etc., and has
found that at those situations the field lines have a tendency to spiral and crowd
near the boundary of the cylindrical column, suggestive of skin effect. The present
note may be regarded as a complementary investigation to that of Moffatt. We have
confined ourselves to comparatively low magnetic Reynolds numbers (R;,),
namely of the order of 0-01, 0-25, 1, 4 and 100. At low R,,, the diffusion of the
magnetic fields can counterbalance the high frequency rotation and hence it is
possible to avoid such spiralling and skin effects. We find that for R, < 100, the
field lines do not show the above effects. However, for R;, = 100, the field line,
corresponding to the magnetic potential ® = 0, does show spiralling and hence
introduces a sort of funnelling of lines from ® = 0 to ® = 0-1 near the region of
entry of these lines but not at other places. Effectively, for large values of R,
the material behaves as if the electrical conductivity of the matter is enhanced
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Perhaps, this fact accounts for this type of behaviour of the field lines at large
By
In passing, we note that we have rectified a certain mathematical error in Moffatt’s
paper in writing the equations governing the magnetic stream function and their
solutions, though in the asymptotic limit, this error does not affect Moffatt’s

qualitative picture at large magnetic Reynolds number.

2. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS

Consider the motion induced in a column of conducting fluid contained in a cylin-
der of insulating material by an alternating magnetic field acting perpendicular to
the axis of the cylinder. Neglecting the end effects, the induced flow is purely two
dimensional in the plane transverse to the axis. Accordingly, the basic equations of
the problem are:

inside the cylinder (r < a)

divv =0, (21)
ov 1 1
5+[(V.V)V]= —;gradp+;J><B, (2-2)
B 1
= 2 .
5 [curl (v x B)]+ 47T,ucrv B, (2-3)
divB = 0; (2+4)
outside the cylinder (r > a)
V2B = 0, (2-5)
divB = 0. (2-6)

Since the flow is induced by an oscillating magnetic field of fairly high frequency,
we have the following asymptotic conditions and boundary conditions
B, ~ Bycos (0 —wt
roe ,( : } (r - c0), (2:7)
By ~ — Bysin (0 — wt)
and Boutside(a> t) = Binside(“» t)' (2'8)
In consequence of our assumptions, the terms in the square bracket in (2:2) and (2-3)
are neglected in comparison with the remaining terms.
For convenience, we introduce the ‘magnetic potential”’ by
Loy W
= —— = —_—— 2'
r r 36 ’ Bﬂ ar > ( 9)
so that (2-4) and (2-6) are automatically satisfied. Further, we introduce the follow-
ing nondimensional quantities:

r t At
£=t

T = =
a’ dmpoa®  a?’

P wB (exterior) d = wB(interior)
- B - ’
Bya Bya,

and f = dmuoa*ew.
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Ficure 1. Magnetic field lines for ,/# = 0-1. The circle represents the
cross section of the cylinder.
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Fieure 3. Magnetic field lines for /# = 1.
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Ficure 5. Magnetic field lines for ./ = 10.

In terms of these dimensionless quantities equations (2-5) and (2-3) for the magnetic
fields reduce to 2V oV oo
B e =
082 0k a0

00 20 190 180

0, (210)

SR T it J11)*
and o~ o TEeE TBe (2-11)
while the conditions (2:7) and (2-8) reduce to
¥ o 2_51 [el6—An _ e=10—0] (£ - o0), (2:12)

* In writing equation (2-11) the variation of the unit vectors i, and iy have been neglected
in Moffatt (1965).
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N b 0¥ o0
and w= w=ap M E=1 (2-13)

The most general solution of (2-10) satisfying the condition (2:12) is

Y = £sin (0—f1) + Z é( )sm[n0+a (m], (2-14)
where the amplitudes D, (7) and the phase lag a,,(1) are to be determined from the
boundary conditions.

If we introduce the Fourier transform
G(E, 0, 1) f O, 0,7) el dr, (2:15)
the equation (2-11) reduces to
2 2
026G 109G 13G+i,u,G=O. (2:16)

e T pae
The general solution of this equation, which is finite as £ — 0, is
G = 3 [B, (1) cosnt) +Cy (i) sin nd] J, (/1) €).
n=1
On inversion, we get
=" S [B,() cosnd+C, () sinnb] J,(/(ip) £) -7 dpa. (2:17)
—oon=1
Applying the boundary conditions (2-13), we obtain
D,(1)cosax (4 (i4)) +cc}—cos T,
i eosan ) = { i e /

D,(t)sinoy (1) = ! { «Fﬁi% c.c.} +sin g7,

Dy(1)=0 (n>2),

1
Ci(p) = m{fs(ﬂ‘i'ﬂ)'l"s(ﬂ—ﬁ)},
1
By(p) = — mm){a(ﬂ*'ﬁ)—ﬁ(ﬂ—ﬁ)},

On(l”’) = Bn(/") =0 (n>2),
0

where c.c. denotes the complex conjugates and d(x) is the Dirac delta function. Sub-
stituting these values, we finally have

AT AWGBE op '
(I)(g’0>7') —T[me(e ﬂ)—C.C.:', (2 18)

and  W(,0,7) = (§—1/§)sin (0— fBr)+ [ﬁ ell0—hn — ] (2-19)

From (2-2), the rate of vorticity production is given by

ow,  Bja [861) ((’)2@ 82(D) oD ( 20 20 )]

Tr " ampae| or \ a2 Tazan) T g \oree Taran (2:20)
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which on integration gives vorticity field. Knowing the divergence and the curl of
of the velocity field, by applying Jacob’s (1948) theorem, the velocity field can be
obtained.

3. Discussion

From (2-18) it is evident that the magnetic potential is of the form
@(£,0,7) = D()sin [0 — fr+7(£)]. (3:1)

Consequently, for any particular £, ® attains all values from —|D(§)| to + |D(£)|,
which for small or moderate values of £ are fairly independent of j. The field line
® = 0 passes through the centre. Other field lines have a constant phase shift owing
to the drift of the magnetic field lines resulting from the finite conductivity of the
material opposing the rotation of the field and it diminishes as the surface is reached.
As £ approaches unity, the phase lag becomes small. The outside field exhibits very
little shift. For,/# = 0-1, 0-5, 1, 2, and 10 we have drawn the field lines and the above
conclusions are also evident from figures 1 to 5. In the last case, namely R,; = 100,
the field line ® = 0 exhibits spiralling tendency. In this case the field lines show
crowding only near the entry region and not everywhere near the cylindrical surface.
In a subsequent paper, we shall study the stability of the above solution.

The authors are grateful to the referee and to Professor M. J. Lighthill, Sec.R.S.,
for suggesting certain improvements in the original manuscript.
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