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The BGK collision model for one-component assembly of neatral particles
has been extended to two-component assembly of charged particles by Gross
and Krook (1956) and later on modified by Bhatnagar (1962). Following
the lines of the latter, the model has been generalized to N-component assem-
bly of both charged and neutral particles. This model is further applied to
the study of small amplitude plasma oscillations in an assembly consisting of
ions, electrons and neutral particles in the direction perpendicular to a uni-
form magnetic field. The dispersion relation splits up into two, one deter-
mining the transverse oscillations and the other longitudinal oscillations.
In the transverse oscillations for small wave numbers k, it has been shown
that apart from the Gross-gaps occurring at the multiples of gyro-frequencies of
electrons and ions, if the magnetic energy density M is greater than one-third
the kinetic energy density K of charged particles, and terms only up to k2 are
retained, five more forbidden ranges of frequencies occur, If M < }K, the
number of additional gaps reduces to three. When M = 0, Oster’s (1960)
result is obtained as a particular case. The oscillations of neutral particles
excited by collisions are strong at low frequencies, whereas for high frequencies
they are mostly damped out. Exact analytical and graphical discussion of
the transverse dispersion relations is given. Longitudinal propagation has
been studied under very restricted circumstance numerically and it is shown
that, unless the magnetic field is very high, propagation is possible for all
frequencies. For a sufficiently high magnetic field, when the Alfvén velocity
is comparable with the velocity of light, there is one forbidden range but, for
the discussion of such high velocities, one should work with the relativistic
equations.

In the present note, we have generalized the collision model proposed
by Bhatnagar et al. (1954) to an N-component assembly and have used
it for the study of small oscillations of a plasma consisting of electrons,
neutral molecules and positive ions in the presence of a uniform magnetic
field. It is interesting to find that this incorporates the salient characteristics
of the medium-like as well as particl¢-like behaviour of the plasma.

1. In this section, we shall discuss the generalization ef the collision
model proposed by Bhatnagar et al. (1954) for one-component assembly and
its subsequent modifications for two-component assembly by Gross and Krook
(1956) and by Bhatnagar (1962), in a form suitable for the discussion of
the properties of an N-component assembly. As emphasized in the previous
investigations, though this model is approximate, it satisfies the requirements
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of the conservation laws and preserves certain essential features of the
collision mechanism such as ‘persistence of velocity’, and enables us to study
a wide variety of problems over the whole range of the mean free path
preserving their essential features.

Let f; (&, 7, t) be the distribution function of the sth component and &,

the molecular velocity of the particles of the sth component at the point?
and at time {. In the standard notations of Chapman and Cowling (1960)
the set of the Boltzmann equations describing the behaviour of the assembly is

., O Fudfs < 7 N (D)
~az+§sia“i+;n‘;§'§‘;i—rzl fJ. [f, (E,,l,t)fS (55, T,t)

_f,(?,; 3 t) fs(g; 3 t)]g,sbdbdsdf_:, AT

s=1,2,...N,
where

g"—'—f—;‘)

,hgrs=

ms is the mass of a particle of sth type, F, the force acting on it and the primes
denote the value of the quantities after collision. We first interpret the two
terms occurring in the Boltzmann collision integral, namely

(a) _fs(;»;, 7, t) U f,(?,, 7, t)g,sbdbdedg, e (L2)
and § '
®) f f f (g;, 7, t) f;(g;, 7 t)g,sbdbdedg. .. (3

The term (a) represents the number of particles of the sth type absorbed

from a given definite velocity range (£, dé,) due to collision with rth type of
particles, while the term (b) represents the number of particles of the sth type
brought into that range due to collisions with the particles of the rth type.
Following Bhatnagar et al. (1954), Gross and Krook (1956) and Bhatnagar
(1962), we approximate (a) by

(c) —I!—'?(,:—t)fs(g,?,t) .. .. .. .. (1L4)
and (b) by
) Mjﬁﬂ’-t—)@m@j,t}. ...y

We can understand the significance of the above approximations as
follows: R

(¢) The number of particles absorbed from the range (¢;, d£,) due to colli-
sion with the particles of rth type is clearly proportional to the number of
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particles fi(§,, 7, t) of the sth type in that range and to the number of colli-
sions N,/o,, that a particle of sth type undergoes with particles of rth type per
unit time and per unit volume. In general the number of collisions N,/o,
would depend upon g,,, but to make the model workable we assume it to be a
constant and equal to some suitable average value of the collision frequency.
We also note that o,, = o,.

(@) The emission term (b) is the non-linear term and is the actual source of
difficulty. The number of particles of the sth type emitted into that range is

proportlona.l to the number of collisions Nly takmg place per unit time and

per unit volume and to the probability d),s(f,, r, t) that a particle of sth type
is brought by a collision into that velocity range. Evidently &, is also the
relative distribution function of the scattered particles. In the absence of any
knowledge of the actual collision mechanism, the best assumption that we can
make about it is that the emitted particles are distributed ra,ndomly and

hence ¢,, is taken to be locally Maxwellian with mean velocity u,, (r t) about

the mean temperature 7', (r, t). Hence we get

8/2
2 T \={ e . Mms (= 2 o
Dys (fg, 7, t)" (27TKT,-3) exp [ SKT,, (f,—un) ], ‘e .. (L6)

where K denotes the Boltzmann constant.

The choice of 'e—l:, and T, besides satisfying the requirements of conser-
vation laws, must give correct initial and asymptotic behaviour of the
assembly.

With the proposed collision model, the kinetic equation for the distribu-
tion function f, becomes

afs afs Fsi afs = [ N, NN, ] ‘
L T Z} ~onlt Prs|, .. K
s=1,2,...N.

We note the following point:

The equations (1.7) look linear, partial differential equations in the distri-
bution functions, but the definition of the N, and the self-consistent electro-
magnetic field introduces non-linearity and the integral terms once again, there-
by preserving those essential features of the exact Boltzmann equations (1.1).

Conservation laws : (i) Conservation of the mass of the sth component.—On
multiplying the right-hand side of (1.7) by m, and integrating with respect to

&, we get

. .
[—N,A,m8+l\,N,m‘

Org Org

r=1 »
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sinece

.
No= |12,

and
1=f<p,sd§s. R E

Thus the model ensures the conservation of mass of each component
separately, as it should, in the absence of inelastic collisions. Application of

this law does not provide any equation between u;, and Ty,

(ii) Conservation of momentum.—Since we have assumed in the model that
it is possible to distinguish and separate the contribution to the momentum of
each component during collision with any other specified component, the
amount of momentum change in the sth component due to collision with the
particles of rth component should be equal to the amount of momentum
change in the rth component due to collision with particles of sth component

with the sign reversed. Multiplying the right-hand side of (1.7) by m,¢ and

integrating over ¢,, the change in momentum of the sth component due to
collisions is given by

N
' NN, -
Z r—s m,(u,-s—u”), e . e e (1.9)
where

Z;“is =Z_$f‘ffs§sdfs, .e .e .s .. (L10)

is the mean velocity of sth component and the prime denotes that r  s.
The conservation of total momentum of the sth and the »th components
in collisions hetween themselves separately yields

mg(tps— tss) + 1y gy —thgr) = 0, .. . .o (L1D)
r,s=1,2....N.

The momentum change due to collision for the whole gas is

N N N

N T
Z z/ NeN 77&8(3273--’1733) =} Z zl M' {ms(;;rs—'zzas)+777'r(zzsr—;;rr)}-

g
Ors s=1r=1 s

Sax]l r=1]

.. (112

Evidently in view of (1.11) there is no change in the total momentum for the

whole assembly, though the momentum of each component is not conserved
during collisions,
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(111) Conservation of energy. —-—Mulblplymg the right-hand side of (1.7)

by 1 mgés and integrating with respect to £s, we find that the expression for
the change of energy of the sth component due to collision is

N, -
N '”;s [3K (Trs"Tss)+ uz ] ’ .. .. (1-13)
where .
3KT
ms“ stfs uss) dés. . .. .. (1.14)

Arguing as in case (ii) the energy conservation leads to the equation

- 3K .,
'[‘3‘1—{(Trs Tss)+ ?s ss]+mr[ (Tsr—Trr)+u ]-—-0 . (1.15)

rs=1,2,...N,

for each pair of components of sth and rth type. Again it is evident that the
total change in energy of the whole assembly due to collisions vanishes identi-
cally in view of (1.15).

BN —1)  N¥-1)
2 2
equations between SN(N—1)--N(N—1) = 4N(N —1) scalar unknowns %
and 7, Hence the number of equations is not sufficient to determine
them uniquely. Consequently, we have to supply 2N(N —1) additional rela-

tions between them from other physical coilsiderations.

The equations (1.11) and (1.15) constitute

= 2N(N—1)

The mean velocity ;;,s of the sth type particles, emitted after collision with
rth type of particles, depends on the mean velocities of the colliding particles,

for the sa.ke of simplicity we shall assume that u,s is a linear combination of
u,, a,nd Ugs :

. Urs = Qrrtlrr+arstss P ¢ B )
The assumption of linearity is apparently very restrictive, but these terms

may be treated as the first two terms of the expansion of w%,. Additional
support in favour of these assumptions is provided by the form of the ex-
pression for the rate of transfer of momentum from one component to the
other deduced later on the basis of (1.16).

Similarly, we shall assume that

-2 - - -2
Trs = byyTrp+bysTss+ Dysthyr+ Epgtipy . Ugs~+ Frgess . .o (117

The phenomenological assumptions (1.16) and (1.17) introduce 7N(N—1)
constants which have to be evaluated by considering some simple non-equili-
brium phenomena like relaxation problem.
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2. Relaxation problem.—The basic transfer equations are obtained by
taking the successive moments of the kinetic equations (1.7):

oN N, @
Us:——_—at—s (Nsussj)———<a£“j’> 0, .. .. .. L 2Y)

a a A,' a N /‘r 7\ ’
Vs = % (W gUssi) + 3z [Ns(Ps)y] — ZZ: < 3, (Fsi€si) > = Zl ar:s 2 (trsi—gsi), (2.2)

d (3KN,T 0 ‘ Ottgss Otigs;
Ws= 5 (—ﬁs—s) +<;3—x; [NsQss} 420 [(Ps)z'j a;s — UssiUgsj jg;‘:-]]
N
N - \2 ' N,Ng 13K S 5 \2
< af [st(f —’Mss) ] > = Zl —ar,-s—s [E(TTS—TSS)+(urs_Uss) ]a (2.3)
where
1 —
(Ps)ij = ZT,; ffs(fsi"ussi)(fsj_ussj)dé:s )
and - .. . (24)

QS =~ X7 stfs(gs_u&?) dfs J

and < > stands for the operator

1 -
P fdfsfs-

For studying the relaxation problem we neglect the external forces, and
so the only force acting on the particles is the self-consistent electric field
given by

3 .
é;j(E,.)=4wZesAS. L es)

Further, neglecting the space dependence of the physical quantities, we
get

Bé\t’s,.:(), .. .. .. .. .. .. (2.6)
? & NN,
5 (Nsths) = Z ;rs *(Ups—ss), - - .. .. @)
r=1
N
— ' Ny 3K - o (2
% (3KZsTss) = Z AZNS [m—(T,s—Tss)+(urs—uss) ], .. (2.8)
8 rs s

.Zest=0... R X ')
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The last equation asserts that the a.ssembly is electrostatically neutral at
every stage, and so :

=l
i
o

(2.10)
for all time ¢.

This fact has been used in writing (2.7). The equation (2.6) gives N, =
constant for all time {. Substituting (1.16) and (1.17) in (2.7) and (2.8), we
get

N
a - '.ZV Y - -
= (i) = Z i —(=anflg). .. .. (@11
=1 s
3 Zew,
5 Tu) = D [0 er—= (1 =b) Toneb Dy o Fogtg st Frsi”
r=1
] 1 g } 2] (2.12
+‘3K arr"lrr (1 —~mpg)rugs ], .. . . . .. 2.12)
s=1,2 ...,

We have to solve these equations under the following conditions:
Initial conditions: at t = 0
;;;as = Ag, Tgs = Ts.

Final conditions : as t - 00,

Z2‘88_>:E; ’ Tgs—>' TCD’ . (213)
Othss T s
at—+0, at»o s=1,2 ...N.

The explicit solution of the simultaneous differential equations (2.11) and
(2.12) involves considerable analysis and hence we shall follow simpler physical
considerations to evaluate the unknown constants.

The phenomenological relations (1.16) and (1.17) hold in any inertial frame
of reference, so that changing over to a frame moving with an arbitrary
uniform velocity #,, the equatlon (1.16) Wl].l be invariant to this trans-
formation, if

Opy = 1 —ays. e (219)

Similarly, the invariance of (1.17) under the transformation yields
(Drs"' '%Era) ;;rr + (P4 %Ers) ;ss =,

and
Dys+Eps+Frs = 0. .. .. . .. (2.15)

The last equation should hold good for all time ¢, and in particular for
time t = 0, so that

(-Drs‘l‘%Ers)Ar'}‘(Frs"‘%Em)As =0,
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Since 4, and A, can be prescribed arbitrarily,
Dyg= —3Eps=Fr. .. .. .. .. (216)
Because of (2.16), the condition (2.15) is automatically satisfied.
As each component of the system relaxes to the same mean velocity am

and the mean temperature 7'y, taking limit as {-» co in the equations (1.16),
(1.17), (2.11) and (2.12), we have, in view of (2.13),

Qppt-tgg == 1, .. .. (2.17a)

'
Dyps 4 Epgeb-Fpo = 0. .. .. .. . {2170)
brp = 1 —byg. - (2.17¢)

The conditions (2.17a) and (2.17b) are the same as (2.14) and (2.15).
Thus the relations (2.14), (2.16) and (2.17¢) constitute the conditions imposed
on these phenomenological constants by the considerations of the relaxation
problem. Utilizing these relations, we can rewrite (1.16) and (1.17) as

Urs— tigs = (yy (Upr—Uss) » L 2asy

and
Trs—Tss = byy (Trr—Tss) 4 Drg (err“_;;as)2 . < .. 2.19)
Substituting (2.18) in the conservation laws (1.11), we get
(Teglpy —Myigs) (er“;as) =0,

or

Qpr __ Qgs

e B gy == . .. .. (2.2

Ty g 08 = Yer (say) | ' (2.20)

Similarly, substitution of (2.19) in (2.15) vields

, . N ! - -
(brr"[)ss)(q rr—T'ss) + g-Drs+Dsr+_‘sTfE (Appttgg—2) | ("rr—'”ss)2 =4

where we have used (2.20). Since we can prescribe the initial mean tem-
peratures and mean velocities arbitrarily, we have

])ﬂ = 1)88 - Brs = ﬁsr (H&-y) . . . (221)
and
Dy Dy = ﬁil;?{" (2—ttpp—Qlgs) . .. .. Lo (222

Thus we get the additional relations (2.20), (2.21) and (2.22) from the consi-

derations of conservation laws. Consequently, out of the 7N(N —1) constants

. N(N — .
which we have introduced, §M(—AT-1—) constants are yet to be determined.

Neither the relaxation problem nor the conservation laws are adequate to
determine these constants. This is as expected since so far we have com-
pletely ignored the actual mode of interaction that takes place between various
particles in the assembly, during collisions. We shall, therefore, determine
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these constants approximately from the considerations of the molecular inter-
actions. ]
Rewriting (2.18) as
> - My+m Mym, -
ms (urs“'uss) = (__r"_n:r_s “rr) . 7;1-{!—:”;—3 . (;rr"‘uss s
we conclude that i
my

ayr represents the fraction of the average relative

momentum of the colliding particles that has been imparted to the scattered
particle of the sth type in a collision with a rth type of particle. If the mole-
cules are treated as rigid elastic spheres, Jeans’ (1954a) relation gives

my
My1ms’

(2.23)

Apy =

so that

Upg == Olgyp == ———— . .. .. .. .o (224)

In general,
. my . &ﬁ
Grr = My+mg (2 s 2 )average
where X,, denotes the angle through which the relative velocity of the rth

type of particle with respect to sth type of particle turns due to collision be-
tween them. Following Jeans (1954a) we can show

Gpy 22 0113 m’m_ for Coulomb law
'8

me

== (-023

for Maxwellian law of inverse fifth power.
mr+ms

6K (my+my)

ritvs
sents the fraction of the average kinetic energy that has been utilized in
raising the temperature of the scattered particle of sth type due to collision
with a particle of rth type, after deducting the direct heat transfer given by
3KBs(Tyy—T4s). We have to assign appropriate values to B,, using New-
ton’s law of heat transfer between the rth and sth components from experi-
mental considerations. .

Simpler but approximate expressions for 8, and D,, can be obtained,
following the suggestion of Prof. Cowling (private communication) in the
following manner under the assumption that the velocities of the scattered
particles are randomly oriented:

The velocities of the molecule m, before and after collision with a mole-
cule m, are

In a similar fashion, from (2.19) we conclude that Dy; repre-

-7

G, +m m grs and G"-{— +m 9,5s .. .. (2.25)
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so that the mean velocity of the scattered sth type of particle is
- mr;zrr"l' ms;;ss
Upg = ————F———

L

agreeing with equations (2.18) and (2.23). Also the mean kinetic energy of the
molecule m, after collision with molecule m, is

Wi
B R My=+Mg Irs average
= [ im, + _m._z___ =2
= 'S (m +m )2 grs
L average

= |4 s { ek e 26+ 2O

| © (mye+mg)2

s e e (226)

+m, (urr—uss +m ( +C )S]avemge
where C, denotes the peculiar velocity of the sth type of particle, on using
the fact that the averages of the peculiar velocities are zero.
Since
-*2 3KT,s

1O =
[ s'vs Javerage )

and the above average according to the model is also equal to

KT
[ims(’rs]avemge'*‘g ) rs,

we get
3KT mm 3K 2, 2
T "(mr:- - 3 (b —itss)? +5- { (m7+m) ot 2mgmTos} . .. (2.27)
Comparing (2.27) with (2.19), we have
2, 2
™, (2.28)
rr = e
(mp+m5)*
and
2
Dyy = e . (229

3K(m,+ms)?"

From symmetry we can write
2
Do o s e e (280
7 3K(my+ms)®’
80 that

My

Dy-3+.D”- = m 3
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which is the same as (2.22) on using Jeans’ relation which holds under the
present assumptions.

We have also attempted to evaluate D,, taking into consideration the
actual nature of the interaction between the particles. We have in the nota-
tion of Chapman and Cowling :

| 3m, ('E'z ""?2)

6K(m,+m,g)D _
g =
MyMs l MyMg —»2
m"+m average
= Jrs k)(grs L) ]
L ng average

Following the method of Jeans (1954a), we can easily show that

~ MyNig X
Dyps 2= 0-10 6Kt ma) )fox Coulomb law
2 004 —5___ for Maxwellian law.

6 K (314 m5)

We note that the conditions (2.14), (2.16), (2.17¢), (2.21) and (2.22) can
also be obtained (Bhatnagar 1962) by the straightforward solution of the
differential equations (2.11) and (2.12). This approach further gives the

relaxation times r(uy) and +(Ty) for the mean velocities and the mean tem-
peratures as

T(thyg) = 27(Teg) = Nl , .. .. .. (2.31)

Ny

-/
=1 18

s0 that the steady mean temperature is attained earlier than the steady mean
velocity.

With the help of these relations, the final expressions for the transport
equations are

US = 0:
N«r V N
Ve= Z ‘;: 2 iy Ugpg~ et}
r=1 4
NN, 3K > ey
W, = z 0’" [ - B - )+( D,,+m'a.'s)(u,,.-u“)z] .. (2.32)

r=1

We note that' our phenomenological relations and the subsequent condi-
tions lead to simple and physically meaningful expressions for momentum and
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heat transports. The momentum transferred to sth component due to collision
with rth component is

-
a

2 iy sy Uy — Thg) - - . .. .. {233
Ors

whereas the energy transferred is -
3K Vil 1 1« 2 2y (> — \2 -2 -
'—2“ﬁre(1 rr—L'ss) +'2(3KDra+ 7/?'87”,“”)(71rr,— 'llss) + 2ms(u,s ss) (234

The expression (2.33) for momentum transfer is quite reasonable and
similar expressions have been used on other physical considerations by Cowling
(1959) and Spitzer (1959). Interpreting the three terms of (2.34) as the energy
transferred due to difference in temperature of the two components, the
amount of mean relative kinetic energy retained in the sth component itself
and the amount of energy gained by the sth component due to the increase in
the mean velocity of the scattered particles, we see that all the mechanisms
that can change its energy content have been fully covered. These considera-
tions lend support to the plausibility of the present model.

3. Oscillations of the plasma transverse to a strong magnetic field.—We shall
now apply the above model to the study of the small amplitude wave propa-
gation in a plasia composed of ions, electrons and neutral particles in equi-
librium state. Without loss of generality, we can choose the z-axis along

the direction of constant external magnetic field H o-
The kinetic equations are

€, s : Ny ‘ .
afs+£8i8fs -;a(Ei+ ;kfzjﬂk)gffm” (ZM) (Z <Dm) @30

s=1,2
and
af8 8f3 A R )
oL S 20 fyk > o), . . (62
+§3i ,=10’3 f8+ 3 '=]0r3 rs : ( )

where the suffixes 1, 2 and 3 denote respectively electrons, ions and neutral
particles. In the sequel, s would always assume the values of 1 and 2 only
unless stated otherwise and we shall treat the neutral particles separately.

Assuming that initially the assembly is in equilibrium with the mean
temperature 7'y and with no mean motion and that there is cylindrical sym-
metry in velocity space about the z-axis which is also the direction of the
initial magnetic field, we can show that the equilibrium distribution is given
by

T - Mg ¥ hig _é (3 3)
foo=z\'80(¢")0=‘\80 -2-;;7{‘“1,‘0 exp '—m §3 . . .
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In the disturbed state, let the distribution function be given-by f; = fi,
+g,, Where g, is small compa.red to fso In a smular fa.shlon let Ny= Ny

(L42), Tps = To(1+ 1), H Ho+h while u,,s, u,, and E are only the
perturbations. Neglecting the squares and products of small perturbations

and the induced magnetic field 4 in comparison with H, the first order Boltz-
mann equations become

0 0 d d N,
sy Ly té@ o, e = _gs_,_ f80n8+f30’2 D . (34)
a 3
gs+§si F v ——93+ f3o"3+f3 Z '°¢rs, .. .. (3.9)
r=1
where
GH 1 < 1 <
@s =W os Z "oy Z

qsrs = ¢;s+¢:5’

‘IS” = = trs+2 tr.sf + fazursm

95,5 = -3 fszursz'i‘fsyurs,/)

(LS
Eox = Ps 008 05, &y = Ps sin O, .. .. .. .. (3.6)
and
a2 = To (3.7)
; o

Since we are interested in the propagation in the direction perpendicular
to the magnetic field, we choose the direction of propagation as the direction
of z-axis, so that all the quantities may be taken to vary as exp [i(kx— wt)].
This assumption reduces (3.4) and (3.5) to

ags i(kps co8s 08—0)— —,L—‘)

Og - 1
5@; - @, gs = — o—”a)—fso 8
%2
3 3
{;0 [PsGs - 698+Ps Gype 08+ £,,G sz]+ fso Ts(l"‘ é—) .. (3.8
and
(kfsz—w— ”‘) g3 = “f30"3+fao Z ——‘-95,—3, - .. (3.9

r=1



OSCILLATIONS OF A THREE-COMPONENT ASSEMBLY 487

where’
= e Lo Ny o Ny o
Oy = —E+—un Ggplton+ g3
; 33%33
my o) + o231 o31 ’
-> € — N]o ~ 1. N30 -
Gy = —= g+ anun+— des+——033u3s,
my C12 o, 032
— NlO — N20 ~ -
s = = A1 —— Aotos+— Uss,
033 Go3 A
G\ e Gsz+iGyy G. = Gaz—1iGsy
s+ =5 b= 9
1 N N N
10 20 30
— = =42 g +—Fay,, .. .. .. .. . (3.10)
o, 011 031 031
and
Ny . N N ) N N
_{™10 , Yoo HED 20 30
T,= (——-* +—=by+— b3l) ti1+ — bgalog+ —= bastss. . (311
011 Op o031 021 O31

with similar expressions for

1
Ty, Ty, > and 5.

9 Gs

Integrating with respect to 6, and setting Q¢ = w+$ we get
8

g = exp [z(kps sin 08—9803)] jAl(Ps, £0r)
wg
2 ® ; _'_‘Q’
Mg, Yep E PRV G
+ = o= Mt (15| 5 (A=
s s/dn=-w ¢ n+uTs

3fs0 < kp ei(
— G _ - __f ws
wsazps s "’E’w']n ( ) i

3 " o ei(n—l-e_g_‘)_l

s 3 (-2
oa =
. o

s ?= -

where A(p,, £,,) is an arbitrary function. In order to determine it we make
- use of the physical fact that there is symmetry in the velocity space about the

direction of the magnetic field so that g, is periodic in 6; with period 27
7
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Thus we get

kp

P w Jl——
3 3 ¢ - ( )
A(Ps, ‘fsz) =|:"‘;f_s‘"s fso n sz€sz+ fsoTs( _2):’ Z T
sts wsa® a . ( S?s)

s § #B= =0 4 n+_

Wg

e (57
3fso ) Py "\ s _ 350

- 3 -\
wsas #=—c n+1+'93) s n= - g (n_1+%)

so that finally we have

_ fs0 ox (ikps sin 08) 3050, ~ _@E) e
o = "o oxp | . n_ZmJH o

0 ing,
3psG, kpg) e *
+="5F Z a1 (— *w—:) oX

a’s M= -~ n+
ws
© ing,
Ng 3Gszfsz ":)‘_1_7:9 §_5_ kpgy ¢ ’
+[cs+—aj_+ 5 (as 1 "Zw.l,,( —w—s)n-'_% . .. (3.12)
8
and
3G,-%, 37T, (& if
ng 353 8 {53 30
= |24 Ss 08 gy _Mso | (313)
o [03+ PR At | [ (

The equations (3 12) and (3 13) express g; and g3 as linear combinations of

the perturbations E un, u22, u33, 11, tao, L3z, My, Ny and ng.

To find the dispersion relation we proceed as follows: Taking successive
moments up to the third order of the equations (3.4) and (3.5) and utilizing the
fact that all perturbations vary as exp [z(kx—— wt)], we first obtain the following
set of equations:

gt gz =0, .. .. .. ..(314)
—'0)753+ku33x &= O, .o .. .. . (3.15)
#nuuz+#r2u22z+ﬂ,sussz+7%Ez =0,.. .. ..(316

. 1
(@Qr‘f' = —V'rr) Urrgt Fri¥iiz+Brolgez+ BraUggz wrlpry+ ':‘;:‘ E;+ Ly =0, (3.17)
(2

°,

. 1
(ZQ,-+—, ""F'"‘)uﬂ'y+l"1’1ull1j+#f2u22y+l"r3u33y—wrufrz+% Ey"‘Mr = O, (318)
T

,

a’

. 1
(@Q,+—7, —vn-)t"+v,1t11+v,-2t22+v,-3t33+iku,m+ Ne=0, .. . .- (3.19)

r=1,23,
7B
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where
,u,s=-%ass, v,8=£v-5~°b“,r;.‘_s, .. .- .. .. .. .. {3.20)
Oys Ors
g = —— 2 +L N . ) )
- [4s(1, 05 2)+44(1, 15 2)] %
i, 1
=t .. .. .. .. .. .. .. .. (3.22
Hos = rEn o (3:22)
L= [( T,){2A8(0 0;3)+ 442, 0; 3)+ 4,2, 2; 3)}
2ws o
L5240, 03 5)+A4u(2, 03 5)+44(2, 23 5}
aS
e (24,1, 13 0+ 4,5, 1 9+ 4L 25 4))
a0 0 0 ra0 —LobaE 50l 6
Ly=k "312-;- (,3,13 T310+ 3T314] P 1 3.2
a3 2(13

Ms = zﬂulj [( T,){A,(2 0;3)—442,2:3) }+3TS{A 2.0;5)—45(2,2;5)}

S

'3G" {4,3.1;4)—4,(1 4)}+3G8+{A 1. —1;4)—A443,2 4)}]
Mg =kGg, 1, .. . . .. .. .. .. .. (3.25)
- (Lg
Ne= —"—l—z {l‘f [A,(l, 04441, 15 4)+§i {441,0,2)+441, 1; 2)}]
Wy s

(l

s

' 2
+3G‘- [A,(z 1;5)44,0,1; 5)+ S L A2, 1;3)44,0,1; 3)}]
a

s

+30e

[A,(o, —1; 5)+442. 1; 5)+%—’ {40, =1:3)+452.1; 3)}] }

<

. (3.26)
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2 4

2 .
B kEin 2a 3 2a
3

2
2a, .
3T a 2
3 4 .
+’2;§3<I5+—3-13+ 51103)], .. .. . . .. (3.27)
© | ]cPs kps
3pf _3 2 < Jﬂ+p(""‘)Jn(“_
Ayip s )= | drem—5e 32" > e 2
Qe s 25
s "= = n4at —
0 s
(3.28)
X _ 3 2
3 : 2u2 §3x
1, = J —— € 3 54 <
P © (271-&;) kgax_g §3x dgu ’ .. ('3“’9)
and ,
1 ) N N .
S =100, 4By, (3.30)
g, 1 %21 o3
O e s . 1 1
with similar expressions for - and —.
0'2 0'3

In order to express £ in terms of mean velocities, we utilize the Maxwell
equations and the current equation.

0
> 4z 10F
curl b = 7J+5_5t-’
. i
curl £ = — 1% 5
div E = 47 (N yge1m1+ Nagesna),
and
J = Nige1u11+ Nogegtise,
yielding

4me2R2 N o6 1010+ Nogeottaoslb+ io(w?— ) E = dmw?{Nyoeriiy; +Nogegtis], (3.31)
where £ is the unit vector along z-axis.

(3.14) to (3.19) and (3.31) constitute a set of 18 homogeneous equations in
18 scalar unknowns and the condition for non-trivial solution leads to the
dispersion relation. :

4. Dispersion relations.—It is interesting to note that the set of equa-
tions (3.14) to (3.19) and (3.31) break up into two mutually exclusive sets (Bhat-
nagar 1960). The first set contains w,y,, gy, 3s, and E, leading to the
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digpersion relation corresponding to transverse wave and the other set defines
the longitudinal wave. The dispersion relation for the transverse and longi-
tudinal waves can be written as :
AT=0, .. .. .. .. .. @YD
and '
Ar=0, .. .. .. .. oo 42)
where : '

3 2 (/ ]. CCl 2
- (e
1 @\ o dweseg(er+eg)N1oN 20%12
R D

4 o
AL = {7Q3+ +2 Iz+( s Is+5 Il) % { - %)‘2‘(“’1_“’2)(“’2—“’2)
%

(4.3)

+ 2w2k2(wf - wz) (wz— w?)+ 3w2 kzwwg(wf —w?)+ 3> kzwwl(wg —w?)

pr2 = (w --—wz)wwz 2w ) (wz—w )wwl Zuw P o2 (w _wz)

k2 kz“i g w2, 09
b1, b o) g S (09

X (w4 wg)

w—2w;

4k2a w?
_______——— 2 —w2 —®
X [ 3(w2-‘4 )} k (w w )+w w w )

82
b4 1+.._4k_(fi__2. Lz(wl—wz) 2 pl Pz 2(w2—w1w2)
3((»2—4(.02)

2 25 2 5 w? k~a2(w~+2w2—-3w1w2)
20y, B2 (@ — wywn) — 3w, 0p, 75

w2— 4w2

2 9
“{ 2 4 2¢" =
L2 2 w2 ke (0?4 2e] 3w1w2)

T 39 %pg 2 w?—do?

+ collisional terms} , - .. (4.4)

where

2 ) r 2
° 4:7!N 1 031 o 'L"A 2062
@, = = >

(4.5)
P1 my > “py Mgy

are the electron and ion plasma frequencies, and
2y = 1+';_’° [44(1, 0; 2)+4,(1, 1; 2)],
1

r2—1+———[A2(1 0:2)+45(1,1;2)] (4.6)

on retaining only the first order collisional effects.
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Transverse oscillations.—The first factor of (4.3) represents the oscillations
of the neutral particles damped due to the collisions among themselves and
with ions and electrons. The form of I shows that the integral would diverge
if there are many particles moving in the x-direction with the wave velocity.
However, if the particles move with velocities near the wave velocity, they
will be accelerated to such an extent that they will run off the wave. Conse-
quently only the waves having fairly large wave-length (small k) would be
possible. Restricting | k| to be sufficiently small, this factor reduces to

2

ak? ;

3/ = —id 1_1 §+£, .. .. .4
30'3 wiog 03 N

giving the wave velocity

w 2 13 1

.and the damping distance,

1 N 1 (3 1
Z = —m=a3 /\/——*30_30):3 {1—- :—f;(;;-’—;;)}, . . (49)

provided the wave frequency is larger than the collisional frequencies which
have been assumed small in the present investigation. This wave travels with
modified sound speed and fairly good transmission takes place at low fre-
quencies. Al high-frequency oscillations are quickly damped out and their
velocities tend to zero. Hence considerable energy transport by neutral
particles can occur only in the wave of low frequencies. We can, therefore,
avoid this loss of wave energy in inducing oscillations in the neutral com-
ponent by considering only the waves with high frequencies.

Retaining the terms up to k2 only we find the second factor of (4.3) reduces
to '
C2k2 1 2 2 0/ / l ] 2 / 1 1 ’ 9

Wt ___;_2[(0)2_“,/)1__%2)_,_;% (; - ~7) wm+(‘ - *"’) @

% U] \02 G/

_ dmerey(erte2) V19N g0%y2)
012¢2

- 2 2
_ i41re182(el+62)NmN20°‘12< % ) (4.10)

a
+ 2
w 019c% 3(w§-— .Q?) 3(0):—.92)
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It is clear that when w = w; or w = w,, k = 0, so that there is no propaga-
tion when the frequency of the wave is equal to the gyro-frequency of the
electron or the ion. If we retain the higher order terms in %2, we can show
that no wave propagation is possible at integral multiples of gyro-frequencies
of the electrons or the ions. This fact was first pointed out by Gross (1951)
for a single component collision-free assembly. Later on, Bernstein (1958),
Kildal (1960) and Salpeter (1960) rigorously established the presence of
Gross-gaps for the single component collision-free assemblies. In passing we
may note that the present collision model preserves this essential microscopic
feature of the multi-component plasma oscillations in the presence of a magnetic
field and collisions.

We shall now draw attention to another interesting aspect, namely the
existence of the forbidden bands of frequencies due to the medium-like be-
haviour of the assembly. Neglecting the collisional effects for the present,
and considering only small k, the dispersion relation (4.10) reduces to

k2 1

2 2 2 2
ot u’,‘z[(“’2""”}71_“’192)(‘”2—‘”1)(‘”2"“’2)]
o’ alel v
o (oot 5 = ) oot
2 2 2 2 2 921-1
(llwplwz _ aza)p2w1] (4 ]])
T 3e2 3c2 '
o 2 2 2
_ 1 (wz—-w;)l— p?)(wz_wl)(wz_wz) (qa - (4 1.’))
== (@ — ) (2= say!, .. .. A2
where
dmete H2 [H* . L
aB=—15 [TO —KTO(Am+Zv20)] O € ¥ )]
mlm C T
and
2 /2 2 /2
41791(110 - ) ?ﬂfﬁ(g_ﬂ_KTN ) 414
a+ﬁ—;§;{? -G_ATONIO +sz§ o olVeo] - .o (214

2
(a) If f-—-w“ > KTo(N1o+Ng), that is the magnetic energy density is greater

than one-third of the thermal energy density of electrons and ions, « and

B are both positive. If we denote by a7, 25, o2, 2} and o the quantities

“’1291+w12,,., wf, w:, « and g in ascending order of magnitude, we find that
<< By H<owll, .. .. (4.15)

are the three forbidden ranges of frequency.
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o .
b) If 2 = KTy(Ns+Ngo) cither a or 8 is zero. In this case
( ym o(&V1g+ s

x2<w<x3, :v4<w<:1:5, .. .. . (416)
are the only forbidden ranges.
2
(c) If 4—0 < kTy(N19g+Ny) either « or 8 is negative and once again we
T

have the forbidden ranges as in (b).
(d) If Hy =0, i.e. the magnetic field is absent, we have only one for-
bidden range, namely

0< o<Vl +al,, N PR L)

as given by Oster (1960) from continuum equations. This is an unexpected
result as our treatment is not strictly valid when Hy = 0.

Thus the assembly exhibits all the ‘ band-pass filter’ characteristics of a
medium in the presence of a magnetic field. When the magnetic field is absent,
the entire character changes and it exhibits ‘ high-pass filter’ characteristics,

the lower critical frequency being \/ wf,1+ “’;z . We observe that, while the

continuum equations could predict a sort of filter properties of the medium,
and the Gross (1951) method could give only the microscopic ‘ selector ’ proper-
ties of the assembly, the present treatment synthesizes both the characteristics.
In addition, due to the simplicity of the model, collisional effects can be
studied directly. Finally, it is interesting to note that for high-frequency
transmission, energy transport by neutral particles is small, while it is fairly
high for charged particles. For small frequencies, the neutral particles share
a considerable portion of the energy transport, whereas the charged particles
permit wave propagation through selected bands in the frequency range.

Longitudinal oscillations.—Because of the extreme complexity of the
general treatment we consider only a special case in which the temperature
fluctuations #,y, £59, t33 are zero. The dispersion relation (4.2) reduces to two
distinct equations. The first one is

04+ +2 12+( 13+k11)———0 L @as)

O3

This equation, as in the transverse case, gives an acoustic wave, modified by
collisional effects. The second one is complicated and neglecting collisional
effects and putting

w c , Wy VA alk

—=‘Q,—‘=c7—_‘=A=“"‘7—,=D]C=I’C!,
wpl ay /2] [ wpl
2 2
w m w, Q. :
L =-Id=8w0,=J=80, .. .. .. (419
@p, Mg wp O
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where ¥V, = Alfvén velocity, D = Debye shielding distance, we have, after
simplification,

ii—g’:f = [ —N2)+ 220+ 1] (22~ 4N2) [292(92—/\2)(92—44\’)—3/\-9(92-44\2)
2 4422 -1
+ 553 PPN 2N~ o +92—4A2] .. (4.20)
(i) If A = 0, i.e. the magnetic field is absent, |
ok = 241 , (4.21)
@ T L o

and, the right-hand side being positive always, transmission is possible for all
frequencies.
(ii) If A = 0-5, i.e. the electron gyro-frequency is half the electron plasma
frequency,
K (@+1)(@+1112) ['2—0806/+1.15]

—, .. .. (422
fou [ Q2¢—0-522—0-75Q+40-5] “.22)

and there is transmission for all the range of frequencies.
(iii) If A = 1, i.e. the electron gyro-frequency is equal to electron plasma

frequency,

‘272 »
ok PR_D+20+]1 .. (4.23)
Q& 9(0—0-284)(R2—1-356) [(2+0-8193)°+40-629] ,

and there is one forbidden range of frequencies given by

0284wy <w<1366wp . .. .. .. (429)

Thus, even this extremely crude treatment for the longitudinal oscillations
predicts the gaps in the frequency range for a sufficiently large primitive mag-
netic field. ‘

5. In this section we shall consider the general properties of the dis-
persion relation for the transverse wave (4.3) neglecting the collisions. For
this purpose, following Gross (1951), Dnestrovskii and Kostomarov (1961), we
write (4.3) in the following forms, neglecting the neutral mode,

B .. (81

" on
D(s) g1 +Z mf exp [—SE?Y‘(I—COS V)J co8 (y—’ﬂ')d‘ d)’,
s 0
and

ay—n

D(a)asj—1+2§{ i M} .. (62

n= -
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where
ek _wpe . KT,
8‘-—2; d.(-—-(;;, ﬁi"“ g s )?—m:
Ip(x) = i™%e%] ,(ix). .. .. .. .. (b.3)

and the summation extends over ¢ = 1 and 7 = 2.
A. Investigation of real roots of D = 0:
For cold plasma 7, = 0, the dispersion relation (5.2) reduces to

2 2
D= 8—-1+§%+§—: = (.
1 2
so that ,
)
(i) when ay < ﬁl(l-{-%;) , 8 <,

and the waves are exponentially decaying with =z,
Y
(ii) when oy = ﬁ1(1+—1) , s =0,
. Mg
implying no actual propagation of disturbance, and
m\?
PP 1
(iii) when @ > Bl(l +7-n—) . 5> 0,
2

implying the existence of the undamped travelling wave.
For a non-relativistic thermal plasma, for which ¥, is small, we infer the

existence of a real root by comparing the signs of D(s) when s = 400, 0. We

have
o

1+’ﬂ)_;1, e e oL (B54)
1 me .

and from (5.1)

_ P
Dig) = 75 g oxp(=28%7) .. (65
®) 8+\/SZB’2¢‘ sinq‘;r(—sa?‘}")‘asls‘_‘)oo’ (5.5)

so that when 8 = + o0, D(s) is > 0. When s—» — oo, the sign of D is the
same as that of sin a;= ad can be inferred on writing (5.5) as

- 2 2, 3
exp { —2sa’y ;
Dis) o 5 Jg 8 P( o 1) [1 smapre { “121(1 m;)}]
m,

8 " a, si 2., \ si
@y 8in oy (—sx}y,) n aym o

~ B exp (—2saly,)

_ . (5.6)
op SIn aln(-—-aaf‘yl)*

¢
Therefore when «, > g, (1+-:';:-;) , we have D(0) < 0, and D(+ o)> 0,
80 that D = 0 can have an odd number of positive roots. If 7, is suﬂ%oiently
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small, there is one root close to the root of the dispersion relation for the cold

+
plasma. Let p<§, (1+:';-:-‘) < p+1, where p is a positive integer. If p
2

H
is even and «, varies from g, (H'ZJ) to p, sin e is > 0, so that there
2

can be an odd number of negative roots. When ¥; — 0, there is only one root
which tends to —ow. When p is odd, sin ayx << 0, so that there can be an
even number of negative roots. For sufficiently small 7,, there is no negative
root at all.

In the resonance regions a,2=~n, we have from (5.2)

2 2
L Iy(entyy) =~ (g =) [1 —5— %Io(snzyl)+0(£—;)] . . BT

Let n be odd.—As a; —+ n—0, sin a;7 remains positive, so that there is one
positive and one negative root. The equation (5.7) can be satisfied for positive
values of & only when s is very large and for negative values of s when s8— 0.
Thus the positive root tends to co and the negative root to zero.

As ay— 240, sin a7 is < 0, so that there is no negative root at least
when ¥; — 0, and the 4 ve root — 0.

When n 18 even.—As a3 > n—0, sin ayr < 0, so that there is no negative
root and the positive root tends to 0. As ay—+n+0, sin a;7 > 0 and there is
a positive as well as a negative root both tending to zero.

)
When «, < 8, (1 +:rn_z_;) . D(0) > 0 and D(+ o) > 0. In general there can

be an even number of positive roots, but for a sufficiently small ¥;, D = 0 has

i
no positive root. Also let p<ﬁ,(l+:%3) < p+1, and if p is even, as «;
2

i
decreases from g, (l+:-:—:—:) to p, sin ayw is > 0, so that there can be an even

number of positive and negative roots. For sufficiently small 7, there is a
pair of ~— ve roots only both of which are very large - — o0 a8 ¥;—> 0. Ifpis
odd, sin a7 is < 0, and there is one positive root and one negative root, for
small ¥,. To investigate near resonance regions, we once again make use
of (5.7).

When n is odd.—As a; - n—0, sin a7 > 0, and so there is a pair of real
roots for small ¥;, one — o and the other —+ +0. As a;—> 20, sin ayr <0,
8o that there is a very large negative root. ‘

When n is even.—As a; — n—0, sin @7 < 0, and there is a large negative
root, and as @, — n+0, sin &, > 0, and there are no real roots.

B. Inmvestigation of complex roots.—In order to investigate the complex
roots, we treat s as a complex variable. The dispersion relation (5.2) has no
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finite singularities so that the variation of the argument of D(s) merely gives
the number of zeros multiplied by 2=. We shall find the variation in the
argument of D(s) along the circle C : |s| == R, where R'is sufficiently large.

Taking s = Ret? on the circle, as cos 6 i is posltl:Ve in — -2— <0<~ 5 T from (5.6) we

find that the argument of D(s) cha,nges by =40 ( R3/2)

-other half of the circle C, the argument of .D(s) changes by a quantity of the

As s goes round the

-order, 4«? 71R+’§T, as R is large, so that a,s‘R—> o, the change in the argu-

ment of D(s) round C —co. Therefore D(s) must have infinitely many roots.
Since for sufficiently small 7;, only a finite, number of real roots are possible,
there are an infinity of pairs of complex conjugate roots.

The detailed behaviour of D(s) can be seen from Fig. 1 which plots the
values of 4/s against «, on the upper half plane for positive s and 14/ —s in
the lower half plane for negative s as determined by (5.2), for particular values
¥, = 0-1 and 8, = 0-5 for a fully ionized hydrogen plasma. The plots in the
upper half plane represent the undamped waves, while the plots in the lower
half plane represent the purely damped waves. The points, where it crosses
4/s = 0 axis, determine the frequencies for which the plasma oscillates as a
whole but there is no propagation.

A O
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