ABSTRACT
The nucleotide sequence of initiator tRNA from Mycobacterium smegmatis was determined to be pCGGCGGGGAGGCAGUCUCGUCGCUUAGCUAAACCAGAGm7GUCG CAGGUUCGm1AAGGCUGCUCGCCUACCA. The nucleotide sequence of Mycobacterium initiator tRNA was found to be the same as that of Streptomyces initiator tRNA, except that G_{46} and A_{57} were replaced by m7G_{46} and G_{57}, respectively. The striking feature of Mycobacterium initiator tRNA is the absence of ribothymidine at residue 54, and the presence of 1-methyladenosine at residue 58 which makes the sequence of this tRNA similar to that of eukaryotic initiator tRNA.

INTRODUCTION
We previously reported that initiator tRNA of Streptomyces griceus which belongs to Actinomycota possesses unmodified uridine at residue 54 instead of ribothymidine (1). In addition, the fifth base from the 3'-terminus of Streptomyces initiator tRNA is U_{72}, while A_{72} is located in the same position as other prokaryote initiator tRNAs sequenced so far (2). Moreover, Streptomyces initiator tRNA contains 1-methyladenosine (m1A) at residue 58 in the TΨC-loop, which has been found in cytoplasmic initiator tRNAs from eukaryotes (1).

These structural characteristics of Streptomyces initiator tRNA indicate that Streptomyces is phylogenetically quite distinct from other prokaryotes. It would be interesting to know whether these structural features found in Streptomyces initiator tRNA are common to organisms belonging to Actinomycota.

This paper reports the nucleotide sequence of initiator tRNA from Mycobacterium smegmatis, which belongs to Actinomycota, and discusses the common unique structural features of Actinomycota initiator tRNAs which differ from those of other prokaryotic initiator tRNAs.

Y.Kuchino* and S.Nishimura
Biology Division, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104, Japan

Received 22 March 1984; Accepted 13 April 1984
Fig. 1. Nucleotide sequence of initiator tRNA from Mycobacterium smegmatis arranged in a clover-leaf model.

MATERIALS AND METHODS

Mycobacterium smegmatis SN2 was cultured in Youmans and Karlson's minimal medium containing 0.1% Tween-80 at 37°C (3). Unfractionated tRNA from Mycobacterium smegmatis was prepared by procedures described previously (3). DEAE-Sephadex A-50 and RPC-5 column chromatographies were used successively for the purification of Mycobacterium initiator tRNA (4,5). Three different gel electrophoreses using 10, 20 and 15% polyacrylamide gels were

<table>
<thead>
<tr>
<th>Position of nucleotide residue</th>
<th>Prokaryotes</th>
<th>Eukaryotes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mycoplasma</td>
<td>Eubacteria</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>33</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>37</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>54</td>
<td>U</td>
<td>T</td>
</tr>
<tr>
<td>57</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>58</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>60</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>72</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Abbreviations used were:

D; dihydrouridine, T; ribothymidine, m1A; 1-methyladenosine, t6A; N-[9-β-D-ribofuranosylpurin-6-yl]carbamoyl]-L-threonine.
performed for the final purification of initiator tRNA as described previously (6,7). For the assay of the methionine accepting ability of initiator tRNA, a crude *Escherichia coli* aminoacyl tRNA synthetase mixture was used. The materials and procedures used for sequence analysis of tRNA by post-labeling techniques were the same as described previously (6-8).

RESULTS AND DISCUSSION

The nucleotide sequence of initiator tRNA from *Mycobacterium smegmatis* was determined by combined use of several post-labeling procedures as described previously (8). The total nucleotide sequence obtained from the sequencing procedures is arranged in a cloverleaf form in Fig. 1.

It is interesting to note that *Mycobacterium* initiator tRNA lacks ribothymidine. This result coincides with the previous data that unfractionated total *Mycobacterium* tRNA does not contain ribothymidine (3). As other striking features, *Mycobacterium* initiator tRNA possesses U₅₄, G₅₇, m₁A₅₈ and U₇₂. In general, prokaryote initiator tRNAs, except *Mycoplasma* and *Streptomyces* initiator tRNAs, have T₅₄, A₅₇, A₅₈ and A₇₂ as shown in Table I.

Initiator tRNA of *Mycoplasma*, which belongs to *Mycoplasmosmycota* and has the smallest chromosomal DNA among the self-growing organisms, does not contain ribothymidine at residue 54, however other structural features of the tRNA are the same as those of eubacteria initiator tRNAs (9). On the contrary, initiator tRNA of *Streptomyces*, which belongs to *Actinomycota*, has the same structural feature as that of *Mycobacterium* initiator tRNA. The overall sequence homology between *Mycobacterium* initiator tRNA and *Streptomyces* initiator tRNA is 98%. These sequencing data of *Mycobacterium* and *Streptomyces* initiator tRNAs clearly indicate that the presence of U₅₄, m₁A₅₈ and U₇₂ in place of T₅₄, A₅₇, A₅₈ and A₇₂ is specific to *Actinomycota* initiator tRNAs. In addition, these sequence characteristics show that *Streptomyces* and *Mycobacterium* are phylogenetically quite distinct from other prokaryotes.

*To whom correspondence should be addressed

REFERENCES