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Abstract. Some very precise results (see Theorems 4 and 5) are proved about the a-values of
the Ith derivative of a class of generalized Dirichlet series, for I > I, = Io(a) (/, being a large
constant). In particular for the precise results on the zeros of {*"\(s) — a (a any complex constant
and [ > l,) see Theorems 1 and 2 of the introduction.
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1. Introduction

The object of this paper is to prove the following two theorems.

-1
Theorem 1. Let§ = (10g G—Z—i—;—) )(log%) . There exists an effective constant g, > 0

such that if ¢ is any constant satisfying 0 < & < &, then the rectangle

-1 -1
{a 2100 —e¢),2kn (log—;—) <t<Rk+2n (log%) }

contains precisely one zero of {"(s), provided | exceeds a constant 1, = l,(&) depending
only one. This zero is a simple zero. Moreover this zero does not lie on the boundary of this
rectangle and further lies in

o<l(0+e).

Here as usual s = ¢ + it and k is any integer, positive negative or zero.

Theorem 2. Let § =(loglog 15)(log 15)~* and a any non-zero complex constant. There
exists an effective constant ¢, > 0 such that if ¢ is any constant satisfying 0 < & < &,, then
the rectangle

{0210 —¢), Ty —n(log15) 1 <t< T, +n(log15)~1}

where T, =(Im logl + nl + 2kn)(log 15)™ 1, contains precisely one zero of (P(s)—a,
provided | exceeds an effective constant 1, = I, (a, &) depending only on a and e. This zero is
a simple zero. Moreover this zero does not lie on the boundary of this rectangle and
further lies in

o<l(0+e).

*Dedicated to Prof. Paul Erd6s on his eighty-first birthday
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Here k is any integer, positive negative or zero.

Remark. In [1] we dealt with slightly different questions on the zeros in ¢ > 1 of
{“(s) — a where a is any complex constant and [ is any fixed positive integer. Interested
reader may consult this paper. However the results of the present paper deal with large
I'and are more precise.

The main ingredient of the proof of Theorems 1 and 2 (and the more general results to

be stated and proved in §3 and §4) is the following theorem (see Theorem 3.42 on page
116.0on [2]).

Theorem 3. (Rouché’s Theorem). If f(z) and g(z) are analytic inside and on a closed

contour C, and |g(z)| < | f(z)| on C then f(2) and f(2) + g(z) have the same number of
zeros inside C.

Remark 1. In what follows we use s in place of z.

Remark 2. 1t is somewhat surprising that we can prove (with the help of Theorem 3)

Theorems 4 and 5, which are much more general than Theorems 1 and 2. These will be
stated in § 3 and §4 respectively.

Remark 3. Theorems 4 and 5 can be generalized to include derivatives of ¢ and

L functions and also of { function of ray classes of any algebraic number field and so on.
But we have not done so.

2. Notation

{A}n=1,2,3,. ) will denote any sequence of real numbers with 4, =1 and1< 4, ,, —
4n < A where A(> 1)is any fixed constant. {a,}(n=1,2,3,.. ) will denote any sequence

of complex numbers with a;=1and|a,| < nt.k will be any integer, positive negative or
zero. 8,(n > 2) will denote (loglog 4,)(log 1,)~ !

3. A generalization of Theorem 1

log A

no

X (log :,"+ 1) -Alsolet 4., <22 foralln>1. There exists an effective constant ¢,

no

log 4,
Theorem 4. Letn0>1beanyinzeger,|a"0’>A—1,!ano+r'>A-1andéz(log( g o+1)>

such that if ¢ is any constant satisfying 0 < e < ¢, then the rectangle

/1,,+1 -1 Ang'f‘l -t
Y0 216 —¢), T, + 2kn IogT’— St< T+ 2k +2)=| log 1 ~

no

o

a, A -1 .
where T, = (Im log (——;il) )(Iog ’f : ) » contains precisely one zero of the analytic
Sfunction " ”

2 a,(logi, )i

nxng

“ﬂ-——_—_‘

L




Generalized Dirichlet series 275

provided | exceeds an effective positive constant |, =1,(A, ¢, n,) depending only on the
parameters indicated. This zero is a simple zero. Moreover this zero does not lie on the
boundary of this rectangle and further lies in

o<1+ ¢).

Remark. Theorem 1 follows by taking ny=2,4,=nand a,=1 for all n.

The following lemma will be used in this section and also while applying Theorem 5
of §4 to deduce Theorem 2.

Lemma 1. For any 6> 0 the function (logx)x™% (of x in x > 1) is increasing for
1 <x<exp(d™?) and decreasing for x >exp(6~1). It has precisely one maximum at
x=exp(6 ')

Remark. The maximum valueis(ed) ™ *. The proof of this lemma is trivial and will be left
as an exercise.

To prove Theorem 4 we apply Theorem 3 to

— . ano+1’ log/?'no-kl ! )'no'l-l os
Je=1+ ( a,, )( log s, )\ o,

C(log A, N A\ 7F
g(S)_ n>§+z a" (,IOg)“no) (Ano>

where a, =a,(a, )" ". It suffices to prove that f(s)+ g(s) has its zeros as claimed in
Theorem 4.

and

Lemma 2. The zeros of f(s) are all simple and are given by s = s, where

B 10g1n0+1 ‘ A’no+l -1
So = (103(— a,,+1) +1log (70_871,.0 <log7;°—- ,

Jor all possible values of log(—a,, . ). If 5o =0, + ity then

, 1°g'{no+1 )“no+1 -1
ao—(log!ano+1|+llog< log, ))(log—;;— ,

' /1’,0_',1 -1
to=(Imlog(—a, ,,))|{ log .

A
fo=1- (=)

and

Also "
Ay

Proof. The proof is trivial.

Lemma 3. For o > 200 A, we have

/‘{" —a+oy
g(s)] < (—f) S

no
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where
log A Lty g i .:
S = a" an I-' 1 ( no ) ( n ) . . .
n2§+2l SO log4, ., Anpt 1 3;
Proof. The proof follows from :
logZ, \'/ 4, \"°
S 12 n ___'L
|g(S)' "?%'*Z‘anl <10g/1n0) <ino> :
’- log 2‘" ! ’ln o7 /?'ﬂo o7
- 2wl () (5
nxno+2 IOg lno no+ 1 no
and the fact that
Aot \° ™ 10g2n0+1 !
)'"0 _Iano+1 logl,,o .
Remark. Hereafter we write o, = 6,/ and | e
. }“n +1 -1 j
50=l—1(10g|a;0+l])<10g~—j—) + 0. §

Also we remark that the condition ¢ > (6o — ¢)is the same as o > (8 — ) with a change
of e.

Lemma 4. Let S = S(0). Then Jor a = 1(8 — &) we have,

1
S(O') <T0—069

provided 1 > ly= 1,(A,¢,ny), which is effective. J

To prove this lemma it suffices to prove that

! @

This will be done in two stages. We have (by Lemma 3)

logl A —-d+e)i
S(I(6 —¢)) = la,lla, l‘l{< . )( - ) .
n>§+z ot 10g 441/ \ Ayt 1

In Lemma 5 we prove that exp(é"‘)<,1,Io +; and so by Lemma 1 it follows that
(log 4,)A, ? is decreasing for n> n, + 2. Hence it suffices to prove that

(10g An0+2) (;anz)“a“ ‘
<1.
log Anf,+1 lno+1

This will be done in Lemma 6, This wou

large n
( log/, )( A )“””’
108 2041/ \ Ayt 4

Id complete the proof of Lemma 4 since for all
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is less than a negative constant power of 4.

Lemma 5. We have
exp(d™ 1) < Aot 1

Proof. Since for 0 < x < 1 we have —log(l — x) > x, it follows that
log 4 At '
S (18l log—etl
o= (a1 (1)) s
log A Apgr1 )71
. No l 0
><1 10g2’"o+1><0g /1"0 )

=(log i, .,)" "

This proves the lemma.

Lemma 6. We have
(IOg Ano+z)<'1no+ 1 )6 <1
log Ano +1 ’1n0+ 2

Proof. We have 4, ,, < A2 ., and also for 0 < x <1 we have log(l + x) < x. Using
these we obtain

) 108 Aga+1 ln
(1+(10g1"—°—f—2—>(10g,1n0+1)‘1) <ei?

no+ 1 A‘no+1

log A A (log dpy+1)7"
( g no+2)< no+1> <1
10g 4,41 ) \Augs 2
andsince(log 4, ,,)~! < 8, we obtain Lemma 6. Lemmas 2 and 4 complete the proof of
Theorem 4.

and so

4. A generalization of Theorem 2

Theorem 5. Let 6, be the maximum of §, taken over all n for which a, #0 and n> 1.
Suppose that for alln# 1,n, we have 8, —8,> A~ " and also A, —e > A~". We further
suppose that |a, | > A~ ' and put 8, = . There exists an effective constant &, such that for
all ¢ satisfying 0 < ¢ < g, the rectangle

{62106 —¢), T,—n(logl,) ' <t< Ty +n(logi,) "}

where T, =(Imlog(—a, ) + 2kn)(log A,,)” 1, contains precisely one zero of the analytic
Sfunction

Ms

1+

n

a,(log1,)' A,

2

provided l exceeds an effective constant 1, = 1,(A, ¢, n, ) depending only on the parameters
indicated. This zero is a simple zero. Moreover this zero does not lie on the boundary of
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this rectangle and further lies in

o<I(d+e).

Remark. Theorem 2 follows by taking 4, =n and a, = (= 1)"*'a~ ! for all n > 2. Note ¢

that the maximum of 3, occurs when n = 15, It is necessary to check thatd,5>d,4. In
fact we have ’

e*=1521...,10g,,6; =0-434357 ... and log, ,6;4! =0-434455.. .,
by using tables.
To prove Theorem 5 we apply Theorem 3 to

f)=1+a,(logl, )i,
and

9(5)= Y a,(log A, )}A=*

. .. ' K
where the asterisk denotes the restrictions n % ILn,. -

Lemma 1. The zeros of f(s) are all simple and are given by s = s, where
So = (log(—a, )+ lloglog Ao )log 4, )"
Jfor all possible values of log(—a, ). If s=0, +it,, then

R S

0o =(logla, | +1loglog 4, )(log Ay) 7t
and

to=(Imlog(~a, ))(log, )",
Also

f)=1— )75+,

Remark. We write o=,/ and o =1""(logla, |)(log 4n)”'+6. The condition
o2 1(6, —e) is the same as ¢ > 1(6 — &) with a change of ¢. - :

¢
Proof. The proof is trivial.

Lemmq 2. For 6 2 (6 — &), we have ;‘
ok
19 <Y la,|(log 4,) 470+,

Proof. LHS is trivially not more than

*

Y la,l(log ) A7
for all ¢ > 200 A. This proves the lemma.

Lemma 3. We have for ¢ > (6 —¢),

196)1 < o5
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Proof. Using log 4, = (4,)°" we obtain, by Lemma 2,

*

lg(s)l <Y la, (A, @ ey

By the hypothesis of Theorem 5 we see that § — 6, > A~ ! (note also that 4, —e>A""
loglog(e + A7)
logle+ A7)
Lemmas 1 and 3 complete the proof of Theorem 5.

so thato > if 4,, <e)and so Lemma 3 is proved.

Open questions

1) How much can one generalize Theorems 1 and 2?

2) Whatever the integer constant ! > 1 and whatever the complex constant a, prove
that {¥(s) — a has infinity of simple zeros in ¢ > 3, (more precisely > T simple zeros
in (o >3 +0, T<t<2T) for some absolute constant > 0).
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