Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 3, August 1995, pp. 273-279. © Printed in India.

On the zeros of $\zeta^{(l)}(s) - a$ (on the zeros of a class of a generalized Dirichlet series – XVII)*

K RAMACHANDRA

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

MS received 10 October 1994; revised 14 December 1994

Abstract. Some very precise results (see Theorems 4 and 5) are proved about the a-values of the lth derivative of a class of generalized Dirichlet series, for $l \ge l_0 = l_0(a)$ (l_0 being a large constant). In particular for the precise results on the zeros of $\zeta^{(l)}(s) - a$ (a any complex constant and $l \ge l_0$) see Theorems 1 and 2 of the introduction.

Keywords. Riemann zeta function; generalized Dirichlet series; derivatives; distribution of zeros.

1. Introduction

The object of this paper is to prove the following two theorems.

Theorem 1. Let $\delta = \left(\log\left(\frac{\log 3}{\log 2}\right)\right) \left(\log\frac{3}{2}\right)^{-1}$. There exists an effective constant $\varepsilon_0 > 0$ such that if ε is any constant satisfying $0 < \varepsilon \leqslant \varepsilon_0$, then the rectangle

$$\left\{\sigma \geqslant l(\delta - \varepsilon), 2k\pi \left(\log \frac{3}{2}\right)^{-1} \leqslant t \leqslant (2k + 2)\pi \left(\log \frac{3}{2}\right)^{-1}\right\}$$

contains precisely one zero of $\zeta^{(l)}(s)$, provided l exceeds a constant $l_0=l_0(\epsilon)$ depending only on ϵ . This zero is a simple zero. Moreover this zero does not lie on the boundary of this rectangle and further lies in

$$\sigma \leq l(\delta + \varepsilon)$$
.

Here as usual $s = \sigma + it$ and k is any integer, positive negative or zero.

Theorem 2. Let $\delta = (\log \log 15)(\log 15)^{-1}$ and a any non-zero complex constant. There exists an effective constant $\varepsilon_0 > 0$ such that if ε is any constant satisfying $0 < \varepsilon \le \varepsilon_0$, then the rectangle

$$\left\{\sigma \geqslant l(\delta - \varepsilon), \ T_0 - \pi(\log 15)^{-1} \leqslant t \leqslant \ T_0 + \pi(\log 15)^{-1}\right\}$$

where $T_0 = (\operatorname{Im} \log \frac{1}{a} + \pi l + 2k\pi)(\log 15)^{-1}$, contains precisely one zero of $\zeta^{(l)}(s) - a$, provided l exceeds an effective constant $l_0 = l_0(a, \varepsilon)$ depending only on a and ε . This zero is a simple zero. Moreover this zero does not lie on the boundary of this rectangle and further lies in

$$\sigma \leq l(\delta + \varepsilon)$$
.

^{*}Dedicated to Prof. Paul Erdös on his eighty-first birthday

Here k is any integer, positive negative or zero.

Remark. In [1] we dealt with slightly different questions on the zeros in $\sigma > \frac{1}{2}$ of $\zeta^{(l)}(s) - a$ where a is any complex constant and l is any fixed positive integer. Interested reader may consult this paper. However the results of the present paper deal with large l and are more precise.

The main ingredient of the proof of Theorems 1 and 2 (and the more general results to be stated and proved in $\S 3$ and $\S 4$) is the following theorem (see Theorem 3.42 on page 116 on [2]).

Theorem 3. (Rouché's Theorem). If f(z) and g(z) are analytic inside and on a closed contour C, and |g(z)| < |f(z)| on C then f(z) and f(z) + g(z) have the same number of zeros inside C.

Remark 1. In what follows we use s in place of z.

Remark 2. It is somewhat surprising that we can prove (with the help of Theorem 3) Theorems 4 and 5, which are much more general than Theorems 1 and 2. These will be stated in § 3 and § 4 respectively.

Remark 3. Theorems 4 and 5 can be generalized to include derivatives of ζ and L functions and also of ζ function of ray classes of any algebraic number field and so on. But we have not done so.

2. Notation

 $\{\lambda_n\}(n=1,2,3,\ldots)$ will denote any sequence of real numbers with $\lambda_1=1$ and $\frac{1}{A}\leqslant \lambda_{n+1}-\lambda_n\leqslant A$ where $A(\geqslant 1)$ is any fixed constant. $\{a_n\}(n=1,2,3,\ldots)$ will denote any sequence of complex numbers with $a_1=1$ and $|a_n|\leqslant n^A.k$ will be any integer, positive negative or zero. $\delta_n(n\geqslant 2)$ will denote (loglog λ_n)(log λ_n)⁻¹

3. A generalization of Theorem 1

Theorem 4. Let $n_0 > 1$ be any integer, $|a_{n_0}| > A^{-1}$, $|a_{n_0+1}| > A^{-1}$ and $\delta = \left(\log\left(\frac{\log \lambda_{n_0+1}}{\log \lambda_{n_0}}\right)\right) \times \left(\log\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-1}$. Also let $\lambda_{n+1} < \lambda_n^2$ for all n > 1. There exists an effective constant ε_0 such that if ε is any constant satisfying $0 < \varepsilon \leqslant \varepsilon_0$, then the rectangle

$$\left\{\sigma \geqslant l(\delta - \varepsilon), \ T_0 + 2k\pi \left(\log \frac{\lambda_{n_0 + 1}}{\lambda_{n_0}}\right)^{-1} \leqslant t \leqslant T_0 + (2k + 2)\pi \left(\log \frac{\lambda_{n_0 + 1}}{\lambda_{n_0}}\right)^{-1}\right\}$$

where $T_0 = \left(\operatorname{Im}\log\left(\frac{a_{n_0+1}}{a_{n_0}}\right)\right) \left(\log\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-1}$, contains precisely one zero of the analytic function

$$\sum_{n \geqslant n_0} a_n (\log \lambda_n)^l \lambda_n^{-s}$$

provided l exceeds an effective positive constant $l_0 = l_0(A, \varepsilon, n_0)$ depending only on the parameters indicated. This zero is a simple zero. Moreover this zero does not lie on the boundary of this rectangle and further lies in

$$\sigma \leq l(\delta + \varepsilon)$$
.

Remark. Theorem 1 follows by taking $n_0 = 2$, $\lambda_n = n$ and $a_n = 1$ for all n.

The following lemma will be used in this section and also while applying Theorem 5 of § 4 to deduce Theorem 2.

Lemma 1. For any $\delta > 0$ the function $(\log x)x^{-\delta}$ (of x in $x \ge 1$) is increasing for $1 \le x \le \exp(\delta^{-1})$ and decreasing for $x \ge \exp(\delta^{-1})$. It has precisely one maximum at $x = \exp(\delta^{-1})$.

Remark. The maximum value is $(e\delta)^{-1}$. The proof of this lemma is trivial and will be left as an exercise.

To prove Theorem 4 we apply Theorem 3 to

$$f(s) = 1 + \left(\frac{a_{n_0+1}}{a_{n_0}}\right) \left(\frac{\log \lambda_{n_0+1}}{\log \lambda_{n_0}}\right)^{l} \left(\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-s}$$

and

5

$$g(s) = \sum_{n \ge n_0 + 2} a'_n \left(\frac{\log \lambda_n}{\log \lambda_{n_0}} \right)^l \left(\frac{\lambda_n}{\lambda_{n_0}} \right)^{-s}$$

where $a'_n = a_n (a_{n_0})^{-1}$. It suffices to prove that f(s) + g(s) has its zeros as claimed in Theorem 4.

Lemma 2. The zeros of f(s) are all simple and are given by $s = s_0$ where

$$s_0 = \left(\log(-a'_{n_0+1}) + l\log\left(\frac{\log\lambda_{n_0+1}}{\log\lambda_{n_0}}\right)\right) \left(\log\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-1},$$

for all possible values of $\log(-a'_{n_0+1})$. If $s_0 = \sigma_0 + it_0$ then

$$\sigma_0 = \left(\log|a'_{n_0+1}| + l\log\left(\frac{\log\lambda_{n_0+1}}{\log\lambda_{n_0}}\right)\right) \left(\log\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-1},$$

and

$$t_0 = (\operatorname{Im} \log(-a'_{n_0+1})) \left(\log \frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-1}.$$

Also

$$f(s) = 1 - \left(\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-s+s_0}.$$

Proof. The proof is trivial.

Lemma 3. For $\sigma \ge 200 A$, we have

$$|g(s)| \leqslant \left(\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-\sigma+\sigma_0} S$$

where

$$S = \sum_{n \geq n_0 + 2} |a_n| |a_{n_0 + 1}|^{-1} \left(\frac{\log \lambda_{n_0}}{\log \lambda_{n_0 + 1}} \right)^l \left(\frac{\lambda_n}{\lambda_{n_0 + 1}} \right)^{-\sigma}.$$

Proof. The proof follows from

$$|g(s)| \leq \sum_{n \geq n_0 + 2} |a'_n| \left(\frac{\log \lambda_n}{\log \lambda_{n_0}}\right)^l \left(\frac{\lambda_n}{\lambda_{n_0}}\right)^{-\sigma}$$

$$= \sum_{n \geq n_0 + 2} |a'_n| \left(\frac{\log \lambda_n}{\log \lambda_{n_0}}\right)^l \left(\frac{\lambda_n}{\lambda_{n_0 + 1}}\right)^{-\sigma} \left(\frac{\lambda_{n_0 + 1}}{\lambda_{n_0}}\right)^{-\sigma}$$

and the fact that

$$\left(\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{\sigma_0} = |a'_{n_0+1}| \left(\frac{\log \lambda_{n_0+1}}{\log \lambda_{n_0}}\right)^l.$$

Remark. Hereafter we write $\sigma_0 = \delta_0 l$ and

$$\delta_0 = l^{-1}(\log|a'_{n_0+1}|) \left(\log \frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-1} + \delta.$$

Also we remark that the condition $\sigma \ge l(\delta_0 - \varepsilon)$ is the same as $\sigma \ge l(\delta - \varepsilon)$ with a change of ε .

Lemma 4. Let $S = S(\sigma)$. Then for $\sigma \ge l(\delta - \varepsilon)$ we have,

$$S(\sigma) < \frac{1}{1000}$$

provided $l \ge l_0 = l_0(A, \varepsilon, n_0)$, which is effective.

To prove this lemma it suffices to prove that

$$S(l(\delta-\varepsilon)) < \frac{1}{1000}$$
.

This will be done in two stages. We have (by Lemma 3)

$$S(l(\delta-\varepsilon)) = \sum_{n \geq n_0+2} |a_n| |a_{n_0+1}|^{-1} \left\{ \left(\frac{\log \lambda_n}{\log \lambda_{n_0+1}} \right) \left(\frac{\lambda_n}{\lambda_{n_0+1}} \right)^{-\delta+\varepsilon} \right\}^l.$$

In Lemma 5 we prove that $\exp(\delta^{-1}) < \lambda_{n_0+1}$ and so by Lemma 1 it follows that $(\log \lambda_n)\lambda_n^{-\delta}$ is decreasing for $n \ge n_0 + 2$. Hence it suffices to prove that

$$\left(\frac{\log \lambda_{n_0+2}}{\log \lambda_{n_0+1}}\right) \left(\frac{\lambda_{n_0+2}}{\lambda_{n_0+1}}\right)^{-\delta+\epsilon} < 1.$$

This will be done in Lemma 6. This would complete the proof of Lemma 4 since for all large n

$$\left(\frac{\log \lambda_n}{\log \lambda_{n_0+1}}\right) \left(\frac{\lambda_n}{\lambda_{n_0+1}}\right)^{-\delta+\varepsilon}$$

is less than a negative constant power of λ_n .

Lemma 5. We have

3

$$\exp(\delta^{-1}) < \lambda_{n_0+1}.$$

Proof. Since for 0 < x < 1 we have $-\log(1 - x) > x$, it follows that

$$\begin{split} \delta &= \left(-\log\left(1 - \left(1 - \frac{\log\lambda_{n_0}}{\log\lambda_{n_0+1}}\right)\right)\right) \left(\log\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-1} \\ &> \left(1 - \frac{\log\lambda_{n_0}}{\log\lambda_{n_0+1}}\right) \left(\log\frac{\lambda_{n_0+1}}{\lambda_{n_0}}\right)^{-1} \\ &= (\log\lambda_{n_0+1})^{-1}. \end{split}$$

This proves the lemma.

Lemma 6. We have

$$\left(\frac{\log \lambda_{n_0+2}}{\log \lambda_{n_0+1}}\right) \left(\frac{\lambda_{n_0+1}}{\lambda_{n_0+2}}\right)^{\delta} < 1.$$

Proof. We have $\lambda_{n_0+2} < \lambda_{n_0+1}^2$ and also for 0 < x < 1 we have $\log(1+x) < x$. Using these we obtain

$$\left(1 + \left(\log \frac{\lambda_{n_0+2}}{\lambda_{n_0+1}}\right) (\log \lambda_{n_0+1})^{-1}\right)^{\log \lambda_{n_0+1}} < \frac{\lambda_{n_0+2}}{\lambda_{n_0+1}}$$

and so

$$\left(\frac{\log \lambda_{n_0+2}}{\log \lambda_{n_0+1}}\right) \left(\frac{\lambda_{n_0+1}}{\lambda_{n_0+2}}\right)^{(\log \lambda_{n_0+1})^{-1}} < 1$$

and since $(\log \lambda_{n_0+1})^{-1} < \delta$, we obtain Lemma 6. Lemmas 2 and 4 complete the proof of Theorem 4.

4. A generalization of Theorem 2

Theorem 5. Let δ_{n_1} be the maximum of δ_n taken over all n for which $a_n \neq 0$ and n > 1. Suppose that for all $n \neq 1$, n_1 we have $\delta_{n_1} - \delta_n \geqslant A^{-1}$ and also $\lambda_{n_1} - e \geqslant A^{-1}$. We further suppose that $|a_{n_1}| \geqslant A^{-1}$ and put $\delta_{n_1} = \delta$. There exists an effective constant ε_0 such that for all ε satisfying $0 < \varepsilon \leqslant \varepsilon_0$, the rectangle

$$\{\sigma \geqslant l(\delta - \varepsilon), \ T_0 - \pi(\log \lambda_{n_1})^{-1} \leqslant t \leqslant T_0 + \pi(\log \lambda_{n_1})^{-1}\}$$

where $T_0 = (\operatorname{Im} \log(-a_{n_1}) + 2k\pi)(\log \lambda_{n_1})^{-1}$, contains precisely one zero of the analytic function

$$1 + \sum_{n=2}^{\infty} a_n (\log \lambda_n)^l \lambda_n^{-s}$$

provided l exceeds an effective constant $l_0 = l_0(A, \varepsilon, n_1)$ depending only on the parameters indicated. This zero is a simple zero. Moreover this zero does not lie on the boundary of

this rectangle and further lies in

$$\sigma \leq l(\delta + \varepsilon)$$
.

Remark. Theorem 2 follows by taking $\lambda_n = n$ and $a_n = (-1)^{l+1} a^{-1}$ for all $n \ge 2$. Note that the maximum of δ_n occurs when n = 15. It is necessary to check that $\delta_{15} > \delta_{16}$. In fact we have

$$e^e = 15.21..., \log_{10} \delta_{15}^{-1} = 0.434357...$$
 and $\log_{10} \delta_{16}^{-1} = 0.434455...$,

by using tables.

To prove Theorem 5 we apply Theorem 3 to

$$f(s) = 1 + a_{n_1} (\log \lambda_{n_1})^l \lambda_{n_1}^{-s}$$

and

$$g(s) = \sum_{n=0}^{\infty} a_n (\log \lambda_n)^l \lambda_n^{-s}$$

where the asterisk denotes the restrictions $n \neq 1, n_1$.

Lemma 1. The zeros of f(s) are all simple and are given by $s = s_0$ where

$$s_0 = (\log(-a_{n_1}) + l \log\log \lambda_{n_1})(\log \lambda_{n_1})^{-1}$$

for all possible values of $\log(-a_{n_1})$. If $s = \sigma_0 + it_0$, then

$$\sigma_0 = (\log|a_{n_1}| + l \log\log \lambda_{n_1})(\log \lambda_{n_1})^{-1}$$

and

$$t_0 = (\operatorname{Im} \log(-a_{n_1}))(\log \lambda_{n_1})^{-1}.$$

Also

$$f(s) = 1 - \lambda_{n_1}^{-s + s_0}.$$

Remark. We write $\sigma_0 = \delta_0 l$ and $\delta_0 = l^{-1} (\log |a_{n_1}|) (\log \lambda_{n_1})^{-1} + \delta$. The condition $\sigma \ge l(\delta_0 - \varepsilon)$ is the same as $\sigma \ge l(\delta - \varepsilon)$ with a change of ε .

Proof. The proof is trivial.

Lemma 2. For $\sigma \geqslant l(\delta - \varepsilon)$, we have

$$|g(s)| \leq \sum_{n=1}^{\infty} |a_n| (\log \lambda_n)^l \lambda_n^{-l\delta + l\varepsilon}.$$

Proof. LHS is trivially not more than

$$\sum_{n=0}^{\infty} |a_n| (\log \lambda_n)^l \lambda_n^{-\sigma}$$

for all $\sigma \ge 200 A$. This proves the lemma.

Lemma 3. We have for $\sigma \geqslant l(\delta - \varepsilon)$,

$$|g(s)| \leqslant \frac{1}{1000}.$$

Proof. Using $\log \lambda_n = (\lambda_n)^{\delta_n}$ we obtain, by Lemma 2,

$$|g(s)| \leq \sum_{n=1}^{\infty} |a_n| (\lambda_n^{-(\delta-\delta_n)+\varepsilon})^{l}.$$

By the hypothesis of Theorem 5 we see that $\delta - \delta_n \geqslant A^{-1}$ (note also that $\lambda_{n_1} - e \geqslant A^{-1}$ so that $\delta \geqslant \frac{\log\log(e + A^{-1})}{\log(e + A^{-1})}$ if $\lambda_{n_1} \leqslant e^e$) and so Lemma 3 is proved.

Lemmas 1 and 3 complete the proof of Theorem 5.

Open questions

٥

- 1) How much can one generalize Theorems 1 and 2?
- 2) Whatever the integer constant $l \ge 1$ and whatever the complex constant a, prove that $\zeta^{(l)}(s) a$ has infinity of simple zeros in $\sigma > \frac{1}{2}$, (more precisely $\gg T$ simple zeros in $(\sigma \ge \frac{1}{2} + \delta, \ T \le t \le 2T)$ for some absolute constant $\delta > 0$).

References

[1] Balasubramanian R and Ramachandra K, On the zeros of $\zeta'(s) - a$, Acta Arith. 63 (1993) 183-191 [2] Titchmarsh E C, The theory of functions (second edition) (1939) (Oxford University Press)