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Abstract. Let Q(uy,..., )= Zd;uu; (i,j= 1 to I) be a positive definite quadratic form in
I(> 3) variables with integer coefficients d;;(= d;;). Put s = ¢ + it and for o > (//2) write
b o Zo(s)= T(Qus, ., w)) ",

where the accent indicates that the sum is over all I-tuples of integers (u,,...,%;) with the
exception of (0,...,0). It is well-known that this series converges for ¢>>(//2) and that
(s—(1/2))Zy(s) can be continued to an entire function of s. Let J be any constant with
O<&<ths Then it is proved that Z,(s) has >»,TlogT zeros in the rectangle
(lo—%/<6, T<t<2T)

Keywords. Quadratic forms; zeta-function; zeros near the line sigma equal to half.

1. Introduction

Let Q(uy,u,,...,u,) beapositive definite quadraticform X d;; u;u;, (i,j = L to )) in I( = 3)

variables and with integer coefficients d,; (=d;; for i, j). Put (with s = ¢ + it).

ZQ(S) = ZI(Q(”p Uy os )5,

where the accent indicates that the summation is over all integer I-tuples (u;, u,,.. ., %)
with the exception of (0,0,...,0). (It is known that Z(s)(s — (I/2)) is an entire function.)
Let N(«, T) denote the number of zeros of Z,(s) in ¢ > o, T <t <2T. We prove the
following theorem.

: Main Theorem. We have
N(o, T)>» TlogT
if a=(—1)/2—34, (6 > 0 any constant) provided 1 > 3. Also we have

NQB, T)«T

if f=(1—1)12+0.
For a neat consequence of this see Remark 2 below.

Remark 1. The proof of this theorem depends on the following two important results.

*Dedicated to Professor R P Bambah on his seventy-first birthday
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First the lower bound

L 2TZ it)| dt > T? -l 5
'T——v r ‘ Q(U+1)| 3 g= 2 >

where 6 > Oisaconstantif/ > 3. Nextfor$ + e < (I — 1)/2 — 6 < (I — 1)/2 — & (eis a small
positive constant), we have '

1 {27 I-1 .
?JT ZQ(T_—5+H)

for I > 3. Both the results follow from the ideas of R Balasubramanian and K Rama-

chandra (see [RB,KR],, [RB,KR],, [KR],,[KR], and [KR],). Also one has to use
Theorem 3 of [RB,KR],.

2
dt « T3¢

Remark 2. Using the functional equation of Z 5(s) (with some associated quadratic
form Q) and applying the theorem we have the following corollary: Z o(s)has > Tlog T
zerosin (lo —3| <8, T<t<2T). In a rough way we may say that the critical line (for
Zy(s)) gets blown up into an inner critical strip 1< o <(I— 1)/2 and that in the
neighbourhood of the vertical borders there are plenty of zeros of Z,(s). This is the
justification for the title of the present paper.

2. Notation and preliminaries

1. Cy,Cs,..., 41, A,,... denote effective positive constants, sometimes absolute.
2. &;,85,...,04,0,,... denote small positive constants.

3. f(x)«g(x) and f(x)=O(g(x)) will mean that |f(x)| < C 19(x).
4. We write s=o¢ + it, w = u + iv.

5. f(x)=o0(g(x)) means that f(x)/g(x) as x — co.

In any fixed strip « < ¢ < B, as t — oo we have

. o 1
T if) = ta’+lt-(1/2) = (mf/2)t—it+ (inf2)(o — (1/2)). - . 2.1
(0 + if) e 1/27C(1+0(t>> 2.1)

Z (s) satisfies the functional equation (see [EH] or [HMS])

AI/I s Al—(l/l) t/2)—s l l
(%) T(S)ZQ(S)=( - ) r(z__s)zé(-z-—s) 22

where A = |det((d, I If we write

Zol9= Vo924 5, 3

then, from (2.1) and (2.2), we obtain,

Jols)= (A1—(1ﬂ)>z/z< A >_ae“iﬂ(d‘(l/4))t2((’/4)"¢) (E_\—/_—é)—ziz

2n (2m)? 2ne

x (1 +0 G—)) = cﬁ«‘/ﬂﬁ(%}m (1 + OG)) (2.4)
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Hereafter, we write

= a l
Z = ity -
o(®) .;1 = (m Re s> 2)

and its analytic continuations. The analytic continuation of Z o(s)shows thatin [¢] > 10
we have in —1 <o <1 the bound |Z(s)| < t* for some constant 4 depending on the
quadratic form Q.

3. Somg Lemmas

Lemma 3.1. We have
z a, = C,x¥? 4 O(xU2-1/2)

n<x

where C, depends on A and 1.
Proof. See for example [EL] Hilfssatz 16.

Lemma 3.2. Let Q be a primitive positive definite quadratic form in l-variables with
integer coefficients. For 1 = 3, we have

Y @2 =Cyx'" 1 4 O(x0 Dt -3y
n<x
where C, is a positive real constant which depends on Q.

Proof. See Theorem 6.1 of [WM].

Lemma 3.3. Let {b,} and {b.},n=1,2,... , M be any set of complex numbers. Then

T/ M ) M ) ‘ M M 172
[(Eor)(§ )i ool (£ )
0 \n=1 n=1 ‘ \

n=1 n=1
M 1/2
X ( Y nlbj,]z) )
n=1

Proof. See [HLM, RCV] or [KR],.
Lemma 3.4. For T = 100, we have

1 2T

—-J (G + 6, +it)|*dt <, 1,

T |,

where 6, is a fixed positive constant.

Proof. See for example [ECT].

Lemmd 3.5. (see [KR, AS]). Let I be any unit interval in [T,2T] and define
m()= max |((o+it)].

tel
(1/2)+6,<0<2
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Then, we have
Y. m(D) <, T
I
COROLLARY

If M(I)= max,|( (% + it)| where I is any unit interval contained in [T,2T7], then

Y (MD)* < T2
I

Proof. Let m(I) =|{(0;+it;)| and let D(s,) = Dys,/5(s0) denote the disc of radius (5, /2)
with centre s,. By Cauchy’s theorem, we have (s; = g; + it;),

Ko<y || worto
D(s)

where 4 = (5, /2)? is the area of D(s;). For any fixed j, D(s;) intersects D(s;) only for
0(1) values of j’. Now, summing over j, we obtain

T m(D)* = 3 K1

I
100 2T+1
<<52"2‘[ (J. |C(s)|"'dt>dcr
(1+8y2 \J T-1

<, T.
Now, the corollary follows on using the functional equation for ¢(s).

4. First power mean-lower bound

Theorem 4.1. Let 6> 0 be any fixed constant such that I+e<(-1R2-6<(1-1)

[2—¢. We make only the following hypothesis (which is satisfied by a, in Z,(s) from
Lemmas 3.1 and 3.2): '

Hypothesis (x)*. For each fixed I, we assume that for the corresponding a,, the
inequalities

all
) 2=1> X

xg<ng2x

¥ (.._a.n__)z <x
72—1
x<n<2x n¢?

and

hold.

¥ Postscript. Instead of Hypothesis («) of Theorem 4.1 we can manage with the following hypothesis
Re ¥ a,»x* and Y lalPaxit

xE<ng2x x<ng2x

%

A
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Then for T > 10, we have

1 (27 -1 )
TffT ZQ<*—'2—"-—5+lt)

Note. We use the notation in the proof,

de>» T°.

AsA(-l——z'—l——éSHt) and {*=(*@E + i)

Proof. Let M(I)= n}%}xlﬁ (4+it)| where ¢ runs over all points in the unit interval

I contained in [T, 2T ]. From the corollary of Lemma 3.5, we have

#{I/MI)>C, T} « C—j; 4.1.1)

4.

where C, is a large positive constant. We define

0

A=Y %(e—wcm_e—tn/csr)), (4.1.2)
n=1

where C; and Cg satisfy 0 < C; < C5 < 1 (will be chosen suitably) and

pe=gh <1+ it) = Y pouen (4.03)
4 n<T
We divide the interval [T,2T7] into disjoint unit intervals I. Now, consider
T |AZ*|dt 1 f - '
Aldt > > "1 |AC*|de, 4.1.4)
J, w3 | S e | e (

where accent in the above sum indicates that the sum is over those I for which
M(I)< C,T**. Hence from (4.1.4), we obtain

27 1 2r-1 2T .
J.T IAldt»W{jr |AL [dt—JT Y(t)|AL [dt}

1 oL 2T . ; ‘
>>W{JT Al*dt —J‘T V()| AL Idt}, 4.1.5)

where ¥(¢) is the characteristic function of those I for which M(I) > C, T*/*. We note
that from (4.1.1),

2T T 4
j YOt < . . (4.1.6)
T 4

Now, from Lemma 3.3, wé have

2T~1 ~(fCsT) __ o~ (n/CT)
_ a,(e” st — g~ CD)
* 4t n
j Al*dt=T 2: - D/Z=6+1/4
n<T .

) as(e—(n/'QT) . e—(n/CET))Z n
+ 0(( x T=1-23 n > 172
n=1 n nsj‘n

=J, + 0(J,). (say) 4.1.7)

T
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Now, for;'/l < 1, we have _ :
n n? :
= _— O —— )
TR
= T”:Z - 1)/2 3714 {ZC T <C2 T? :
n

1 ‘ 2
>C,T { +o( )}
7 K;wé nB/4=9 2C,T c:irt?

(TACG)(5/4+5) (Tlcs)(9/4+6)}
TS Co—o— — Cy— 3,
{ ®GT > CiT?

provided 1> C4 > 20C4 > 0. This implies that for sufficiently small 4, there exists an
absolute constant C,, such that

> (4.1.8)

J,=>C, T(5/4+5)C(1/4+6) , 4.1.9)
Now,
56 |2 %GB _Gue,r %’
J, < T Zlnz—1—zae @nicsD
[s ]
« / Z n20e = (/2CT)
n=1
« TB/4+9) C(5”2+‘” (4.1.10) *
since ‘ ;‘
Z n?%e=m2CT) — —l—-J- Z(—— 20+ WI'WQ2C,T)*dw (4.1.11)
n=1 2mi Rew=2 )

and move the line of integration in (4.1.11) to Rew=1+ 26 so that the residue
of the pole at w=1+2§ is 2C4T)'*?° I'(1 + 26). Note that, we have used the

hypothesis () in estimating J, and J,. Therefore from (4.1.7), (4.1.9) and (4.1.10) we
obtain

2T-~-1
J Ac*dt > CIO T(S/4+5)c(61/4-+6) _ C11 T(5/4+6)c(51/2 +9)
T

(1/2+6)
G G ) (4.1.12)

— T(5/4+8) C(1/4+3) J11, 712
=T Ci0Cs (1 Cyo C(1/4+5)

We choose C, small and then C such that
C -
10 C(61/4+5)
11

1/2+8)
C(5/ ) —

ie.

2C,,
This is satisfied since C is small and (1/4 + 8)/(1/2 + J) < 1. Hence we have

C 1/(1/2+8)
CS — ( 10 ) ,C(61/4+5)/(1/2+6) > 20C6‘

2T-1
-f AL*dt> C , TSI+, (4.1.13)

T
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where C,, depends only on 8. Now, from Holder’s inequality, it follows that
2T 2T 1/2 2T 1/4 2T 1/4
J V() AL*|dt < (J |A|2dt) (J l//“(t)dt) (J [C*]“dt) .
T T T . T
T (4.1.14)

From (4.1.1) and from Lemma 3.5, using the functional equation for {(s), we notice

that
2T 1/4 2T 1/4 T 1/4
( f z//"(t)dt> ( J |C*|4dt> « (F) (TY™ « C;1T.  (4.1.15)

T T 4

Also from Lemma 3.3, it follows that

2T 0 (T+n)la Iz(e—(n/CsT)__e—(n/CGT))z
Jv |APdt< Y, ey
T n=1

n

)lan lze—(Zn/C,T)

« Z (T+n
n=1

nl -1-28
0 e—(Zn/CST) 0

c 26 .~ (2n/C,T)
<TY = + > n*e s
n=1]1 n=1

« T1+2 (4.1.16)

on using the hypothesis and noticing the fact similar to (4.1.11). Therefore from (4.1.14),
(4.1.15) and (4.1.16), we obtain

2T ‘
J‘ Y(OIAL*|dt « CLTHM*), ’ 4.1.17)
r ,
Therefore from (4.1.5), (4.1.13) and (4.1.17), we get

2T
f lAldt>ﬁ{C12T(5/4+6)‘ Cy Cy TORT}
T 4

> T1+0, (4.1.18)

since C, is large enough. Here C,, and C,; depend only on 4. Now let
Res=((I—1)/2) — 6. By Mellin’s transform, we have

A= e Zo(s $W(C5 T — (CTI")T(wdw
27 | e w=100
_L Z,s +W(C; T = (Co TP T(w)dw + O(T ). (4.1.19)
27 Jrew=100 7

[l <(log T)*

‘We move the line of integration in (4.1.19) to Rew = 0 and we obtain

Zy(s+iv) Cs = Co I'(l+i)|dv+0(T™ Y

|A(s)] < f

vl < (log T)?
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and hence
2T
J |A(s)]
T
r 2T _ Civ — Civ )
< J ZQ<I——1—5+it+iv> 3 T8\ +iv)|dvdt
Jijg(logT)* JT 2
r 2T +(logT)? _ v __ Ciu )
« J : ZQ<Z—5—1——5 + ir)' Cs—Cs (1 + iv)|dvds
Jv1<(ogT)? J T - (logT)>
(2T +(logT)? _
&« Z, (1——1 — 0+ ir) dr. (4.1.20)
J T~ (logT)? 2

From (4.1.18) and (4.1.20), the theorem follows, since we can define the integrand to be
zero outside the interval [T,2T].

5. Mean-square upper bound

Theorem 5.1. Let § satisfy the condition as in Theorem 4.1. We make only the following
hypothesis (which is satisfied by a, in Z,(s), from Lemma 3.2).

Hypothesis (x, x) For each [ for the corresponding a,, the inequality

Z _.a"_ 2<<x
n(llz‘l)

n<x

hold.
Then for T > 100, we have

1?7 I-1 .
?J-T ZQ(T—5+II)

Proof. Tt follows from the papers [KR], and [KR],.

2
dt < T2,

6. Balasubramanian-Ramachandra principle

Theorem 6.1. For T > T,, if

1 [27T :

?J‘T |G(o, + it)|de> A,y ; (6.1.1)
and ‘

1 2T '

?j:r |G(o, +if)]>dt <A Y? (6.1.2)

hold for a Dirichlet series G(s) on a certain line o with positive constants A, and A, , then

there exists at least > [(42/24,)(T/H)] — 1 intervals I of length H such that in each of
the intervals I, the inequality

1 5
TI—IJ, |G(o, +it)|dt > %l[/ : (6-1-3)

holds where H < T*~*, and y = /(T) tends to co.

A
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Remark. This principle has been used in several occasions (for example see [RB, KR],,
[RB,KR],,...). For the sake of completeness, we sketch the proof.

Proof. We divide the interval [T,2T] into smaller disjoint (but abutting) intervals of
length H(but with length < H for an end interval). By defining G to be zero if t < T or
t=2T, we get
2T
AYT< J |G(o, +it)|dt < ZJ |G(o, +it)|dt. (6.1.4)
I
Now, we omit these intervals I appearing in the sum of (6.1.4) for which
A
f |G(o, + it)|dts—§lHl//. (6.1.5)
I
Let N, be the number of those intervals I for each of which the inequality
A
J |G (o, +it)|dt>—éiH1// (6.1.6)
I
holds. Therefore applying Holder’s inequality, we find that from (6.1.4), (6.1.5) and (6.1.6),

fins Z'J |G(o, +ir){dt
2 T JI

<\/_{ <f 1G( 01+zt)|dt)2}1/2
< \/N—l{; (LIG(O’I + it)ldt)z}m

f’{zﬂj lGal+zt)]2dt}1/2

<JN.H (J G(o, + imzdr)m
T

< SN HYT2 422, (6.1.7)

ie. N, > A%/A,-T/H, and the accent in the first two steps of the inequality (6.1.7)
indicates that the sum runs over those intervals I for each of which the inequality (6.1.6)
holds. This proves the theorem. .

7. Proof of the main theorem

Taking H=1, from Theorem 6.1, there are >» T well-spaced points ¢, at which
|Zo(1—1)/2 — 6 +it,)| is large. Now from Theorem 3 of [RB,KR],, each such point
gives rise to » log T zeros of Z(s) in ¢ > (I — 1)/2 — 4. This completes the proof of the
first part. Second part of the main theorem follows from the fact that

1 (2T I-1
?JT ZQ(—2—+lt)

(For explanation see [ECT]).

2

dt<T® Ve>0.
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