

Hardy's theorem for zeta-functions of quadratic forms*

K RAMACHANDRA and A SANKARANARAYANAN

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400 005, India
e-mail: kram@tifrvax.tifr.res.in
sank@tifrvax.tifr.res.in

Present address: National Institute of Advanced Studies, IISc Campus, Bangalore 560 012,
India
email: kram@math.tifrbng.res.in

MS received 18 January 1996; revised 18 March 1996

Abstract. Let $Q(u_1, \dots, u_l) = \sum d_{ij} u_i u_j$ ($i, j = 1$ to l) be a positive definite quadratic form in l (≥ 3) variables with integer coefficients d_{ij} ($= d_{ji}$). Put $s = \sigma + it$ and for $\sigma > (l/2)$ write

$$Z_Q(s) = \sum' (Q(u_1, \dots, u_l))^{-s},$$

where the accent indicates that the sum is over all l -tuples of integers (u_1, \dots, u_l) with the exception of $(0, \dots, 0)$. It is well-known that this series converges for $\sigma > (l/2)$ and that $(s - (l/2))Z_Q(s)$ can be continued to an entire function of s . Let δ be any constant with $0 < \delta < \frac{1}{100}$. Then it is proved that $Z_Q(s)$ has $\gg_s T \log T$ zeros in the rectangle $(|\sigma - \frac{1}{2}| \leq \delta, T \leq t \leq 2T)$.

Keywords. Quadratic forms; zeta-function; zeros near the line sigma equal to half.

1. Introduction

Let $Q(u_1, u_2, \dots, u_l)$ be a positive definite quadratic form $\sum d_{ij} u_i u_j$, ($i, j = 1$ to l) in l (≥ 3) variables and with integer coefficients d_{ij} ($= d_{ji}$ for i, j). Put (with $s = \sigma + it$).

$$Z_Q(s) = \sum' (Q(u_1, u_2, \dots, u_l))^{-s},$$

where the accent indicates that the summation is over all integer l -tuples (u_1, u_2, \dots, u_l) with the exception of $(0, 0, \dots, 0)$. (It is known that $Z_Q(s)(s - (l/2))$ is an entire function.) Let $N(\alpha, T)$ denote the number of zeros of $Z_Q(s)$ in $\sigma \geq \alpha, T \leq t \leq 2T$. We prove the following theorem.

Main Theorem. *We have*

$$N(\alpha, T) \gg T \log T$$

if $\alpha = (l - 1)/2 - \delta$, ($\delta > 0$ any constant) provided $l \geq 3$. Also we have

$$N(\beta, T) \ll T$$

if $\beta = (l - 1)/2 + \delta$.

For a neat consequence of this see Remark 2 below.

Remark 1. The proof of this theorem depends on the following two important results.

*Dedicated to Professor R P Bambah on his seventy-first birthday

First the lower bound

$$\frac{1}{T} \int_T^{2T} |Z_Q(\sigma + it)| dt \gg T^\delta, \quad \left(\sigma = \frac{l-1}{2} - \delta \right),$$

where $\delta > 0$ is a constant if $l \geq 3$. Next for $\frac{1}{2} + \varepsilon \leq (l-1)/2 - \delta \leq (l-1)/2 - \varepsilon$ (ε is a small positive constant), we have

$$\frac{1}{T} \int_T^{2T} \left| Z_Q \left(\frac{l-1}{2} - \delta + it \right) \right|^2 dt \ll T^{2\delta}$$

for $l \geq 3$. Both the results follow from the ideas of R Balasubramanian and K Ramachandra (see [RB, KR]₁, [RB, KR]₂, [KR]₁, [KR]₂ and [KR]₃). Also one has to use Theorem 3 of [RB, KR]₁.

Remark 2. Using the functional equation of $Z_{\bar{Q}}(s)$ (with some associated quadratic form \bar{Q}) and applying the theorem we have the following corollary: $Z_Q(s)$ has $\gg T \log T$ zeros in $(|\sigma - \frac{1}{2}| \leq \delta, T \leq t \leq 2T)$. In a rough way we may say that the critical line (for $Z_Q(s)$) gets blown up into an inner critical strip $\frac{1}{2} \leq \sigma \leq (l-1)/2$ and that in the neighbourhood of the vertical borders there are plenty of zeros of $Z_Q(s)$. This is the justification for the title of the present paper.

2. Notation and preliminaries

1. $C_1, C_2, \dots, A_1, A_2, \dots$ denote effective positive constants, sometimes absolute.
2. $\varepsilon_1, \varepsilon_2, \dots, \delta_1, \delta_2, \dots$ denote small positive constants.
3. $f(x) \ll g(x)$ and $f(x) = O(g(x))$ will mean that $|f(x)| \leq C_1 g(x)$.
4. We write $s = \sigma + it$, $w = u + iv$.
5. $f(x) = o(g(x))$ means that $f(x)/g(x) \rightarrow 0$ as $x \rightarrow \infty$.

In any fixed strip $\alpha \leq \sigma \leq \beta$, as $t \rightarrow \infty$ we have

$$\Gamma(\sigma + it) = t^{\sigma + it - (1/2)} e^{-(\pi/2)t - it + (i\pi/2)(\sigma - (1/2))} \sqrt{2\pi} \left(1 + O\left(\frac{1}{t}\right) \right). \quad (2.1)$$

$Z_Q(s)$ satisfies the functional equation (see [EH] or [HMS])

$$\left(\frac{\Delta^{1/l}}{2\pi} \right)^s \Gamma(s) Z_Q(s) = \left(\frac{\Delta^{1-(1/l)}}{2\pi} \right)^{(l/2)-s} \Gamma\left(\frac{l}{2} - s\right) Z_{\bar{Q}}\left(\frac{l}{2} - s\right), \quad (2.2)$$

where $\Delta = |\det((d_{ij}))|$. If we write

$$Z_Q(s) = \psi_Q(s) Z_{\bar{Q}}\left(\frac{l}{2} - s\right), \quad (2.3)$$

then, from (2.1) and (2.2), we obtain,

$$\begin{aligned} \psi_Q(s) &= \left(\frac{\Delta^{1-(1/l)}}{2\pi} \right)^{l/2} \left(\frac{\Delta}{(2\pi)^2} \right)^{-\sigma} e^{-i\pi(\sigma - (l/4))} t^{2((l/4) - \sigma)} \left(\frac{t\sqrt{\Delta}}{2\pi e} \right)^{-2it} \\ &\times \left(1 + O\left(\frac{1}{t}\right) \right) = C t^{2((l/4) - \sigma)} \left(\frac{t\sqrt{\Delta}}{2\pi e} \right)^{-2it} \left(1 + O\left(\frac{1}{t}\right) \right), \end{aligned} \quad (2.4)$$

Hereafter, we write

$$Z_Q(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \left(\text{in } \operatorname{Re} s > \frac{l}{2} \right)$$

and its analytic continuations. The analytic continuation of $Z_Q(s)$ shows that in $|t| \geq 10$ we have in $-1 \leq \sigma \leq l$ the bound $|Z_Q(s)| < t^A$ for some constant A depending on the quadratic form Q .

3. Some Lemmas

Lemma 3.1. *We have*

$$\sum_{n \leq x} a_n = C_2 x^{l/2} + O(x^{(l/2-1/2)})$$

where C_2 depends on Δ and l .

Proof. See for example [EL] Hilfssatz 16.

Lemma 3.2. *Let Q be a primitive positive definite quadratic form in l -variables with integer coefficients. For $l \geq 3$, we have*

$$\sum_{n \leq x} a_n^2 = C_3 x^{l-1} + O(x^{(l-1)(4l-5)/(4l-3)}),$$

where C_3 is a positive real constant which depends on Q .

Proof. See Theorem 6.1 of [WM].

Lemma 3.3. *Let $\{b_n\}$ and $\{b'_n\}$, $n = 1, 2, \dots, M$ be any set of complex numbers. Then*

$$\int_0^T \left(\sum_{n=1}^M b_n n^{-it} \right) \left(\sum_{n=1}^M b'_n n^{it} \right) dt = T \sum_{n=1}^M b_n b'_n + O \left(\left(\sum_{n=1}^M n |b_n|^2 \right)^{1/2} \times \left(\sum_{n=1}^M n |b'_n|^2 \right)^{1/2} \right).$$

Proof. See [HLM, RCV] or [KR]4.

Lemma 3.4. *For $T \geq 100$, we have*

$$\frac{1}{T} \int_T^{2T} |\zeta(\frac{1}{2} + \delta_1 + it)|^4 dt \ll_{\delta_1} 1,$$

where δ_1 is a fixed positive constant.

Proof. See for example [ECT].

Lemma 3.5. (see [KR, AS]). *Let I be any unit interval in $[T, 2T]$ and define*

$$m(I) = \max_{\substack{t \in I \\ (1/2) + \delta_2 \leq \sigma \leq 2}} |\zeta(\sigma + it)|.$$

Then, we have

$$\sum_I (m(I))^4 \ll_{\delta_2} T.$$

COROLLARY

If $M(I) = \max_{t \in I} |\zeta(\frac{1}{4} + it)|$ where I is any unit interval contained in $[T, 2T]$, then

$$\sum_I (M(I))^4 \ll T^2.$$

Proof. Let $m(I) = |\zeta(\sigma_j + it_j)|$ and let $D(s_0) = D_{(\delta_2/2)}(s_0)$ denote the disc of radius $(\delta_2/2)$ with centre s_0 . By Cauchy's theorem, we have $(s_j = \sigma_j + it_j)$,

$$|\zeta(s_j)|^4 \leq \frac{1}{A} \iint_{D(s_j)} |\zeta(s)|^4 d\sigma dt,$$

where $A = \pi(\delta_2/2)^2$ is the area of $D(s_j)$. For any fixed j , $D(s_j)$ intersects $D(s_{j'})$ only for $O(1)$ values of j' . Now, summing over j , we obtain

$$\begin{aligned} \sum_I (m(I))^4 &= \sum_j |\zeta(s_j)|^4 \\ &\ll \delta_2^{-2} \int_{(1+\delta_2)/2}^{100} \left(\int_{T-1}^{2T+1} |\zeta(s)|^4 dt \right) d\sigma \\ &\ll_{\delta_2} T. \end{aligned}$$

Now, the corollary follows on using the functional equation for $\zeta(s)$.

4. First power mean-lower bound

Theorem 4.1. Let $\delta > 0$ be any fixed constant such that $\frac{1}{2} + \varepsilon \leq (l-1)/2 - \delta \leq (l-1)/2 - \varepsilon$. We make only the following hypothesis (which is satisfied by a_n in $Z_Q(s)$ from Lemmas 3.1 and 3.2):

Hypothesis $(*)^+$. For each fixed l , we assume that for the corresponding a_n , the inequalities

$$\sum_{x \leq n \leq 2x} \frac{a_n}{n^{(l/2)-1}} \gg x$$

and

$$\sum_{x \leq n \leq 2x} \left(\frac{a_n}{n^{(l/2)-1}} \right)^2 \ll x$$

hold.

⁺ *Postscript.* Instead of Hypothesis $(*)$ of Theorem 4.1 we can manage with the following hypothesis

$$\operatorname{Re} \sum_{x \leq n \leq 2x} a_n \gg x^{l/2} \quad \text{and} \quad \sum_{x \leq n \leq 2x} |a_n|^2 \ll x^{l-1}.$$

Then for $T \geq 10$, we have

$$\frac{1}{T} \int_T^{2T} \left| Z_Q \left(\frac{l-1}{2} - \delta + it \right) \right| dt \gg T^\delta.$$

Note. We use the notation in the proof,

$$A \equiv A \left(\frac{l-1}{2} - \delta + it \right) \quad \text{and} \quad \zeta^* \equiv \zeta^* \left(\frac{1}{4} + it \right).$$

Proof. Let $M(I) = \max_{t \in I} |\zeta(\frac{1}{4} + it)|$ where t runs over all points in the unit interval I contained in $[T, 2T]$. From the corollary of Lemma 3.5, we have

$$\#\{I/M(I) \geq C_4 T^{1/4}\} \ll \frac{T}{C_4}, \quad (4.1.1)$$

where C_4 is a large positive constant. We define

$$A(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} (e^{-(n/C_5 T)} - e^{-(n/C_6 T)}), \quad (4.1.2)$$

where C_5 and C_6 satisfy $0 < C_6 < C_5 < 1$ (will be chosen suitably) and

$$\zeta^* \equiv \zeta^* \left(\frac{1}{4} + it \right) = \sum_{n \leq T} n^{-1/4 - it}. \quad (4.1.3)$$

We divide the interval $[T, 2T]$ into disjoint unit intervals I . Now, consider

$$\int_T^{2T} |A| dt \geq \sum_I \int_I \frac{|A \bar{\zeta}^*| dt}{M(I)} \gg \frac{1}{C_4 T^{1/4}} \sum'_I \int_I |A \bar{\zeta}^*| dt, \quad (4.1.4)$$

where accent in the above sum indicates that the sum is over those I for which $M(I) \leq C_4 T^{1/4}$. Hence from (4.1.4), we obtain

$$\begin{aligned} \int_T^{2T} |A| dt &\gg \frac{1}{C_4 T^{1/4}} \left\{ \int_T^{2T-1} |A \bar{\zeta}^*| dt - \int_T^{2T} \psi(t) |A \zeta^*| dt \right\} \\ &\gg \frac{1}{C_4 T^{1/4}} \left\{ \left| \int_T^{2T-1} A \bar{\zeta}^* dt \right| - \int_T^{2T} \psi(t) |A \zeta^*| dt \right\}, \end{aligned} \quad (4.1.5)$$

where $\psi(t)$ is the characteristic function of those I for which $M(I) \geq C_4 T^{1/4}$. We note that from (4.1.1),

$$\int_T^{2T} \psi(t) dt \ll \frac{T}{C_4^4}. \quad (4.1.6)$$

Now, from Lemma 3.3, we have

$$\begin{aligned} \int_T^{2T-1} A \bar{\zeta}^* dt &= T \sum_{n \leq T} \frac{a_n (e^{-(n/C_5 T)} - e^{-(n/C_6 T)})}{n^{(l-1)/2 - \delta + 1/4}} \\ &\quad + O \left(\left(\sqrt{\sum_{n=1}^{\infty} \frac{a_n^2 (e^{-(n/C_5 T)} - e^{-(n/C_6 T)})^2}{n^{l-1-2\delta}}} \cdot n \right) \left(\sqrt{\sum_{n \leq T} \frac{n}{n^{1/2}}} \right) \right) \\ &= J_1 + O(J_2). \quad (\text{say}) \end{aligned} \quad (4.1.7)$$

Now, for $\lambda < 1$, we have

$$\begin{aligned}
 J_1 &\geq T \sum_{n \leq T\lambda C_6} \frac{a_n}{n^{(l-1)/2-\delta+1/4}} \left\{ 1 - \frac{n}{C_5 T} - \left(1 - \frac{n}{C_6 T} \right) + O\left(\frac{n^2}{C_6^2 T^2}\right) \right\} \\
 &\geq T \sum_{n \leq T\lambda C_6} \frac{a_n}{n^{(l-1)/2-\delta+1/4}} \left\{ \frac{n}{2C_6 T} + O\left(\frac{n^2}{C_6^2 T^2}\right) \right\} \\
 &\geq C_7 T \sum_{n \leq T\lambda C_6} \frac{1}{n^{(3/4-\delta)}} \left\{ \frac{n}{2C_6 T} + O\left(\frac{n^2}{C_6^2 T^2}\right) \right\} \\
 &\geq T \left\{ C_8 \frac{(T\lambda C_6)^{(5/4+\delta)}}{C_6 T} - C_9 \frac{(T\lambda C_6)^{(9/4+\delta)}}{C_6^2 T^2} \right\}, \tag{4.1.8}
 \end{aligned}$$

provided $1 > C_5 \geq 20C_6 > 0$. This implies that for sufficiently small λ , there exists an absolute constant C_{10} such that

$$J_1 \geq C_{10} T^{(5/4+\delta)} C_6^{(1/4+\delta)}. \tag{4.1.9}$$

Now,

$$\begin{aligned}
 J_2 &\ll T^{3/4} \sqrt{\sum_{n=1}^{\infty} \frac{a_n^2 \cdot n}{n^{l-1-2\delta}}} e^{-(2n/C_5 T)} \\
 &\ll \sqrt{\sum_{n=1}^{\infty} n^{2\delta} e^{-(n/2C_5 T)}} \\
 &\ll T^{(5/4+\delta)} C_5^{(1/2+\delta)} \tag{4.1.10}
 \end{aligned}$$

since

$$\sum_{n=1}^{\infty} n^{2\delta} e^{-(n/2C_5 T)} = \frac{1}{2\pi i} \int_{\text{Re } w=2} \zeta(-2\delta+w) \Gamma(w) (2C_5 T)^w dw \tag{4.1.11}$$

and move the line of integration in (4.1.11) to $\text{Re } w = 1 + 2\delta$ so that the residue of the pole at $w = 1 + 2\delta$ is $(2C_5 T)^{1+2\delta} \Gamma(1+2\delta)$. Note that, we have used the hypothesis (*) in estimating J_1 and J_2 . Therefore from (4.1.7), (4.1.9) and (4.1.10) we obtain

$$\begin{aligned}
 \int_T^{2T-1} A \bar{\zeta}^* dt &> C_{10} T^{(5/4+\delta)} C_6^{(1/4+\delta)} - C_{11} T^{(5/4+\delta)} C_5^{(1/2+\delta)} \\
 &= T^{(5/4+\delta)} C_{10} \cdot C_6^{(1/4+\delta)} \left(1 - \frac{C_{11}}{C_{10}} \cdot \frac{C_5^{(1/2+\delta)}}{C_6^{(1/4+\delta)}} \right). \tag{4.1.12}
 \end{aligned}$$

We choose C_6 small and then C_5 such that

$$C_5^{(1/2+\delta)} = \frac{C_{10}}{2C_{11}} C_6^{(1/4+\delta)}$$

i.e.

$$C_5 = \left(\frac{C_{10}}{2C_{11}} \right)^{1/(1/2+\delta)} \cdot C_6^{(1/4+\delta)/(1/2+\delta)} \geq 20C_6.$$

This is satisfied since C_6 is small and $(1/4+\delta)/(1/2+\delta) < 1$. Hence we have

$$\int_T^{2T-1} A \bar{\zeta}^* dt > C_{12} T^{(5/4+\delta)}, \tag{4.1.13}$$

where C_{12} depends only on δ . Now, from Hölder's inequality, it follows that

$$\int_T^{2T} \psi(t) |A\zeta^*| dt \leq \left(\int_T^{2T} |A|^2 dt \right)^{1/2} \left(\int_T^{2T} \psi^4(t) dt \right)^{1/4} \left(\int_T^{2T} |\zeta^*|^4 dt \right)^{1/4}. \quad (4.1.14)$$

From (4.1.1) and from Lemma 3.5, using the functional equation for $\zeta(s)$, we notice that

$$\left(\int_T^{2T} \psi^4(t) dt \right)^{1/4} \left(\int_T^{2T} |\zeta^*|^4 dt \right)^{1/4} \ll \left(\frac{T}{C_4^4} \right)^{1/4} (T^2)^{1/4} \ll C_4^{-1} T^{3/4}. \quad (4.1.15)$$

Also from Lemma 3.3, it follows that

$$\begin{aligned} \int_T^{2T} |A|^2 dt &\ll \sum_{n=1}^{\infty} \frac{(T+n)|a_n|^2 (e^{-(n/C_5 T)} - e^{-(n/C_6 T)})^2}{n^{l-1-2\delta}} \\ &\ll \sum_{n=1}^{\infty} \frac{(T+n)|a_n|^2 e^{-(2n/C_5 T)}}{n^{l-1-2\delta}} \\ &\ll T \sum_{n=1}^{\infty} \frac{e^{-(2n/C_5 T)}}{n^{1-2\delta}} + \sum_{n=1}^{\infty} n^{2\delta} e^{-(2n/C_5 T)} \\ &\ll T^{1+2\delta} \end{aligned} \quad (4.1.16)$$

on using the hypothesis and noticing the fact similar to (4.1.11). Therefore from (4.1.14), (4.1.15) and (4.1.16), we obtain

$$\int_T^{2T} \psi(t) |A\zeta^*| dt \ll C_4^{-1} T^{(5/4+\delta)}. \quad (4.1.17)$$

Therefore from (4.1.5), (4.1.13) and (4.1.17), we get

$$\begin{aligned} \int_T^{2T} |A| dt &> \frac{1}{C_4 T^{1/4}} \{ C_{12} T^{(5/4+\delta)} - C_4^{-1} C_{13} T^{(5/4+\delta)} \} \\ &\gg T^{1+\delta}, \end{aligned} \quad (4.1.18)$$

since C_4 is large enough. Here C_{12} and C_{13} depend only on δ . Now let $\text{Res} = ((l-1)/2) - \delta$. By Mellin's transform, we have

$$\begin{aligned} A(s) &= \frac{1}{2\pi i} \int_{\text{Re } w=100} Z_Q(s+w) ((C_5 T)^w - (C_6 T)^w) \Gamma(w) dw \\ &= \frac{1}{2\pi i} \int_{\substack{\text{Re } w=100 \\ |v| \leq (\log T)^2}} Z_Q(s+v) ((C_5 T)^v - (C_6 T)^v) \Gamma(v) dv + O(T^{-1}). \end{aligned} \quad (4.1.19)$$

We move the line of integration in (4.1.19) to $\text{Re } w = 0$ and we obtain

$$|A(s)| \ll \int_{|v| \leq (\log T)^2} \left| Z_Q(s+iv) \left| \frac{C_5^{iv} - C_6^{iv}}{v} \right| \Gamma(1+iv) \right| dv + O(T^{-1})$$

and hence

$$\begin{aligned}
 & \int_T^{2T} |A(s)| \\
 & \ll \int_{|v| \leq (\log T)^2} \int_T^{2T} \left| Z_Q \left(\frac{l-1}{2} - \delta + it + iv \right) \right| \left| \frac{C_5^{iv} - C_6^{iv}}{v} \right| \left| \Gamma(1+iv) \right| dv dt \\
 & \ll \int_{|v| \leq (\log T)^2} \int_{T - (\log T)^2}^{2T + (\log T)^2} \left| Z_Q \left(\frac{l-1}{2} - \delta + it \right) \right| \left| \frac{C_5^{iv} - C_6^{iv}}{v} \right| \left| \Gamma(1+iv) \right| dv dt \\
 & \ll \int_{T - (\log T)^2}^{2T + (\log T)^2} \left| Z_Q \left(\frac{l-1}{2} - \delta + it \right) \right| dt. \tag{4.1.20}
 \end{aligned}$$

From (4.1.18) and (4.1.20), the theorem follows, since we can define the integrand to be zero outside the interval $[T, 2T]$.

5. Mean-square upper bound

Theorem 5.1. *Let δ satisfy the condition as in Theorem 4.1. We make only the following hypothesis (which is satisfied by a_n in $Z_Q(s)$, from Lemma 3.2).*

Hypothesis $(*, *)$ For each l for the corresponding a_n , the inequality

$$\sum_{n \leq x} \left(\frac{a_n}{n^{(l/2-1)}} \right)^2 \ll x$$

hold.

Then for $T \geq 100$, we have

$$\frac{1}{T} \int_T^{2T} \left| Z_Q \left(\frac{l-1}{2} - \delta + it \right) \right|^2 dt \ll T^{2\delta}.$$

Proof. It follows from the papers [KR]₂ and [KR]₃.

6. Balasubramanian–Ramachandra principle

Theorem 6.1. *For $T \geq T_0$, if*

$$\frac{1}{T} \int_T^{2T} |G(\sigma_1 + it)| dt > A_1 \psi \tag{6.1.1}$$

and

$$\frac{1}{T} \int_T^{2T} |G(\sigma_1 + it)|^2 dt < A_2 \psi^2 \tag{6.1.2}$$

hold for a Dirichlet series $G(s)$ on a certain line σ_1 with positive constants A_1 and A_2 , then there exists at least $\geq [(A_1^2/2A_2)(T/H)] - 1$ intervals I of length H such that in each of the intervals I , the inequality

$$\frac{1}{|I|} \int_I |G(\sigma_1 + it)| dt > \frac{A_1}{10} \psi \tag{6.1.3}$$

holds where $H \leq T^{1-\epsilon_1}$, and $\psi = \psi(T)$ tends to ∞ .

Remark. This principle has been used in several occasions (for example see [RB, KR]₁, [RB, KR]₂, ...). For the sake of completeness, we sketch the proof.

Proof. We divide the interval $[T, 2T]$ into smaller disjoint (but abutting) intervals of length H (but with length $\leq H$ for an end interval). By defining G to be zero if $t \leq T$ or $t \geq 2T$, we get

$$A_1 \psi T < \int_T^{2T} |G(\sigma_1 + it)| dt \leq \sum_I \int_I |G(\sigma_1 + it)| dt. \quad (6.1.4)$$

Now, we omit these intervals I appearing in the sum of (6.1.4) for which

$$\int_I |G(\sigma_1 + it)| dt \leq \frac{A_1}{2} H \psi. \quad (6.1.5)$$

Let N_1 be the number of those intervals I for each of which the inequality

$$\int_I |G(\sigma_1 + it)| dt \geq \frac{A_1}{2} H \psi \quad (6.1.6)$$

holds. Therefore applying Hölder's inequality, we find that from (6.1.4), (6.1.5) and (6.1.6),

$$\begin{aligned} \frac{A_1}{2} \psi T &\leq \sum'_I \int_I |G(\sigma_1 + it)| dt \\ &\leq \sqrt{N_1} \left\{ \sum'_I \left(\int_I |G(\sigma_1 + it)| dt \right)^2 \right\}^{1/2} \\ &\leq \sqrt{N_1} \left\{ \sum_I \left(\int_I |G(\sigma_1 + it)| dt \right)^2 \right\}^{1/2} \\ &\leq \sqrt{N_1} \left\{ \sum_I H \int_I |G(\sigma_1 + it)|^2 dt \right\}^{1/2} \\ &\leq \sqrt{N_1 H} \left(\int_T^{2T} |G(\sigma_1 + it)|^2 dt \right)^{1/2} \\ &\leq \sqrt{N_1 H} \psi T^{1/2} A_2^{1/2}, \end{aligned} \quad (6.1.7)$$

i.e. $N_1 \geq A_1^2 / A_2 \cdot T / H$, and the accent in the first two steps of the inequality (6.1.7) indicates that the sum runs over those intervals I for each of which the inequality (6.1.6) holds. This proves the theorem.

7. Proof of the main theorem

Taking $H = 1$, from Theorem 6.1, there are $\gg T$ well-spaced points t_r at which $|Z_Q(l-1)/2 - \delta + it_r|$ is large. Now from Theorem 3 of [RB, KR]₁, each such point gives rise to $\gg \log T$ zeros of $Z_Q(s)$ in $\sigma \geq (l-1)/2 - \delta$. This completes the proof of the first part. Second part of the main theorem follows from the fact that

$$\frac{1}{T} \int_T^{2T} \left| Z_Q \left(\frac{l-1}{2} + it \right) \right|^2 dt \ll T^\varepsilon \quad \forall \varepsilon > 0.$$

(For explanation see [ECT]).

References

- [RB, KR]₁ Balasubramanian R and Ramachandra K, On the zeros of a class of generalised Dirichlet series III, *J. Ind. Math. Soc.* **41** (1977) 301–315
- [RB, KR]₂ Balasubramanian R and Ramachandra K, On the zeros of a class of generalised Dirichlet series IV, *J. Ind. Math. Soc.* **42** (1978) 135–142
- [EH] Hecke E, Über die bestimmung Dirichletscher reichen durch ihre functional Gleichung, *Math. Ann.* **112** (1936) 664–699
- [EL] Landau E, Über die Anzahl der Gitter punkte in gewissen Bereichen, *Gött. Nachr.* (1912) 687–770
- [HLM, RCV] Montgomery H L and Vaughan R C, Hilbert's inequality, *J. London Math. Soc.* **8**(2) (1974) 73–82
- [WM] Müller W, The mean-square of Dirichlet series associated with automorphic forms, *Mh. Math.* **113** (1992) 121–159
- [KR]₁ Ramachandra K, On the zeros of a class of generalised Dirichlet series V, *J. Reine Angew. Math.* **303/304** (1978) 295–313
- [KR]₂ Ramachandra K, *A simple proof of the mean fourth power estimate for $\zeta(1/2 + it)$ and $L(1/2 + it, \chi)$* , Annali della Scoula Normale Superiore di Pisa, classe di sci, Ser IV, Vol. I (1974) 81–97
- [KR]₃ Ramachandra K, Application of a theorem of Montgomery and Vaughan to the zeta-function, *J. London Math. Soc.* **10** (1975) 482–486
- [KR]₄ Ramachandra K, Some remarks on a theorem of Montgomery and Vaughan, *J. Number Theory* **11** (1979) 465–471
- [KR, AS] Ramachandra K and Sankaranarayanan A, Notes on the Riemann zeta-function, *J. Ind. Math. Soc.* **57** (1991) 67–77
- [AS] Sankaranarayanan A, Zeros of quadratic zeta-functions on the critical line, *Acta Arith.* **69** (1995) 21–38
- [HMS] Stark H M, *L*-functions and character sums for quadratic forms-I, *Acta Arith.* **14** (1968) 35–50
- [ECT] Titchmarsh E C, The theory of the Riemann zeta-function, revised by D R Heath-Brown (1986) (Clarendon Press, Oxford: Oxford Science Publication)