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A generalization of the Riemann zeta-function
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Abstract. A generalization of the Riemann zeta-function which has the form

e

is considered. Analytical properties with respect to s and asymptotic behaviour when a— oo
are investigated. The corresponding L-function is also discussed. This consideration has an

application in the theory of p-adic strings.
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1. Introduction

The Riemann zeta-function in terms of the Euler product has the form

1
{s)= = 1
l:[ l-p
where p ranges over all primes (p=2,3,5,..) and s=0+ it, ¢ > 1. The importance
of {(s) in the number theory is well-known, see for example [1]. In this note we
consider a generalization of {(s) defined by

1
L=l pram ®

where a > 0. Usefulness of such a generalization in the context of the p-adic string
theory was noted in Areféva et al 1988 (this reference also contains references to the
corresponding physical papers).

It will be proved here that the product (2) is absolutely convergent for ¢ >0 and S|
it defines an analytical function which does not vanish for 6 >0, >0 and large a, "'
depending on g,. So the function {,(s) can be considered as a holomorphic
approximation to the Riemann zeta-function. One can hope to get an information
on the zeros of the Riemann zeta-function investigating the behaviour of {,(s) when
a—o0 in the critical strip 0<g <1 (compare density theorem in [1]). It will be
shown that the asymptotic behaviour {,(1) when a— 0 coincides with the one for ¢
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We discuss here also some problems whose solutions would be useful for the p-adic
string theory. Finally a generalization of the L-function along the same line is
suggested.
2. Properties of £ (s)

The first lemma states that for large a the denominator in eq. (2) has no zeros.

Lemma 1. Let the following conditions for s and a be satisfied.

Either 1) 6>=1, teR, a>0,

or 2) 1>0>0,, teRanda>2(2°0—~1) 1
for a fixed constant ¢4, 0 <oy < 1.
Then
1 1 <1
P (+of

Proof. We have
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P (p+af
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¥l |pt+af
Then for ¢ > 1 one has

Lol
2 Qtay

If a > 2(27° — 1)~ 1/°° we have

1 <g"°<a"°1 2"°_a 1“" a ‘
»-1-\2) “\z) \'*s) =\zt!) <(z+!
and taking into account

1 1
2012001

one gets

_..1_< g 1 ’ 1 1 4
271 2+ or +7<2
+E>
or finally

1 1

F+m<1.
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The()l‘em 1. Let s and a be as in Lemma 1. Then the product (2) is absolutely convergent.
; y g
Ls convergence is uniform on compact subsets of the s region and defines an analytic
Junction L (s) which has no zeros for ¢ > a,.
Pr oof. We have
1 1 ¢ du |as|
——=ls | ——|<= 3
ps (P+a)s I J.O(p+u)s+1 pa+1 ( )
when p - .
Let y, = y,(s,a)=p~* —(p+a)~* Then the product (2) has the form
I— @
)4 1- y p(sa a) '
and from (3) it follows that
21y,s,a)l < co. ©)
p
From ILemma 1, we also know that
y,(s, )l < L. (6)
Now from (5) and (6) it follows that the product (4) is absolutely convergent.
In fact this convergence is uniform on compact subsets of the s region because one
has
CK =Ssup Iyp(a’ S)! <1
ng
where K isacompact subset of the region o > ¢,,. This completes the proof of Theorem.
Next we are going to consider the asymptotic behaviour of {,(1) as a— co.
Theorem2. Let 0> 1. Then we have
lim £(s) = {(s).
Proof. Wehave ;
log 29~ log )= ¥, —fim9 L
pm>l
where IR i
1 1 \" [1\" '
o))
P (p+a) p
Hence
s (i( 5 7))
oM, S \ a s s Tjo
@+ a) o\ (p+a) r
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m—1 m—1 m—1
(+a) =0 \p

2m—1

— —(m—-1)o
oo (mp )-

This proves that log(,(s) —log {(s)—0 as a— .

Theorem 3. Let a— 0. Then we have

ca(1)=H< 1 1)=H -+ 0(1). )

= Hl (a)Hz(a)—

We will consider [],(a) and [],(a) separately. We have

og[.@=F 3 I(L)

p>am=1;; p(p+a)

e 1fa\" ¢
<,,Zam>;1;(p—z> <Togd

because, it is known (by prime number theorem for example) that

1 c
;ap® aloga’
So, we have
)
— 8
HZ(a)<exPloga (8)

Then let us consider the asymptotic behaviour of the function

g(a)=U(a)-n<1_%>=n+_L__

pP<a p<a p
SRR Trar
One has
logg@l=| ¥ (-1t P )
r<a m \(p-l)(p+a)

m21
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because it is known [1] that

a

Y 1=n(a)~

p<a loga‘
Therefore one gets
Cy
<exp—-.
gl <expi

Now we have

)= [21 (@)g(a) [] (1 - l>-

r<a 4

and from (8) and (10)

since
1
[[—~¢loga
psa 1 _1

p

where y is the Euler constant. This proves Theorem 3.

3. Discussion

159

©)

Theorem 3 relates to the asymptotics of the functions {,(s) and f,(s)=]T,<.(1—p~%) " w
for s=1. In fact there is a relation between the asymptotics of these two functions X
for any fixed s # 1,0 < o < 1. We consider s real and 0 < s < 1 for simplicity. We have i

logf )~ ¥ ;—

psa
Then we use the Abel identity

1 a 4 dt
L 5= s)+sj “(t)tl—ﬂ

it
p<aD a 2
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which is true for any seC. Here n(a) is the number of prime numbers not exceeding
a. By (9) we have for a—

a tdt e dt at~s
2n()t—1r‘~ , tlogt (L—s)loga

and from (11)

1 1 at~s

Y =~

— 12
p<ap® 1-—sloga .

Therefore we have the following

Theorem 4. Let 0 < s < 1. Then we have the following asymptotic equality when a— co.

al—s

1
IOgH(1~P_s)—1~1—_— (13)

p<a sloga’

For the function {,(s) we have

logca(s)~z<i— : )

»\P* (p+a)

Now one gets (for 0 <s< 1)

1 1 @ 1 1
S gra) =, g o "

Since n(x) ~ (x/log x) as x — co, we have,

® ot 1 1
1 ~s| e — s
0gLls) SL logt<ts+1 (t+a)s“)dt

We split the integral into 3 parts say I, + I, + I, where

1

as as” ©
11=J ---,IZ=J ---and13=f
2 ag a”?!

where 0 <g <1 is any fixed constant. It is easy to see that

asl—s © —1\—s
11=0(( )and13=0 ol LGHD g o ee )
loga w-1logt 512 loga
1-s
and so I, and I, are O(a )as e—0. Now
loga

I ~J : (J—_ SN FAC A Y N
P ) loga\r*T T (14t )Y Tloga |, ttﬁ“(zn)s“ de

as can be seen by the substitution ¢ = au. Thus we end up with
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| (11 =s [foo , 1 1 d
2 loga ), ts“_it_-i-l)”l L.
It is not hard to prove that the last integral is asymptotic to [s(1 —s)]™* (a! ~*/log a)
so that we end up with an asymptotic relation which we state as a theorem.

Theorem 5. For fixed s in 0 <s < 1 we have as a— o,

1-s

logfi(s) ~ T sloga’

Remark. Tt is not very difficult to extend this for complex s with real part lying in
the interval (0,1].

For finding the leading terms in asymptotic expansion for the functions
1— s=1 1—p°~ 1 s—1
LA _s+(p+a)_
p<al—p » 1-p7+(p+a)7°

we can use above mentioned formulas. It would be interesting to find also the next
terms in these expansions. For 0 <s <1 one has

i—p! [ 1 & 1 &
‘oz ] 1-2‘”[ ]

p<a 1—sloga sloga

but in fact we need next terms in the asymptotic expansion.
Note also that the analogous analysis can be applied to the L-function of the form

1
L= —pra

where #(p) is the Dirichlet character. To the product (15) the proof of the theorem 1
can be applied and we have also

(15)

1
lim L(s,))=Ls0)=||—=
a- o ( X) ( X) I;II—X(p)p
for o> 1. It would be interesting to investigate the behaviour L,(1, y). The natural
hypothesis is that

1
lim L(Ly=LLY)=||l—=1
Jim LD =0 =

for non principal characters.

It would be interesting to investigate also the questions about the analytical
continuation of limit as a— 00 of {,(s) in right half plane Res>0 and the guestion
about functional equation. Such problems are also interesting for the function

1
C(a’s)=l;lm
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which is a multiplication analogue of the Hurwitz zeta-function

las)=3 —

= (n+a)y’
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