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On the frequency of Titchmarsh’s phenomenon for {(s)—III -~ =%=4% 0%
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Abstract. We obtain a lower bound for max [ (3-+it) | as # varies over T<t<7T+ Y,
where (log T)'/*°< Y< T, as a function of ¥Y(1/100 is unimportant). Our lower bound

is exp {D(log Y)? (log log Y)~%} where D is a positive constant. (After submitting
this paper for publication we came to know through a preprint of H L Montgomery
that he had proved our result in the case Y==T7. In his proof an essential assumption
is Riemann hypothesis and our result is independent of any such unproved hypothesis.
However he has other new results which are free from any hypothesis).
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1. Introduction and statement of the result
The object of this paper is to prove the following:

Theorem. Let C be any positive constant, T>>200, log T>>(200)1/C, and (log T)C
L Y<T. Then there exists a positive constant D depending only on C such that

. log ¥ \?
max +it)|> ex {D —_— }
T<t<T+Y Bt )] P (log log Y)

Remark 1. Levinson (1972) proved in his paper, {)-theorems for the R1emann—zeta
function that

max [{(3+it)]
1<t<2T

exceeds

p {Dl(log T)’}E
loglog T )~

Our result gives an improvement of this resultin 2 ways. First when Y=7 and next
we have a new result with the parameter Y. By taking ¥Y=79 with a constant 6
0<0<1 we see that between T and 27T there are > T'-9 pomts t (no two of which,
are at a distance <(1) at which [{(}-+if) | is large.
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Remark 2. Our proof runs closely along the lines of Ramachandra’s (1974) paper.
The new ideas are embodied in lemmas 1 to 4 below.

Remark 3. Let {a,} be a sequence of complex numbers with the following
properties. (i) The functions

[o0]
F(s)= 2 ans, (s=o+it),

n=1

convergent somewhere in the complex plane, can be continued in o>%, T<<I<THY
analytically and there | F(s) | <{7¥ where 4 is a constant, (ii) There exists an infinite set
S of primes and an integer constant g such that a, are real and of the same sign
(0 can be interpreted of either sign) when » runs through integers composed entirely
of the prime factors in S(to the first power) and those of ¢ to any power, (iii) whenever

n is of the form ¢ T p*® with b(p)=0 or 1 and b(p)=0 for all but finitely many
peS
P, | a,| is bounded below, (iv) There exists a constant D, such that for all

x>=10, 2=Z*1 (* denotes the restriction to the primes in S) lies between two
X < p<< Dygx

constant multiples of x/log x (note: upper bound is always satisfied). Under those

conditions we can assert that

3
max | FG+if)| > exp {Ds(_lig_{_) g
T<t<T+Y log log Y,

where the notation is as in the theorem. It is also possible to prove that for every
constant ¢ in } <o <1 we have

1—o
max | F(o+ir)| = exp {D4 (I_OQ’L}
T<t<T+Y loglog Y

and that for (log log T)C < Y < T with log log T > (200)!/C.

max | F(1+it)|> Dglog log Y.
T<t<T+Y

The proof of these generalisations are left to the reader. F(s) can be taken for
e o]

instance X (an-b)~° (where a and b are positive integers) or the zeta function of a
n=0 '

ray class in an algebraic number field and so on. It is also possible to formalize the
result [|{(1+it)|]? is infinitely often bigger than log log ¢ so as to include the
reciprocals of zeta functions, L series of number fields and so on.

2. Proof of the theorem

@

We will denote the positive constants by E, C;, C,, ..., 0 constants will be absolute
and p will denote primes. Let k be a positive integer > 10. Put

W= > doym Res>1)

n=1
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[ 0]
and then for o>1% put fi(6) = & (dc(n))? n2°. Our first object is to obtain
n=1
sharp upper and lower bounds for f;(c). This is done in lemmas 1 to 4.

Lemma 1.
[v'e}
Put A,=1+ 2 (d(p)) p~?° where of course
r=1
d(p") = kk+1). ',(k_H——l) < kdpy (P then we have
r!
[v o) 9 ok
I+i2p2e <4, < ( Z  d(p") p*") = (1—p=) .
r=0
Also

—2k+1

0
A, <I+&*p2e I (dyyy (PH) p2rb e < 1K p2o(1-p~)

y=

Proof. Trivial.

~2k+1)

Lemma 2. For p>k'" we have (1—p—) < (1—1/k)~2*+1) < 1000, and so
for p> k1l we have 4,<<1-+1000 k% p~2°.

Proof. Trivial.

Lemma 3. We have

I (1+Kp2) <fil)) < T (1+1000k2p=2°) T (1—p—o)=*
p p>kie Pkl

Proof. Follows from lemmas 1 and 2.

Lemma 4. Put 8§ = ¢—3} and assume that §<(log k)~! (we can also assume that
8=0 ((log k)™1). Then there exist positive constants C;, C, such that

exp {Ck® L} < filo) <exp {Ck* L},
where L = log (e (8 log k)71).

Proof. For p>(2k) Y7, 14+k2 p~2>exp (3 k2p—2°) since for 0 <x <3}, e*/2<1+x.

We have only to check that X p~% > (8 log k)L
p>(2)re

To see this put U, = 2"(2k)*/* (n=1, 2, 3, ...). We have

—28

p? > (log U™ U, 7}

Up<p < Upy

and if U,,, < kCa(8log k)~

then
Upna < eCed™
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and so

—28 5, 26,

Un+1 =

If C; is a large constant we see that X (log U,)™! > (8 log k)~1, where U, runs .
over all possible values with Uy << Uyy << eC387',  This proves the lower bound in
the lemma.

To prove the upper bound we see that

log 1 (1—p=o)2*
p=<Ki°

is O(k)? and also that
log = (141000 k2p—27)

Llog( MW (1—p~20)~1)1000k2 —Jog ({(2¢) M (1—p—2)L000k%)
p E. 2 P <kile

Note that

1
1—p2) = 0 )
p_gkm( 77 (log k

This proves the lemma completely.

Lemma 5. Let E be a large positive constant and o=}-(log k)~
Fix k to be the largest integer satisfying exp (Ek%2log k) < Y.
Put X = Y110, Then

n=1

o .
Z (dyn) )2 n2 e21X > exp (C1kP).

Also the error in breaking the series at n = [X (log X)%] is O(100%).

Proof. By Lemma 4, f,(c) lies between eC1%* and eCek®. Tt suffices to prove that

2 (di(n) )?> n=2° does not exceed 1. This is clear since an upper bound for this
n>X

sum is X~ £ (5 (2 log k)-1) which is by lemma 4 less than 1 if E is large.

The last remark follows from the fact that if n > X (log X)3, e27/X = O (»n~1°) and
oo

so the total contribution from such terms in O ( ( X' di(n) n~2)?).
1

Lemma 6. Let now max [L(3-+it)| = M. Then there exists a constant
T T=s<t=<T+7Y

C; such that in the region T+ (Y/800) << t << T+ Y—Y/800, ¢ > % we have

max | {(s) | < C5 (M+1).
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Proof. It suffices to confine to the sub region $<o<{2. Let s, be a point at which
the maximum is attained Then we apply maximum modulus principle to the func-

tion § (s)e“-‘o’ (where a is a large positive integer constant depending on C) to
the rectangle T <t < T+Y, 3 < o < 2. The proof follows.

Lemma 1. Let o=}+(log k)™ and T+ Y/400 < ¢ < T+ Y—Y/400.
Then either

exp (10710 ¥) < (C(M+1))

} 2 dymn=* e X | < (CAM+1) )

n==

Also the error in breaking off the series at n=[X(log X)%] is at most 100* in abso-
lute value.

Proof. We start with

o 2-4-ic0

S dent elx=— [ s+ T (X" dv.
2mi

n=\ 2—i0

We first break off the portions Im (s+w)<<T+ Y/600 and Im (s-+w) > T+ ¥Y—Y/600

of the integral and move the remaining portion to Re w = }—o¢. This proves the
lemma.

Lemma 8. Let o= 3+(log k) and the other parameters as before. Then

f l 2, o el @ >, (d" (n)) eI X (Y+0(Y19))

n< Yn n< Y1

where I is the interval for ¢ given by Lemma 7.

Proof. Follows from the well known result that for arbitrary {a,} and T > 10,
N2>2,
T
[l Z am*2d= 5 T+0NlgN))|a,|*
0 n<N n<N

The well known result follows on using

|log (n/n") | >

.——-—.—.

+

for positive integers n, n’
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Lemma 9. Let
o=}-+(log k -1,

Then there exists a point s = o-+it, with

T+Y/400 <t < T4 Y—Y/[400
such that

\

dy (W)= e X | > eCsk?,
1

3
| ™8

Proof. Follows from lemmas 5 and 8.

Lemma 10. Let kbe defined as the largest integer satisfying exp (Ek? log <Y
(with a large constant E defined already). Then at least one of the following two
inequalities 1is true:

(C{(M+1) )¢ = exp (10-°Y), eCek? < ((M+1Cp* ie.
log M > min (k, k* Y).

Proof. Follows from lemmas 7 and 9.
Lemma 10 proves the theorem completely.

3. Final remarks

To prove the first result of remark 3 we use 3 (dmP(ng* (where n runs through
n<X
square free integers generated by S, and X defined to be eE’k*logk E’ being now a

large constant) exceeds exp (C'k®). The second result is also proved similarly.
We take

_ o »r
X= ok

and the lower bound T (1+k2p?) for fia), (here I’ denotes primes in S).
p<k’?

The last result in remark 3 follows by

n (1+ Ek: pre (k(k——-l). . (k——r+1))2) -
p

r!
=]

I ip—z"p (k(k—l)...(k—rp+1))z%

p<kile (log k)™ rp!

where 7, = [kp~]. We define X to be T (r'p)-
p<ki® (log k)™*




W
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We have then to use asymptotic formulae for n!. Also for this result we need in place
of | F(s)| < T in the region mentioned, the result | F(s)|<(log 7)4 in the region
T<t<T+Y,o0>1,we need analytic continuation in ¢>1 and no further information
for F(s) in o<1 is required. More precise information than the above theorems
about | {(s)| is contained (by way of upper bounds for the maximum, for some set of
values of T'and Y) without any hypothesis, in Ramachandra’s (1977) paper.

Appendix

Let {a,} be a sequence of complex numbers such that the dirichlet series

f(s) = E ans

n=1

is convergent for some s. For each positive integer k define

GOF=7 abm

n=1

Suppose f(s) can be continued analytically in ¢>a, T<t<T-+Y where Y is as in
theorem 1, and in that region satisfies | f(s)| < T4.
Put

M= max | f(a+it)].
T<t<T+Y

Then arguing on the line a+(log ¥)! as in the proof of theorem 1 (note that the

first conclusion of lemma 7 is unnecessary if we choose X= Y’}) we are led to the
following theorem.

Theorem 2. There exist positive constants C;, and Cy; independent of a, k and ¥
such that

M + Cyy > Cy($(a, Y, k) (log Y )2y

for every k, where

(ﬁ(a: Y: k) - P) I ak(n)] 2 p2%,
ns Ylllo

Corollary. Let yi(s) be an analytic function in the region ¢>a, T<I<KT+Y a.nd
suppose zﬁ(s) 1s bounded both above and below by positive constants. Put

My = max Re@(atit) f(atir))
T<t<T+Y

M, =M, (1083 Yy,

e T E e L el
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Then M, also satisfies an inequality similar to the conclusion of theorem 2 provided
that in addition to ¥ <T we also have log Y/logT > 1.

Remark. Consider the special case {(s). Put
$.(X) = maximum of (¢(a, X, k)2«

as k varies over all positive integers. Let o be any constant satis.fying P<a<l
Then the best Q theorem for |Z( a-+it)| obtainable by our contributions to the
fundamental ideas of Titchmarsh is | {(a-if) |=£($a(?)). It is easy to prove that

(log X))

log $.(X) > Tog Tog 7™

where
bla)=3%ifa=%andlif }<a <l

By an ingenious argument Balasubramanian (to appear) has proved that*

(log X)-*
log ¢,(X) < (og Tog P&

This shows that either our results are best possible or only slight improvements

are possible and ideas entirely different from Titchmarsh’s are necessary for such
improvements.

Theorem 3. If }<a<]l, then we have

! W0)) _o( ozl _
~lo X/ =0 . O
2 g( z e “\@o—1)Tog Tog X)’ where the O constaﬁt 18

n<X
absolute,

Theorem 4. We have

1 d?2 oo ¥V
i log( z 4 ) = 0( ,\/ ig_{(_\) where the O-constant is
loglog X

absolute.

Proof. For the proof of the theorems, we need the follow‘ing"

*Balasubramanian has simplified his proof very m i i
worth publiching somars s plified B p ry much and the proof as it stands now is not

. & We give it as a continuation of this appendix. (We may also note
g;atx‘_l; the definition of $.(X), X is arbitrary and should not be confused with, the earlier Limitation
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Lemma 11. If $<o<1, then

oo
d2(n) ( ktle
ol
log > e (20—1) log k)

n=1

where the O-constant is absolute.

Proof. We have, by an applicatic.m of Iemmas 1 and 2,

(e 0]
log Z d"( ) Z log 4,
p—1

= 2 logd,+ 2 logA4,

p<k1[a P>k1/a
2
=0(k2 _1,,)+0( > 'i;)
p p?
p<ktl® p>kie

1/ e o
= (i) * © (=g
log k (Re—D log &

kl/a
ol
| Zo—T) log &

Proof of Theorem 3. If log X> >k, then, using lemma 11,

0]
d(n) _ d2(n)
..log z e ( log z ';2’ )
n<X n=1
lo—
ol
Qo—D)log k

_ ( (log X)y*-= )
(Re—1)loglog X/
Hence we can assume that log X <<kl/e.
k

(log X)° loglog X~

1 di(n) _ 1
Hencez log Z =0 (Elog (Xzs

n2e
n<X n=1

Now put § =

Y%K

o)

which is O (Q‘E_:_Y)_IL) if 8> 10,
log log X
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If 8 < 10, then, using lemma 11,

oo}

! a2 _ o (1 d2 ()
% log Z > -0(.]Elog(X2" Z s -

n<X n=1

28 Ke+8)-1
—o(Zrgx)+o )
(k °% ) + ((2(0'—1—8)—1) Tog &

By the choice of 8,

1-c
%?. log X=0 (0_05{)____)
k log log X

Since $§<10, and k& > (log X)°,

I

kdfe+8)-1 Jcu o -1-8/100
o ———M
Qe+8—1)log k ((20—1) log k)

I

kl/a—l S
(0] (_.___———— exp (———_—_— log k))
QRo—1)logk 100

exp ( 8 log k) =eXp ( klog k )
100 100 (log X)° loglog X

=exp (______].c____)
100 (log X)°

>( k )1/'—1 log k
(log X)° loglog X’ o

) * log a
since alb > (a) =
=\, Tog b

uniformly in 0<<a<<2 and b>a>>2, as can be easily verified by distinguishing the
cases a<b? and a>b%. This completes the proof of theorem 3.

k

Proof of Theorem 4: Let 6=
Viog X Vioglog X

[ce)

Now;é og S % =o(11; log ( xS ‘fﬁ(_”)))

n n1+23
n<X n=1
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(e o]
28 1 d*(n)
= o(Froe x) <oz rs 3 53)

n=
et et M e e o w
log X 1 d.2(n)
=0 ,\/ JE - .
( log log X) +0 (k log 21 pl+2d
H=

) and consequently, by lemma 4,

If log X> k2 log k, then 8=0 (...1_._
log k&

1 d2(n) (I ( e ))
% Iogz e U] P v

=0(k log (e\/ logle;; ?g log X))

Vileg X
=0 — |,
v loglog X
as can be easily verified.

If log X<k? log k, then using lemma 11, we have

-logz a2 _ ( k )ZO(\/logX\/loglogX)‘

klogk

n1+28

élog k
_0 Vv o log X
% IoglogX'

and this completes the proof.
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