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Background. Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of
inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently
used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the
hydrophobic interactions of arginine. Methodology. We have analyzed arginine solution for its hydrotropic effect by pyrene
solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass
spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent
on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of
arginine, the reverse phase chromatographic elution profile of Alzheimer’s amyloid beta 1-42 (Af;.4,) peptide is modified.
Changes in the hydrodynamic volume of Af; 4, in the presence of arginine measured by size exclusion chromatography show
that arginine binds to Af; 4. Arginine increases the solubility of Af; 4, peptide in aqueous medium. It decreases the
aggregation of Af, 4, as observed by atomic force microscopy. Conclusions. Based on our experimental results we propose
that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene
groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine
clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the
hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein
aggregation.
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partial unfolding [12-17]. Arginine does not change the
equilibrium of the folding process [15,17,18]. It only prevents
the association of denatured or partially folded protein [19-23].
The hydrotropic effect of arginine on fatty acids has also been
documented [24]. Experimental results show that arginine shifts
the second virial coefficient to the positive side and suppresses
aggregation [25,26]. Though it has been termed as the most polar
amino acid, arginine exhibits hydrotropic effect. Its effect has been
observed with proteins, peptides and fatty acids. It has been
observed that either the surface tension effect or any other
parameters discussed earlier cannot explain the effect of arginine
[10]. The explanations proposed so far do not clearly distinguish
the interactions of arginine with protein and water. It is also not
explained how these are different from the interactions of other

INTRODUCTION

Understanding protein aggregation during refolding and expres-
sion of proteins in heterologous systems is an important area in
basic research as well as in pharmaceutical industry. Protein
aggregation is also thought to be associated with several disease
processes. It is generally observed that proteins tend to aggregate
during in vitro refolding of proteins when the denaturant is being
removed [1]. The non-polar residues exposed during denaturation
mediate this aggregation [2]. The intra-chain interactions lead to
specific folding of polypeptide to assume native conformation. The
inter-chain interactions lead to protein aggregation. Favoring the
kinetic competition toward intra-chain interactions is an important
issue for the generation of proteins in native state. At present, there
is no general panacea for this problem. Currently, this problem is
being dealt with empirically by the addition of solutes and co-
solvents to the protein solutions. Solution additives such as amino
acids, salts, osmolytes can modify the solution behavior of the
proteins [3 and the references therein; 4]. Many theories have
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been proposed to explain the effect of these solution additives for
the prevention of protein aggregation [5-9, reviewed in 10]. These
mechanisms are based on the interaction of additives with proteins
(preferential interaction) [7,10] and amino acids (amino acid
solubility) [10] or the effects on water structure (surface tension)
[11]. An attempt has been made to design solution additives using
‘gap effect (similar to osmotic stress) [8]. However, this hypothesis
cannot differentiate between a denaturant, a solubilizer, a stabilizer
and an aggregation suppressor.

Arginine and proline have been consistently shown to be helpful
in preventing protein aggregation due to heating, dilution or

@ PLoS ONE | www.plosone.org

2007

Copyright: © 2007 Das et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Funding: This work has been supported by a research grant to AS from the
Department of Biotechnology, Government of India.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: srini@aiims.ac.in

November 2007 | Issue 11 | e1176



additives that do not inhibit protein aggregation. All proposed
mechanisms do not consider the hydrophobic interactions, which
are mainly responsible for the aggregation of unfolded proteins. It
has not been experimentally verified whether arginine combines
with the protein or peptide involving the exposed hydrophobic
region and/or modulates the hydrophobic interactions. It has been
suggested that multimeric forms proline may be responsible for its
aggregation inhibitory effects [12,13]. However, there is no direct
evidence in these studies to show that the multimeric forms
modulate the hydrophobic properties of the protein. To answer
these questions, we have chosen the mouse amyloid Af; 4o peptide
as the model system because it is insoluble in aqueous medium and
its aggregation pattern due to hydrophobic interactions is
characterized. Our results show that arginine is present as
molecular clusters in solutions. These clusters present a hydropho-
bic surface by the alignment of its methylene groups. This
hydrophobic surface modulates the hydrophobic behavior and
prevents hydrophobic surface induced aggregation by binding to
Api_49. The results presented here are also the first report of the
effects of amino acids on Af}} 49 solubilization and aggregation.

RESULTS AND DISCUSSION

Arginine solutions present hydrophobic

environments

The polarity of arginine solutions in 0.02 M sodium phosphate
buffer, pH 7.4, (PB) was studied using pyrene solubility and ANS
fluorescence characteristics. Pyrene, with its polarity sensing
solubility is useful for such studies. Pyrene is sparingly soluble in
water. Its solubility increases with the decrease in the polarity of
the solvent. Arginine increased the solubility of pyrene in PB in
a dose dependent manner (Figure 1A). At 0.5 M arginine
concentration, the pyrene solubility increased by three-fold. This
hydrotropic effect of arginine has been observed with many other
systems as described earlier. However, the mechanism for the
hydrotropic effect of arginine is not clear [18,27]. The part of the
arginine molecule, which could be responsible for this effect on the
non-polar compounds are its three methylene groups (Cﬁ , C” and
C%). The hydrophobic interaction of these methylene groups has
been observed in other systems as well [28]. This aliphatic side-
chain of arginine is shown to interact with the naphthalene [29] or
the phenyl [30,31] ring of ANS. In our experiments, an increase in
the intensity of fluorescence emission and a blue shift of the
emission Ay, has been observed in a concentration dependent
manner (Figure 1B). These two changes are characteristics of ANS
fluorescence when it is in a hydrophobic environment [32]. Two
fold increase in the intensity of fluorescence emission and a blue
shift of the emission A, of 12 nm has been observed with 0.5 M
arginine. The hydrotropic effect on pyrene and the ANS
fluorescence characteristics indicate that arginine solutions display
hydrophobic environment. The interactions resulting in the
display of hydrophobic environment are non-covalent in nature
and are affected by an increase in solution temperature. Above
45°C, the ANS fluorescence intensity decreased (Figure 1C). The
hydrophobic environment of the arginine solutions may interfere
with the hydrophobic association of unfolded proteins. Prevented
from aggregating, the unfolded proteins remain soluble. The
soluble unfolded proteins can fold into native conformation. This
would increase the yield of proteins with native conformation.

Arginine forms molecular clusters

Interaction of arginine with other molecules involves both its polar
and non-polar moieties. Experimental evidences using model
compounds show that 3-5 arginine molecules are required to bind
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Figure 1. Non-polar environment in arginine solutions. (A) Pyrene
solubility in presence of arginine. The solubility is expressed as fold-
increase over the control (solubility in arginine/solubility in buffer).
1 mg pyrene was incubated in arginine solutions at the indicated
concentrations at 25°C for 24 h. The absorbance of the supernatant
solution was measured at 350 nm. The solubility increases in a dose
dependent manner. (B) ANS fluorescence in the presence of arginine.
The excitation wavelength was 400 nm and the emission intensity was
scanned from 450 to 600 nm. With the increase in arginine
concentration, the maximum emission wavelength of ANS (250 uM in
PB) decreases (open circle) and relative fluorescence intensity increases
(closed circle). (C) Temperature dependence of ANS fluorescence in the
presence of 0.2 M arginine. The observed intensity is expressed as % of
intensity at 25°C. The intensity decreases above 45°C.
doi:10.1371/journal.pone.0001176.g001

one ANS molecule and the binding is cooperative [33]. It is
probable that ANS binds to an arginine cluster. Mass spectroscopy
is a useful technique to analyze the clustering of amino acids. The
previous mass spectroscopic studies of amino acids were carried
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out in predominantly non-polar or acidic conditions [34,35]. We
have studied the clustering of arginine and other amino acids in
PB, under conditions used in our experiments. Arginine formed
large clusters in the gas phase. The clustering was dependent on
the solution conditions (Figure 2). In water solutions, (pH ~10.5),
largely protonated species of arginine were observed (Figure 2A).
At pH 7.4, buffered with sodium phosphate, the clusters were
associated with sodium and phosphate groups (Figure 2B). At
pH 1.0, less clustering was seen indicating that the carboxylate
groups were involved in the cluster formation (Figure 2C). The
ionic species observed in the gas phase were dependent on the
solution conditions. Similar observations have been made using
analytical laser induced liquid beam desorption mass spectrometry
[35]. Arginine had higher propensity to form clusters than any
other amino acids containing aliphatic chain or many methylene
groups [[34], Figure S1]. It has been shown that very large clusters
of amino acids can be formed extending to nanometer dimensions.
It is also evident that chirally pure amino acids tend to cluster in
rod-shaped elongated structures [36]. Direct evidence for existence
of clusters of arginine in solution was provided by the light
scattering experiments. Rayleigh light scattering by arginine in
solutions increased in a concentration dependent manner
(Figure 2D). However, it appeared to saturate at higher
concentrations beyond 0.5 M. Similar results have been observed
for proline in the concentration range of 1-2.5 M. Even at low
concentrations of arginine, the scattering intensity increased
continuously, whereas this effect was seen with proline only at
concentrations above 1 M. This observation is in accordance with
the observed efficiency of arginine and proline in preventing
protein aggregation. The supramolecular assembly due to
noncovalent polar interactions, is expected to be temperature
sensitive and collapse at higher temperatures. We have seen that
the scattering intensity decreased beyond 45°C (Figure 2D),
similar to the decrease in the ANS fluorescence intensity. These
results show that ANS binds to the hydrophobic surface on the
arginine clusters. When the cluster formation is prevented at above
45°C, the ANS fluorescent intensity decreases.

Large molecular clusters in solution resemble crystalline state in
the intermolecular interactions, orientation of the molecules, self-
salvation, etc. Typically, amino acids orient themselves in
a peptide-like fashion with N- and C-terminal groups at juxtaposi-
tions and the side chains protruding away on both sides [37]. In
contrast, arginine stacks in head-to-tail fashion and a hydrophobic
column composed of the three methylene groups is seen along one
crystallographic axis [[38], Figure S2]. This orientation and packing
is observed in many crystal structures of arginine [39,40]. This
unique property of arginine stems from the strong interactions
between their guanidium and carboxylate groups of adjacent
molecules. These clusters may have conformational properties as
observed in crystal structures and be rod shaped as shown by
calculations for chirally pure proline [36]. In arginine clusters, the
alignment of C# C” and C° would present a hydrophobic surface
similar to that seen in the crystals (Figure S2).

Arginine modulates the hydrophobic interactions of
Alzheimer’s amyloid beta by binding to it

The hydrophobic environment on the arginine clusters enhanced
the hydrotropy of pyrene and caused an increased intensity and
a blue-shift in the fluorescence emission maximum of ANS.
Arginine has been reported for its hydrotropic effect with wide
ranging molecules such as fatty acids [24] and many processes
involving proteins, such as denaturation [15], folding [18], stability
[41] and solubility [42] and peptide solubility [this study]. The
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involvement of hydrophobic surfaces is common to all these
processes. If arginine can reduce the aggregation induced by
hydrophobic surfaces, then the arginine clusters should reduce the
overall hydrophobicity of the molecules. We have used Alzhei-
mer’s amyloid beta peptide (mouse Af_49) as a model system to
study the hydrophobic effect of arginine on the interactions
involving hydrophobic surfaces. Af49 forms protofibrils by
hydrophobic interactions. The protofibrils associate to give typical
amyloid fibrils [43]. The reduction in the hydrophobic character
of Af_49 should be reflected in a changed profile in reverse phase
chromatography (RPC), its solubility and aggregation properties.
With its hydrophobic regions masked by arginine clusters, the Af;
42 should have shorter retention time in RPC in the presence of
arginine. In the presence of arginine, the peptide had a shorter
retention time (12.5 min, 20% acetonitrile) in the RPC G8 column
(Figure 3A) as compared to the peptide without arginine (25 min,
40% acetonitrile). Elution of Aff} 4o peptide in the early phase of
non-polar gradient in the RPC column indicates the less
hydrophobic interactions with the C8 column. Thus, arginine
reduces the overall-hydrophobicity of the Af 4o molecule.

To mask the hydrophobic surfaces of Af) 49, the arginine has to
bind to these surfaces. Arginine exists in clusters and these clusters
have a hydrophobic surface. It is expected that arginine clusters bind
to AP _49. Under these conditions the hydrodynamic volume of Af;.
42 should increase significantly. The size exclusion chromatographic
experiments showed that the monomeric form of Af; 45 eluted with
a mass corresponding to 6.0 kDa in the presence of 0.2 M arginine
as compared to 4.5 kDa without arginine (Figure 3B). This indicated
that nine arginine molecules have bound to a single Af}} 4o molecule.
The 42 mer form of Af is known to form tetramer more
predominantly than dimer or trimer [44]. We observed mostly
monomeric and tetrameric forms. The tetrameric form in the
presence of arginine was larger than the control by 6.0 kDa. This
corresponded to an increase in molecular mass equivalent to 36
arginine molecules. The largest peak corresponds to the void volume
fraction. These results clearly show that a large number of arginine
molecules bind to Af49 to mask the hydrophobic surfaces. This
experiment can not be carried out at higher temperatures, since at
higher temperatures Af} 49 aggregates at faster rates [45].

Arginine increases Af; 4 solubility and decreases

fibrillar formation

One of the consequences of interactions between A} 49 and clusters
of arginine molecules should be the increased hydrotropy of the
peptide in presence of arginine as with pyrene and decreased
aggregation as with proteins. We have determined the Af solubility
and aggregation in the presence of various amino acids. Arginine
and proline were the two amino acids that enhanced the solubility of
AP 49 significantly (Figure 4) and decreased the Af; 49 aggregation
in aqueous medium (Figure 5A, 5B). There was a parallelism
between the solubility and inhibition of aggregation. The amino
acids having no effect on the solubility did not prevent aggregation
either (Figure S3). At equimolar concentrations, arginine was more
effective than proline. These observations are analogous to the
inhibition of aggregation of proteins due to hydrophobic forces. If it
were the hydrophobic environment presented by the molecular
assembly of these two amino acids that is responsible for the
hydrotropic and anti-aggregation effect, then the nonpolar amino
acids would be expected to be more effective. On the contrary, our
results showed that nonpolar aliphatic amino acids were not effective
either in increasing the solubility (Figure 4) or in inhibiting the A} 4o
aggregation, in particular (Figure S3, A, B and C) and the protein
aggregation, in general [15]. The intensity of ANS fluorescence was
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Figure 2. Molecular clusters of arginine in solution. Electrospray mass spectroscopy of amino acids. The aqueous solutions amino acids at 0.2 M
concentrations were used. (A) Arginine exhibits extensive noncovalent protonated clusters when dissolved in water, pH without adjustment was 10.5.
(B) (InArgINa)* and ([nArg]H,PO,)" clusters are observed when arginine is dissolved in sodium phosphate buffer, pH 7.4. (C) Less extensive clustering
is seen in acidic solutions at pH 1.0. (D) Increase in Rayleigh light scattering by arginine solution (in PB) is concentration dependent (filled circle)
indicating supramolecular assembly. This assembly is temperature sensitive and collapses above 45°C (filled triangle).

doi:10.1371/journal.pone.0001176.g002

not affected by the presence of amino acids having long aliphatic
chains and nonpolar amino acids (up to 0.2 M) (Figure S4). It has
been shown using model systems that ANS binds preferentially to
arginine than any other basic amino acids [33]. These amino acids
did not display an equal propensity to form clusters in aqueous
medium as arginine and proline [[34, 35], Figure S1].
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The aggregation of unfolded proteins and amyloid type proteins
involve hydrophobic surfaces. In such cases, interactions of the
hydrophobic surfaces provided by the clusters of arginine or
proline would be more effective than the interaction between
protein hydrophobic surface and an individual molecule of these
two amino acids. Secondly, a hydrophobic surface of large
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Figure 3. Arginine modulates the chromatographic profile of Af;_4,. (A) Reverse phase chromatography of Af4, peptide. 10 ug of peptide was
chromatographed on the RPC C8 column (250%x4.6 mm) in the presence and absence arginine. The peptide was eluted with 0-60% acetonitrile linear
gradient in PB at a flow rate of 0.7 ml/h and monitored at 257 nm. The arrowhead indicates the start of the gradient. The profiles in the presence and
absence of arginine are indicated. (B) Size exclusion chromatography. 10 g of Af;4, was chromatographed on SMART Superdex G-75 column with
and without arginine. The monomeric and tetrameric forms of Af}; 4, elutes with larger hydrodynamic volume in the presence of arginine (red curve)
compared with the control (blue curve). (The molecular weights are indicated by arrows).

doi:10.1371/journal.pone.0001176.9g003

dimensions cannot be maintained in an aqueous environment.
The crystal structures of arginine and proline revealed the
presence of hydrophobic columns along one of its crystallographic
axis [38,46]. Spectroscopic experiments have also demonstrated
the presence of such assemblies in solutions [[34, 35]; present
study]. Small amino acids do not have enough methylene groups
that could provide a hydrophobic surface. The long-chain (lysine,
methionine) amino acids have not been observed to have stacking
Interactions even at supersaturating concentrations during crystal-
lizations [37,47-49]. This could be due to the absence of side
chain groups, which can have strong, multiple interactions and
form a planar structure such as guanidium group. Multiple polar

@ PLoS ONE | www.plosone.org

interactions and planar structures of the side chains help in
stacking and having strong interactions with neighboring mole-
cules in aqueous medium. The side chains of other amino acids are
not aligned parallel to each other in their crystal-packing, ruling
out the possibility of stacking. We also did not observe an increase
in ANS fluorescence intensity in the presence of these amino acids
indicating the absence of any hydrophobic surfaces. In the crystal
structure of nonpolar amino acids, it is seen that their side chains
are not parallel, have different conformations and side chains do
not stack [50-52]. Without stacking, tail-to-tail interactions of
these amino acids alone will be very weak to maintain a large
molecular assembly to present a hydrophobic surface in aqueous
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medium. As these amino acids are polar at one end only, they are
expected to form micellar structures rather than an open-ended
bilayer structure in aqueous solution. In micellar structures, the
hydrophobic moieties are not exposed to bulk aqueous medium.
Hence, they are not available for interaction with the hydrophobic
surfaces of the proteins. With aromatic amino acids, the
dimensions of the side chains, thereby the hydrophobic surface
may be too large to be exposed to water. These observations are
based on the crystallographic studies of amino acids and their
complexes with other ions and amino acids. These studies do not
show any evidence of stacking interactions except for arginine and
proline. There are crystallographic studies reporting stacking
interactions between leucine residues when free leucine binds to
the binding site of leucine/valine/isoleucine binding protein [53].
This may not be an analogous situation of leucine molecules
interacting in aqueous solutions. The leucine and other amino
acids in the binding site of the protein have fixed molecular
orientations such that the interacting free ligand does not have
many conformational probabilities. With the exclusion of water
during binding, the interactions are quite unlike the interactions in
water. We have observed that at 55°C, the fluorescence intensity
(Figure 1C) and the light scattering (Figure 2D) have reached
almost the minimum. In the same temperature range, proline also
loses its inhibitory effect on protein aggregation [46]. In this
temperature range, the polar interactions are affected more than
the hydrophobic ones. Perhaps the cluster formations by these
amino acids using polar interactions are affected thereby
eliminating the anti-aggregation effect. It is common to find that
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the aggregates of small molecules and not the monomeric forms as
the biologically active entities. The mechanism of action of
detergents is well known in many applications. The other example
is the nuclear aggregates of polyamines [54]. It is the aggregates
and not the monomeric forms of polyamines that protect the
genomic DNA against DNase I [55].

Our results show that arginine presents a hydrophobic envi-
ronment in solutions, exists in supramolecular assemblies and
binds to Af).49. This binding modulates the hydrophobicity of
AP 49 molecule and suppresses fibrillar formation.

MATERIALS AND METHODS

Synthesis of Af; 4

Mouse Af).49, DAEFGHDSGFEVRHQKLVFFAEDVGSNK-
GAIl GLMVGGVVIA was synthesized using Fmoc chemistry
on an automated peptide synthesizer (model PS3, Protein
Technologies, USA). The peptide was purified on a ProRPC C-
18 column in a FPLC system. The peptide was stored at —20°C as
lyophilized powder. Before use, the peptide was dissolved in
0.01 M NaOH and centrifuged at 16,000 g for 10 min at 4°C.

Pyrene solubility

The solubility of pyrene was measured at various concentrations of
arginine. Arginine at indicated concentrations in PB was in-
cubated with 1 mg of pyrene at 25°C for 24 h. The solutions were
centrifuged at 16,000 g for 15 min at 25°C. The absorbance of the
supernatant was measured at 350 nm.
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Figure 5. Inhibition of AB;_4, fibril formation by arginine and praline.
AFM images (3 x3 micron). Af;4 Was incubated in PB at 25C for 24 h.
(A) Inhibition of aggregation of Af; 4, by 0.2 M arginine. (B) Inhibition
of aggregation of Af;4; by 0.2 M proline. (C) Complete solubilization of
Ap1-42 at pH 10.5. No fibrils were observed. (D) Control experiment in
which the fibrils formed. (Inset) Transmission electron micrograph of
24 h control sample at higher magnification (22,000x) showing
spherical aggregating units.

doi:10.1371/journal.pone.0001176.g005

Fluorescence spectroscopy

The changes in the emission wavelength maximum and
fluorescence intensity of 1-anilino-8-naphthalene sulfonic acid
(ANS) were measured in the presence of various concentrations of
arginine, lysine, methionine and leucine in PB at 25°C. The
fluorescence measurements were made using a Varian Cary
Eclipse fluorescence spectrophotometer (Varian, USA). The
excitation was at 400 nm and the emission spectra were recorded
from 450-600 nm with a bandwidth of 5 nm. Blanks contained
only the amino acids at the corresponding concentrations.

The temperature dependence of ANS fluorescence in presence
of 0.2 M arginine were measured by changing the cuvette
temperature by circulating water, maintained at different tem-
peratures with an accuracy of *0.1°C. The cuvettes were allowed
to thermally equilibrate for 5 min before taking the reading.

Mass spectroscopy

The amino acid solutions were prepared in MilliQ) water and the
pH was adjusted with dilute H;PO, or PB. The concentration of
the amino acid was 0.2 M. All mass spectra were obtained using
a nanospray ESI-Q-TOF mass spectrometer (QStar XL, Applied
Biosystems Inc., USA). The signal was tuned on the protonated
dimer of arginine clusters. Tuning on higher-order clusters did not
result in either the signal strength or change in the distribution of
clusters. The settings used in this study were as follows: curtain gas
flow 0.70 ml/min; the ion spray voltage 900 V; the declustering
potentials DP1 100 V and DP2, 12 V; the focusing potential
100 V. The positive ion spectra were obtained for 5 min in
acquire mode. Protonated dimers and trimers always appeared
along with protonated monomers.

@ PLoS ONE | www.plosone.org
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Light scattering

Rayleigh scattering of 400 nm light was measured at 90° geometry
on a Jasco J-810 spectrometer fitted with a Jasco FMO427
fluorescence emission monochromator attachment. The excitation
monochromator was set at 400 nm and the emission was scanned
between 385 nm and 410 nm, with the bandpass set at 10 nm for
both monochromators. For room temperature measurements, five
scans were performed for each sample and the measurement at
400 nm was noted and averaged. Arginine solutions were prepared
in PB at indicated concentrations. Triplicate samples were used at
each concentration. Similarly, for measurements at different
temperatures, the peltier attachment of the spectrometer was set to
the desired temperature before the performance of the five scans.

Reverse Phase Chromatography

The A4 peptide was dissolved in 0.0l M NaOH and
centrifuged at 16,000 g for 10 min at room temperature. The
pH was adjusted to 7.4 by the addition of PB with and without
0.2 M arginine. The final concentration of the peptide was
200 ug/ml. The solutions were incubated for 3 h at room
temperature. 0.05 ml of the solution was loaded on to the RPC
C8 column (250x4.6 mm) (Phenomenex, USA) equilibrated with
PB using a Shimadzu HPLC set up (Model SCL-10 AVP,
Shimadzu, Japan). A linear gradient of acetonitrile from 0% to
60% in 30 min was applied at a flow rate of 0.7 ml/min. For the
treated sample, the equilibration and elution buffers contained
0.2 M arginine. The sample was monitored at 257 nm.

Size exclusion chromatography

Chromatography was performed on a SMART analytical Super-
dex G75 column on a SMART system from Amersham
Pharmacia (30 cm length, bed volume 2.4 ml) using a flow rate
of 100 uI/min and with monitoring of absorption of elution
carried out at 257 nm (corresponding to the absorption of
phenylalanine). The column was equilibrated with PB or with
PB containing 0.2 M arginine before loading of peptide samples
(10 pg in 50 pl). The peptide was incubated for 1 h with 0.2 M
arginine before loading.

Ap_4> solubility measurements

The L-amino acids (Sigma Chemical Co., USA) in 10 mM
phosphate buffer, pH 7.4 (PB) were added to alkali-solubilized
Afi49 to give a final concentration of 0.2 M amino acids and
10 UM A 49. After 30 min incubation at 25°C, the tubes were
centrifuged at 16,000 g for 15 min. The supernatant was made
alkaline by the addition of 0.05 M NaOH. The absorbance at
257 nm was read for the supernatant fractions (Lambda 25 model,
Perkin Elmer, USA). The absorbance was compared with the
10 uM Af;49 in 0.01 M NaOH. 0.2 M solutions of tyrosine,
tryptophan, glutamic acid and phenylalanine could not be
prepared due to their insolubility in PB.

Atomic Force Microscopy (AFM)

All images were obtained in the MAC mode to ensure minimum
sample damage using a PicoSPM equipment (Molecular Imaging,
USA). AuCr coated MAC cantilevers, 225 um long, resonance
frequency of 83 kHz and force constant of 2.8 N/m were used for
imaging. Scan speed used in was 1 line/sec. 2 ul of 10 UM Af 4o
solution with and without 0.2 M amino acids was deposited on
a freshly cleaved piece of mica (I X1 cm) and allowed to stand for
2 min. Imaging was carried out in air. Minimum image processing
(first order flattening and brightness contrast) was used.
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Transmission electron microscopy (TEM)

A9 at 10 UM concentration in PB was incubated for 24 h at 25°C.
The samples were agitated gently before being spotted on a 400-mesh
carbon-coated EM grid for two minutes and stained with 1% uranyl

acetate for 1 min. Micrographs were recorded using transmission
electron microscope (Morgagni 268D, FEI-Philips, USA).

Crystal packing diagram

The coordinates were taken from Karle and Karle [38] and
visualized using the program Mercury (Version 1.4) [56]. The view
is along the b-axis.

SUPPORTING INFORMATION

Figure S1 Mass spectra of methionine, lysine, leucine and
proline. 0.2 M solutions in PB were used. The scan conditions
were the same as used for arginine (Figure 2). (A) methionine, (B)
lysine and (C) leucine do not display higher order clustering as
proline (D) or arginine (Figure 2).

Found at: doi:10.1371/journal.pone.0001176.s001 (9.27 MB TTF)

Figure 82 The crystal packing of arginine molecule shown in
sphere model. The yellow color indicates the hydrophobic regions
of arginine and the solvent molecules were shown in orange color.
The coordinates were taken from Karle and Karle (see ref) and
visualized using the program Mercury (Version 1.4). The view is
along the b-axis.

Found at: doi:10.1371/journal.pone.0001176.s002 (0.17 MB TIF)
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