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Radial Pulsations of an Infinite Cylinder with Finite
Conductivity Immersed in Magnetic Field
By
P.L.BaAaTNAGAR and S. R. NA6PAUL

( Eingegangen am 10. August 1957)

In Part I we discuss the radial pulsations of an infinite cylinder immersed in
a magnetic field H given by :

He— H? 4 (H} — H?) {1 —(%ﬂ ,

where H, and H, are the magnetic fields on the axis and on the surface of the
cylinder respectively and » and R are the distance from the axis and the radius
of the cylinder. The particular case of a uniform magnetic field is obtained by
taking H,—= H,, while the particular case considered by LYTTKENS corresponds to
H,= 0. In LYTTRENS case, the magnetic field is proportional to the square root
of the pressure at each point.

In Part II we discuss the effect of finite conductivity on the radial pul-
sations of an infinite cylinder immersed in uniform magnetic field. We evaluate
the change in the phase of the displacement function and the amplitude of the
magnetic field for 0 =< » < R and the damping time of the first three modes for
various magnitudes of the initial magnetic field.

1. CEANDRASEKHAR and FERMI [1], among other problems, discussed the
radial pulsations of an infinite cylinder with infinite electrical conducti-
vity and uniform density under the adiabatic conditions with a magnetic
field parallel to the axis of the cylinder. They obtained an estimate for the
frequency of the fundamental mode of pulsation using the variational
principle. Later on LYTTKENS [3] reconsidered this problem taking
the magnetic field varying as the square root of undisturbed pressure
in the cylinder. He obtained the frequencies and the displacement
function for the various modes in an explicit form. His main conclusion
is that the displacement functions in this case are the same as those
in the case of no magnetic field, while the frequencies are increased.
His expression for the frequency of the #'® mode gives the following
relation between the frequency w, with magnetic field, frequency w, , with
no magnetic field and the magnetic field H, at the axis:

wi — Wi, ny

— 2
= - H3, (1.1)

2
Wy o nty —

where y is the ratio of specific heats. The assumed magnetic field gives
rise to a volume current throughout the cylinder which vanishes at the
axis but tends to infinity at the surface.
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Recently, CrHOPRA and TALWAR [2] have considered the problem
with the field

H2= H? + (H3 — H%) (1 — 2?), (1.2)
where x = % , r denoting the distance from the axis and R the radius

of the cylinder. LYTTKENS’s case is a particular case of (1.2) when
H = 0, while the case of uniform magnetic field is obtained by taking

" H,= H,. FEvidently, (1.2) allows a wide choice of magnetic fields.

Besides, this also gives rise to volume currents within the cylinder
which remain finite even at the surface in the case when H 0.

Following LyTTrENS, CHOPRA and TALwAR have terminated the
series for the displacement function to obtain the frequencies for various
modes. However, the series is convergent for every value of z, such
that 0 < 2 < 1, except in the case H,= 0 when it becomes divergent at
x = 1. This was the reason why LYTTKENS had to terminate the series.
Consequently the displacement functions obtained by them do not
satisfy the boundary condition.

OP=0,at z=1, (1.3)
which secures that the boundary of the cylinder is the surface of steady
pressure. It may be noted, however, that this condition is satisfied
in the case H = 0, if the series for the displacement function and its
derived series are convergent at x = 1, which is possible only when
the former is terminated. This justifies the procedure adopted by
LyTTRENS. But when H4 0, the convergence of the series does not
ensure (1.3).

In the present note we shall investigate the effect of taking the
electrical conductivity ¢ to be finite but so large that squares and higher

powers of % may be neglected. To be able to evaluate the effects of

finiteness of conductivity we have to first satisfactorily solve the case
of infinite conductivity. Consequently, we shall first discuss the
radial pulsations of an infinite cylinder of infinite electrical conductivity
with magnetic field (1.2).
Part I

2. The case of infinite conductivity. The equations governing the radial
pulsations of a cylinder under adiabatic conditions, as given by CHAN-
DRASEKHAR and FErMI (1], are:

4GM d H? d
<w2+ - )6r= —47527W[<yp+zn—>9m(7‘57)]7 (2.1)
H? d
and ‘
H d
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where dr is the amplitude of displacement, w the frequency, p, o, H,
are the gas pressure, density, magnetic field at an internal point and m
the mass per unit length of the cylinder within a radius r in the equili-
brium state. In (2.2) P is the total pressure given by

2

P=p+ 8m ’
and 0 P and 6 H are the amplitudes of the variations in P and H follow-
ing the motion.

We have to solve (2.1) under the boundary conditions:

(2.4)

() 8r=0at r=0 (2.5)
and
(ii) JP=0atr=R. (2.6)

The total pressure P should be continuous across the boundary of
the cylinder, i. e., denoting the quantities inside and outside the cylinder
by the super-scripts (i) and (e) respectively

R H(i) 2 H(e) 2
e 2.7)

7 87

assuming that there is no matter outside the cylinder. In the case of
no surface current H® = H( and hence, on the boundary of the cylinder
p®O= 0. H® is either zero or uniform throughout the space outside
the cylinder. Thus in the cases in which H(® vanishes on the boun-
dary of the cylinder, as in the case contemplated by LYTTKENS, one
can take H® = 0 to avoid surface currents and then p®= 0 on the
surface. But in the cases where H®== 0 on the boundary we can avoid
the occurence of surface currents by taking H() to be uniform and
equal to H{g..- In this case also p®@= 0 on the boundary. In
all these cases, the cylinder is in true equilibrium. But in the cases
in which H® 3= H® on the surface, we have a system of surface currents,
and at the boundary p®= 0. If H® > H. ., the continuity of P
across the surface will require p(® > 0 there, on the other hand if H() < H®
on the surface, p(® will be negative there. In the last case the cylinder
is not in true equilibrium. If we take H®—= 0 and H{),.. & 0, then
we come across this situation. In this case we have surface currents,
and one would fail to understand the physical significance of p®) being
negative. Consequently we have assumed that with the magnetic field
(1.2), H® is uniform and equal to H,, so that there are no surface

currents and p{is... = 0, while
H?

s(?rfacez 87 (2'8)
In view of (2.8), we have, when ¢ = constant,
: 2
P =7 G p2R?(1 — a?) + -é% (2.9)
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so that
p=p.(l — 2%,
where
H H?

po= GO R+ g — g
Using (2.10) and setting

r or
7= and—F= Y

in (2.1), (2.2) and (2.3), we have

Azp:——(%—[(l — x2+f)%ﬁ(xw)],

Hﬁ;—H? 1 d
0P = — [Vpc+—°—4n——] =2+ N5z (=9
and
SH — — [HE + (H3 — HY) (1 — ATk -7 (2y),
where
' 1 w?
- 4
Ao ¥ (nGe * )
1+ (Hy —H?)(2—v)
8n2R2 %Gy
and
H? 2

f=tmypr B —m S VI_VE

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17 and 2.17')

Where S, is the sound velocity at the axis and V,, V, are the velocities
of magneto-hydrodynamic waves at the axis and at the surface re-

spectively.
To simplify integration we substitute
_do
Y="dx

in (2.13), which on integration becomes

AD— —(1— a2+ Ll ( ‘m).

z dz \* dx
The boundary conditions (2.5) and (2.6) now become
fl—(p= 0 at =0
x
and
d dd
7{5‘($—E;;)== 0 at z=1

which on using (2.19) simplifies to

AD

iﬁ:f;;qj7*= 0 at = 1

(2.18)

(2.19)

(2.20)

2.21)

© Springer-Verlag * Provided by the NASA Astrophysics Data System



.43..273B

1957ZA. . ..

Radial Pulsations of an Infinite Cylinder 277

i. e.,
D=0 at z=1, (2.22)

since at z = 1, the denominator does not vanish, when f = 0i. e., H = 0.

But when f= 0, from (2.14) § P= 0 in virtue of the factor (1 — 22)
i X0)]

provided d—dx' (:v W) is finite at z = 1.

The condition @ =0 at z= 1 enables us to determine the values
of 4, and hence the frequencies, corresponding to a given value of f.

We might note that in view of (2.21) 6H = 0 at the surface x = 1.
Hence we will fail to observe the magnetic pulsations of such a system
except through the change in the period of pulsation.

3. Integration of (2.19). On substituting

D= 3 a,z"*°, ay*0, (3.1) .
n=0
in (2.19), the indicial equation gives
ayc:=0 (3.2)
i. e.,
c=20.
Hence
b= D a,x". (3.3)
n=0
In view of (2.20),
a,=0 (3.4)

and the recurrence formula for the coefficients is

nt— A

+2= TF (a5 2 O (3-5)
Hence from (3.4)
Ugp+1=0 (3.6)
and
, 4
Aont+2= A+ hHn+1)2 Qon > (37)
n=20,1,2,...
Hence
D= )} a,,x®" (3.8)
n=1
and
p= 21272 Agp @1 (3.9)
n=

Both of these series are convergent for 0 < z < 1, provided f & 0.
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Now the boundary condition (2.22) gives

3y, = 0 (3.10)
n=0
ie.,
AN AN (e AN (1 A
At o) L
(3.11)

The above equation determines frequencies when f is given. We have
solved this equation by numerical methods for the cases

f=4.1,9, 99. (312

7 In the last case we have determined A for the first mode only, while

in the remaining cases we have determined A for the first three modes.
These values of 4 have been given in Table 1. In table 2 we give the

Table 1. Values of A/4

i Mode 1 ‘ Mode 2 \ Mode 3
1/9 1.1948 5.2445 12.393

1 2.5396 12.5615 30.5654

9 14.1368 73.7582 181.023
99 144.2638

Table 2. Values of ® and p functions for f = 1 (Taking a,= 1)

Mode 1 Mode 2 Mode 3

A A A
e 2.5396 5 = 12.5615 vl 30.5654

g ") ] ) Y] 4 Yy

0.0 1 0 1 0 1 0

0.1 0.9873 | —0.2530 0.9381 | —1.2201 0.8527 | —2.8356
0.2 0.9496 | —0.5001 0.7630 | —2.2301 0.4739 | —4.4601
0.3 0.8877 | —0.7352 0.5051 | —2.8502 0.0249 | —4.1900

0.4 | 0.8032 |—0.9513 0.2101 | —2.9598 | —0.3057 | —2.1844
0.5 0.6981 | —1.1436 | —0.0684 | —2.5211 | —0.3693 0.5268
0.6 0.5755 | —1.3023 | —0.2779 | —1.5975 | —0.2237 2.5564
0.7 0.4391 | —1.4193 | —0.3774 | —0.3618 0.0597 2.7510
0.8 | 0.2934 | —1.4836 | —0.3489 0.9097 0.2598 0.9808
0.9 0.1446 | —1.4814 | —0.2061 1.8616 0.2299 | —1.5360
1.0 0 —1.3935 0 2.1140 | —0 —2.6478

values of the characteristic function @ and the displacement function y
for the first three modes for the case f= 1. In table 3 we give the
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values of
0H A, 0,
(H)nAl—x2+f7n=1:2;3: (313)

where n denotes the order of the mode for f = 1.
In passing we may note that 1, form an orthogonal set of functions,
i. e., '

1
/ piypxde =0, when j==k. (3.14)
0

This property is the direct outcome of our boundary condition that
® = 0 at x = 1. In the work in reference [2] the displacement functions

‘\H )

Table 3. Variation of "H with @, for f — 1

z Mode 1 Mode 2 Mode 3
SH

0.0 |5 5.079 25.123 61.131
0.1 5.040 23.686 52.391
0.2 4.922 19.561 29.559
0.3 4721 13.289 1.502
0.4 4.434 5.137 —90.310
0.5 | 4053 | — 1.965 _95.805
0.6 3565 | — 8.513 —16.673
0.7 2054 | —12.559 4.833
0.8 2192 | —12.891 23.356
0.9 1234 | — 8702 23.618
1.0 0 0 0

y’s are not orthogonal, contrary to the assertion of the authors. The
statement may be verified by actually substituting in (3.14) the values
for y,’s which they have obtained.

Let
2
B—(H%_Hz)(7_l>~ B - (E)] (2 -1 3.15
e (1) o
RZ
Then, when
H,= H,, B=0; (3.16)

when H == H, from (2.17) B is determined by

B 2y (H,/H,)?
= 1+ B 2—y 1— (HJHy)z? "

n n2,y_ 1
—1/— , (3.18)
Tro ]/(1+B)(i")y—1

(3.17)
From (2.16)
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‘where T,, T, , are respectively the periods of pulsation in the n'® mode

with and without magnetic field. For a given cylinder, i. e., for fixed
values of M and R, if we choose H [H,, larger H, means larger B and

larger f. From table 1 we find that as f increases, —* increases. Hence

from (3.18) 7', decreases with increasing H,,.

T
In table 4 we collect T 2
70

Table 4. Showing ratio of period of pulsation
T with constant magnetic field H to period of
pulsation T, without magnetic field
(Taking 8 = 1.5)

for y = 1.5 and H = Hso that f=

Hj
4 MGy
R2
where M is the mass of the
cylinder per unit length.
Special cases. We give below

the cases in which the series

e .
I= e Mode 1 Mode 2| Mode 3 (3-11) becomes finite.
R (i) If we take 4 =16, (3.11)
reduces to
1 r 794 853 | .843 4 3
[) T, = 853 . 1— + — 0 (3.19)
1 ° 422 | 529 | 528 1+f @A+ 7°
9 157 | 214 | 215  which gives |
99 048 f—0and f— 2.

When f= 0 i. e. no magnetic field, 4 = 16 gives the second mode but
when f= 2, A = 16 gives the first mode. In the latter case

o — a0<1 -t —l—%x‘*) (3.20)
8 4
Y= a (——3—&: —{—3133) (3.21)
8H 16
<T)1 =5 a(l — 2. (3.22)
(i1) Let 4 = 36, so that

9 18 10

157t ary —axp O (3.23)
and

f=0 f=3-)6,f=3+6. (3.24)

when f = 3 + }/6, A = 36 gives the first mode, when f =3 — /6 A4 = 36
gives the second mode, while when f= 0, this value of 4 gives the
third mode, when f= 3 + |/6

9 x? 18 x4 10 8

P= (1_ 4+16  @+16)° (4+V6_)3) (3.25)
18 72 a8 60 z5

¥="o (~ PR VRS (4+V6)“) (3:26)

0H 36 8 10
= = 1-— — 2 — 2] . 27
(H)l 4476 a”( s+y8 " Tty ) (327
Similarly we can discuss the cases when 4 = 64, 100, etc.
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Part 1I
Finate Conductivity

4. Equations of the problem. The radial pulsation of the cylinder with
vanishing amplitude is determined by

?r  2Gm(r) 1 op )12 a1
dez ~ r _?W_}_?(JXH)T (4'1)
and.
m(r) = m(r,) , (4.2)

where 7, is the equilibrium value of r.
The electromagnetic properties of the material at a point are governed
by the Maxwell equations:

— -
curl H=4nj (4.3)
div H=0 (4.4)
—>_ 3 6[?
div £=0 (4.6)
and the constitutive relation
F—o(B+ 29w H), (47)

where we have neglected the displacement current and taken the free

charge density to be zero and u to be constant.
Let

| r=1y+ 0r, p=pPy+ O0p, o= 0o+ 00, and H=H,+ 0H,... (4.8)

In the equilibrium state, H, must be uniform otherwise there will
volume current which cannot be in steady state in the presence of
finite conductivity. We shall, consequently, take H, to be uniform
parallel to the axis of the cylinder both inside and outside i. e. the
cylinder is immersed in a uniform magnetic field and

jo=0 and Hy=0 | (4.9)
from (4.3) and (4.7).
Retaining only the first powers of dr, dp, ete., the equation (4.2) gives

do _ Or 0
E——‘ro—— ar, (67') (410)
The adiabatic relation gives
/4 Po O
op = yg—:59= —yr—;’ﬁo—(ro@r). (4.11)
Also from (4.3)—(4.7), we have
- > - —> 1 — —
<7><H)=(7><H0)=-4;~curl(6ﬂ)><Ho w12
1 - > —> - *
= |- grad (6H - H,) + (H, grad) 0 H |
Zeitschrift fiir Astrophysik, Bd. 43 - 20
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and

curl curl (6I_J>) = 4716”0 curl ( i (aétr) X P_I:,) — —;—t (6§) (4.13)

In the present case variable quantities will depend only on 7, and ¢,
so that (4.12) and (4.13) reduce to

-> = 1 0
(i x H),= - I s, HoOH,) (4.14)
and
0 c 1 o
—57(6]{) 4nuoc r, 07, {ro o7, (0H, )} 116
. Ho a 6 } ( * )
- o aro{ ( )

Substuting (4.10), (4.11) and (4.14) in (4.1) we have

o 4 Gm(ry) Y 0 [D b9
gy (or) = =2 gy 2 [To S 57)] L (HOH)..
(4.16)

Eliminating 6 H, between (4.15) and (4.16) we have, on dropping
the suffix 0,

0 4Q 02 d H2\ 1 o
—[Q< r“‘m dr — dat? (57)—[-?()/})%— ”47'5 )76—7(7’67)]

ot
¢ 2 [1 @ 4Gmd 66 ya(p_a_— (4.17)
———Mwa—r[Ta—{T@[ "= % Ot g ar \r ar | T)H]
and
9 (6H,\ 1 2 ( @ c 1 2 4Gm o
W( " )—*TW(HT‘”) t o EE TW[’Q( 0T 55 ‘”)+
0 0
+ rya—r{ga—r(r M)}]. (4.18)
For uniform density
m = 7 rp (4.19)
and hence integrating the equation of equilibrium
%: — 27 G o?r (4.20)
we get
p=m G2 (R*— 1%, (4.21)
since
p=0 when r=R.
We shall now write
r or
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and assume y to vary as e*¥?; then using (4.21) in (4.17) we have

Ayt g0 - 24y o) +

iBe d [1 d (, d (l—a d 0(4-23)
+ o dz [de{ xl/)_}_xdx[ x dx (xz/))]}]z
where
A=L(g, @ 4.24
_7( +nGe) (4.24)
1
B= fmw (4.25)
and
_ . wf
f=tm Gy o - (4.26)

Similarly, from (4.18) we have the amplitude § H, of variation of
the magnetic field:

6H, 1 d Bel d T, d (1—a* d
A= zdz YT auzﬁ[ R o R I CT)I| PR
(4.27)
We have to solve the equation (4.23) under the boundary conditions:
(1) p=20 at x=10 (4.28)
and
(ii) OP=0 at z=1 (4.29)
i.e.,
0H,=0 at x=1. (4.29")
Let us now take
dod
in (4.23) and integrate it; we have
1(d dad
A@+(1—x2+]‘);{7x-(xﬁ>]+ 131
z'BcldA do d (1—2a% d dd 0()
+ o ?dx[xdz+xdx{ x dx(xdx)]]z
In terms of @, (4.27) becomes
SH, 1 d ( d®
P (”‘Tx‘) +
Be 1 d dd d (1—2% d dd
+aii?dx [A:v dz ¥z { z dx (x dx)” (4.32)
1 (1—2?) d [ dd
~—'7—{11(D -+ 2 .7i;r(aijigr)].
Hence the boundary condition (4.29’) gives us
®=0at z=1. (4.33)
20*
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Let
1 B,C
By= 4 B, and s =7T> (4.34)

where we shall regard v as a small dimensionales parameter of order one.
We retain quantities of the order 7 only.

W= Wy+ TW

= Yo+ TP
V= YPor T% (4.35)
where
1 U3 2w
PR BN,
v ) mEer (4.36)
Substituting (4.35) in (4.31) and separating the various order terms
we have
1 d a0 ]
Ag@o+ (1 — 2%+ fﬁ?;(’” dx0>= 0
with 437
2% _ 0 at 2=0 (437
X
and
1 d do T
Ao¢1+(1—x2+f>?ﬁ<x dxl>+
1 d d (1 d [ do,
+ Al@o”f?ﬁ[xw{;?;(xw )”=0
with (4.38)
dd451 =0at z=0
x
and

Due to the presence of ¢ in the equation (4.38), we conclude that D,
and 4, are complex. Let us substitute

O=¢&+iy
A= atif (4.39)
in (4.38) and separate the real and imaginary parts. We have
1 d d
AOS—}—(I—I-ZZ—{—f);‘H(x‘d—:‘i‘)-{—OC@O:0, (4.40)
1 d dn
don +(1 — 22+ f)*‘_‘(x‘d) + B Dy—
z dzx dx (4.41)

Ao
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In (4.40) the parameter « has to be determined from the boundary
condition that & = 0 at = 1. Similarly the parameter 5 in (4.41) has
to be determined by the condition that # = 0 at = 1. The boundary

.- d
conditions at x = 0 are Tié: 0 and an 0.
z dzx
Taking into consideration the boundary condition at x = 0, we assume
n=20

substituting it in (4.40) we have the following recurrence relation

(n*— 40) b, — aa,

R S T

where
n=20
with
Upp+1=0
and
n? — A4,/4

Gent2™ (1 + p “om
as found out in Part I.
Since b;= 0 on account of the boundary condition at = 0, we shall
have only even powers of z in £1i.e.,

§ - 2 b2n x2n> (442)
n=20
where
(nz_ %) bZn - %a’zn
bense= "G TR /) (4.43)
In view of the recurrence relation (4.43)
b o0
§ZQ—°Q3O+ o 3 thoy 22"
0 n=0
‘where
<7L2-— f_i_o) MHan — %ahz
Hans2= "G (I 4 ) (&44)
At x=1,P,= 0, and &= 0,
and hence
a=0. (4.45)

From (4.39) and (4.36) we conclude that the change in w due to
finite conductivity is purely imaginary. Thus to our approximation the
period of oscillation will be unaffected by the assumption of finite
conductivity.

20a
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We shall now consider (4.41). Let us substitute

n= 2, C,x" (4.46)
n=0

in it. The coefficients ¢, obey the following recurrence relation:

(nz— A()) On— ﬁa‘n + f(n+ 4)2 (n+ 2)2an+4

Cnsa= (n+ 27 (L+7)
Since
typn+1=0 and C;= 0 asg—2= 0
at x = 0, we have
Consi1=0. (4.47)

and

(n2— —‘Ali) C2n—— éa2n+4f(n+ 2)2 (n + 1)2(1212.{_4

02n+2: (n + 1)2 1+ f) (4.47')
Let us now assume that
02n= 00}'275 + /3 Han + Van (4458)
where
Aans Mans Van are independent of Cjand § .
Therefore

Capt 2= 00;{212-»27L B Uan+at Vanso

4,
(8= 42 Colan B s o) — & tan+ 40+ 22 0+ Do
. S (m+12Q4+fH )
Equating the coefficients of C, f we have the following recurrence

relations for 4, u and »
nt— Ao

2 4
2n+2 (n+ 12 (1 +7)

A4, 1
(nz_ —4_0) Hon— Za@n

dan (4.49)

Hane =~ T TR (4.50)
and
(nz_ %) Von -+ 4100+ 22 (0 + 1)2 Ggps s
_ 4.51)
Vonta (n—+ 121+ ) .
Hence
n=Cy 2 Aon2®" + 2 Han @ 4 3 vy, an (4.52)
n=20 n=0 n=0

In view of (4.49) the first term on the right hand side is % D,
0

which vanishes at x = 1.
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Therefore at x =1
f=— 2= (4.53) -

asn=0at x= 1.
(4.53) determins value of 8 for a given value of f.
We get the starting values for A, u,, v, from (4.48) by taking n = 0:

Co= Cohg+ B o+ ¥y
so that

Ao=1, pg=1v,=0. (4.54)

9. The change in the frequency due to the finiteness of conductivity, to
our approximation, is given by

(5.1)

2 w, v,

which is purely imaginary. Hence there is no change in the periods
of oscillation in any mode.
If we define damping time £, as the time interval in which the am-

plitude falls by the factor % , then

= a8

The characteristic function @ is given by
DP=Py+iT7 (56.3)
so that the displacement function is
p=F(x)et*(®, (5.4)
where the amplitude F (x) and variation in phase x-(x) are given by

(@) = |ty + 22 (32 " - 69)

~ (), to our approximation,
and

tan y = e o
ﬂi’o2ny2,,x2”‘1—|-20'02nv“ x2n—1 (56)
=T ____+ n=1 n=1

[ee]
X2na,, 2?1
n=1

20b
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The damping time for the amplitude of the variation of the magnetic
field is the same as ¢, but the variation in its phase is given by

ta;n ZH
[e'e] oo [e.0]
c 2 (21)2 pgy 2214 X (20)2 vy, 22— 37(20)2 (20 — 1)2q,, 2273
. ' n=1 n=1 n=1
=T + =
a 3 (2n)? az, a2t
n=1

(5.7)

Thus we see that finite conductivity, besides damping the mechanical
and magnetic pulsations, produces a variation in phase in both of them.
Comparing (5.6) and (5.7) we find that the variations in phase of

0H
and —g are not the same.

Table 5
First Mode Second Mode Third Mode
[ to to
f B 8n Ro u B 8nR*ou B 8n R*ou
(=) =) =)
1 37.867 0.198 1044.0 0.0456 6257.1 0.0191
2 69.818 0.191 — — — —
3-+V6| 183.62 0.182 — — — —
9 301.882 0.178 8372.8 0.0349 51157.8 0.0141
99 |3311.14 0.173 — — — —

Table 5 gives the values of § and for various values of f

to

( 87 u R*o )
[
discussed in Part 1.

We find that as H increase the damping time decreases; the damping
time also decreases for the higher modes. For f = 1, the ratios of damp-
ing times for second and third mode to that of the first mode are
0.230 and 0.096. Similarly for f = 9 the values of these ratios are 0.196

and 0.079.
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