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Non-adiabatic Pulsations of a Stellar Model
By
PyYARE LAL and P. L. BHATNAGAR

(Bingegangen am 5. Juni 1956)

EppineroN, ScawarzscHILD, WorLtser and others have discussed the Non-
adiabatic Pulsations of a Star in connection with the problem of phase lag and
maintenance and destruction of pulsations in the case of cepheid variable stars,
but so far no general method for the solution of the non-adiabatic equation has
been given. ROSSELAND, in connection with the problem of secular stability of
variable stars, has suggested a systematic method for the solution of the non-
adiabatic equation. We have applied this method and obtained the solution of the
non-adiabatic pulsation equation in terms of a series of characteristic functions
of the corresponding adiabatic equation. We have worked up to higher approxi-
mation than the previous workers. In the second part of the paper we have applied
the solution obtained to the study of a homogeneous star, and have made a numeri-
cal estimate of the period of pulsation in the fundamental mode and the time of
relaxation in case of the cepheid variable having mass equal to 5.02 solar masses
and radius equal to 16.382 solar radii. These numerical estimates suggest that the
departure from the adiabatic conditions must be taken into account more precisely
than what has been done in the present paper.

1. Introduction

A number of authors have worked out the non-adiabatic pulsations
of special stellar models in connection with the problem of phase lag
and the generation and destruction of pulsations in cepheid variables.
EppingToN [1], assuming radiative equilibrium and a constant ratio
of the specific heats, tried to work out the problem of non-adiabatic
pulsations with a view to explain the phenomenon of phase lag but he
found that small deviations from adiabatic conditions produce too small
an effect. ScEwARzScHILD [5] later considered two stellar models for
which the atmospheres, assumed in radiative equilibrium, extended to
0.8 and 2.69 of the stellar radius. He assumed the pulsations in the
main body of the star to be adiabatic while in the. atmosphere to be
non-adiabatic. For simplicity in mathematical analysis he took the
various physical quantities as varying in a single frequency. He also
tried to work out the case when radiation pressure is taken into account
and ¢g,, the equilibrium value of the rate of energy generation per unit
time per unit mass, is taken to be zero. He found that on account of the
singularity of the differential equation at the centre the various physical
quantities could not be uniquely specified there. Later, EppiNeTON and
Worrser pointed out that a solution of the pulsation equation for a
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22 Pyare LaL and P. L. BHATNAGAR:

star with perfect adiabatic conditions prevailing inside and non-adiabatic
outside cannot be worked out if it is required to satisfy the boundary
conditions at the centre and also at the surface. They suggested that
to get a well-fitted solution one has to take slight deviations from the
adiabatic conditions even in the interior of the star.

Wortser [8] tried to develop a theory of non-adiabatic pulsations by
introducing canonical variables. He used adiabatic Hamiltonian equa-
tions introduced by him [7] and Miss KLuyvEer [3] and worked out
departure from these. He succeeded in obtaining a solution of these
modified equations in the form of a series which converged rapidly.
This solution, however, satisfied the boundary condition only at the
surface, namely the temperature vanishes there; moreover, WoLTIER
did not apply his results to any specific variable star. SCHWARZSCHILD [6]
taking the equantions of motion from his previous work [5] obtained a
solution in case of a stellar model which satisfied the boundary condi-
tions: (i) the temperature vanishes at the surface, (ii) the equilibrium
values of density, temperature and the energy generation at the centre

_ 0
are constant and greater than zero, (iii) the radiation flux F anda—i

vanish at the centre. His calculations yielded a negative result for the
phase lag. He, then, tried a solution of the progressive wave type
throughout the interior of the star for the pulsation equation (correct
to first order approximation) and also a solution in which the standing
wave type of pulsations were assumed in the interior and progressive
wave type of pulsations in the outer region. His studies gave a phase
lag much smaller than the observed one. EppineToN [2] suggested that
inside the core and the radiative equilibrium zone, the pulsations are
adiabatic while in the outermost part where a critical layer of hydrogen
is being ionized and deionized, they are non-adiabatic. According to his
views a sharp decrease in dissipation supplies the mechanical energy for
pulsations and the condition of minimum dissipation determines the
phase lag. EppINGgTON’S hypothesis, for want of a general solution of
the non-adiabatic equation of pulsation could not be tested quantita-
tively.

RosseELaND [4] in connection with the problem of secular stability of
the variable stars suggested a systematic method for the solution of the
non-adiabatic equation. He expressed the displacement in terms of the
characteristic functions of the corresponding adiabatic equation and ad-
opted for the energy generation and the absorption coefficients expressions
of the form e oo g#T” and k oo p»T-%. In part A of the present paper,
following RossELAND, we have taken ¢ oo g# T and k co g T'—% through-
out the stellar model and obtained the formal solution of the non-
adiabatic equation correct to second order using the iteration process
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and taking y, the ratio of specific heats, as constant. In part B we have
applied the solution to a homogenous star. In a subsequent paper the
problem of dissipation of energy and the phase lag will be considered.

2. Non-adiabatic Pulsation Equation

The equation of motion for radial oscillations, energy and the conti-
nuity of mass, in the Lagrangian form, are:

j—_ L op @ o, 0f i 9f
r__ET’ aa_gorz ’ ~ Pa’ fzﬁ (21)
s — L 9"
p—ypg+dy—hk—am] (2.2)
and
0 r2r' = goa? (2.3)

where 7, g, p, g and m denote the radius vector, density, pressure, gravity
of an element and mass withinr; a, g, p, g,, and m denote the correspond-
ing equilibrium values of these quantities. Further, ¢ is the rate of
energy generation per unit mass per unit time and H, the total radiant
flux across the spherical surface of radius 7.

If we assume the star to be in radiative equilibrium

16 m2cart o714
H=— 3. m (2.4)

where ¢, a, »# are velocity of light, the STEFAN-BOLTZMANN constant and
the absorption coefficient.

In the following we shall assume that the ratio of specific heats is
constant and the gas obeys the perfect gas equation

p=koT (k = Boltzmann’s constant) . (2.5)
We adopt for mathematical simplicity the following laws for ¢ and k:
goo gt T (2.6)
koo g T2, (2.7)

Writing
r=a(l+2) (2.8)

and retaining only first order terms in [, the continuity equation (2.3)
gives
L_1-8¢—ar. (2.9)
Qo
We shall now solve the energy equation by the method of successive
approximations. For this we take the oscillations to be adiabatic to the
zeroth order approximation and hence

p=7P, (2.10)
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or

%=(§)7=1—3y§'—ayé" (2.11)

and from the gas equation (2.5)

%z(ﬁ)y—l=1—3(;}~ He—a(y— 1. (2‘.12)
Using (2.11) and (2.12) in (2.6), (2.4) and (2.7), we get
e=¢gl—=3(u+rvy—»)—(ut+vy—»all (2.13)
and
H=Ho[1+{16+3(n+s)_3y(s+4)}5_{_(n+s+4)+y(s+4)}ac'—
— - DT el @14
so that
oH

8——_W=—eo[{16+3(n+s+‘u—v)~3y(s+4—v)}é’+

+{4+(n+s)—y(s+4)+[u+yv—v}a5’—(y—l)%(‘ilura@”)}—

H 17
T (RO 409 (st DI At (o 9) — p s+ H}al"—
TO rr 122 ’ 7 d TO
~-D g 6rrar @t vat 4 () @19
where ¢, and H, are the equilibrium values of ¢ and H satisfying the

equation

9H,

om °

(2.16)

80=

Substituting ¢ — g—z— from (2.15) in (2.2) we have

: —3f—al .
P—YPi_3c_ar—_ (- 1P (2.17)

where
P=gyeo|{(16+3(n+s+p—0)+3y0—s— 4L+

+{d+m+s+u—v)+yvy—s—4)}sl —

— (= D@L +at)] +

H ’
e [20+ 400+ 9~ dyls+ 3+

T~y al” — (=) g (B el —

~-nartean (7). (2.18)
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The solution of the equation (2.17) is

1— 3cp_aC')y —Po=—(y—1) f Pdt (2.19)
0

where we have measured time from the instant when the star is passing
through the equilibrium configuration, so that when

t=0
p=poand { ==

(2.19) gives p correc‘c to flrst order approximation in the non-adiabatic
term.

Substituting this value of p in ¢ — —H— we get

-;%f[w+®w~d>a(;/PdQ+
== Vgt o (2 )| (2:20)

and then (2.2) gives
p=—ypoB3C+al)—(y—1) P+
4y — 1)280Q0[(8—l—4-v)—1—/13dt+ g‘,’ i<1fpdt) (2.21)
Po Do

4H312 l(8+4)a—2<5}§/1}dt>_ a2 [?’) aaa (Podet> ]

The solution of (2.21) will give the expression for p to the second
order approximation in the non-adiabatic term.
Differentiating (2.1) partially with respect to ¢, we have
o . o ..
—aa b= {(F+9) e}
0 Ma '
— 2t + 2 aa-20] a0 -3¢ -at) A+ +al)]

— 0L — 40090 - | (2.22)
Differentiating now (2.21) partially with respect to a and ehmmatlng

g— with the help of (2.22), we get

+(y—=1)°

00t + 0000 {(By — 9+ yall) — ypod L +al")
=(y— I)L[P-— (y — 1)9080[(8+4— W)L/Pdt—l——T—?-a— %/Pdt }—

—(y—1)4H {(3+4)a (podet>+—( ’a_ pO/Pdt )” 2.23)
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which on pdrtial differentiation with respect to ¢ gives
00 L+ 009o{By — Dl +yal}—4p Al + aé‘"’)
0 5. T, @ (P
:(y_1)5—[P—(y—1)9080{(s+4— o I
(

n
— (-1 45(;2 1( s+4) 55 (po)+i(go aaa (i))}] 2.24)

Following ROSSELAND we now set

e =%‘ £ 9 (®) (2.25)

where &, are the time-independent orthogonal eigen-functions of the
adiabatic equation

" _1_ a Qo090 2__ . 4 Q090
§k+a[4_ Do }E’“Jr[ (3 y) apy) 5t =0 (2.26)
normalized according to
I,— / (@ &) dm =1 (2.27)

0
and q,(¢) are functions of time only.

Inserting this expression of { in (2.24), multiplying by 4 7w a3£;da and
integrating over a from o to R (the Stellar radius), we get

qs+ o2 9322 Ay Gy + 4:: By, 9 (2.28)
k
where
d
A=y 1) [4mar g de g (@ 229)
. /
and
0
B — (y— 1)2/4 7 ad Eyda o {Ry) (2.30)
0
with

Qe=000 [(16+3(n+s+p—+3y0—s— D&t
t{dt s tp—r)—yEt+i—ntak—
— - D @G ta )]+

+%[{ZO+ 4(n+s)—4y(s+4)} &+

{4+ mts)—yis+4tady - (y —1) (5Ek+ &) —

— (-1 @& +ady) 5, i (%)] (2.31)
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and R=— Ogo (s +4—7) @p— o g:? EM(?:)
(2.32)
H T
~gaar o+ 950 (3) e {zisa ()]
Taking
g==coh Ty (2.33)
and
ng= %0y T5* (2.34)

we get the following expressions for @, and E,:
Qu=E ol 1T, [{16 L3t st )43y —s—4)) £+

o kst g ) by —s— }agi— 7t (y— 1) @&+ a &) -
432“ Z:‘“ T [{20+4 (m+s)—4dy(s+4)}&+

+{4+n+s)—yis+4)}aby —

Ve 1){5—;3g (5& +aly)+ 4 §é+a§é’)§;<~%)]] (2.35)
and
By= = Eof " Ty (s +4-v) 2+ 2 (%)] +

(2.36)

dca To ’ Qx T, Qr
+ 3% g Lo [( +4) %4 <p0>+ 7 {T’ a (po)]]
where £ and % are related by the condition (2.16) which now becomes
Bl Ty =— g g [+ 3) Ty 2 T2 + 2 T35 a Ty +
+ T3t3a2T].
Equation (2.28) is the fundamental equation of this paper and applies
to all stars for which (2.4), (2.5), (2.6) and (2.7) hold.

Taking energy generation by the C N cycle, KRaMERS’ law for the
opacity and the gas to be monoatomic,

(2.37)

pu=1,rv=16; n=1,s=35and y =3 (2.38)
so that
16 2 T,
Q=3 TP [27 60t S ati— 57t ot a &) +
4 T 17 rr’
+ 52 I m 12 daly + g GE A )+ (239
2 T
+§<4§k+a§k)ﬁ<—’l’f_)]
and
Qr 0 (G
- 2 16
Ry=—F 2 T} [ 8.5 % +T,aa(po)]+

. 430: e [75 (2:)+%[;’za_i(%)]] (2.40)
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3. Part B
Homogeneous Model ‘
In this part we shall discuss a homogeneous model i.e. we shall take

‘0= a constant (3.1)
M@G
Jo= R 7 (3.2)
1 MG
Po=50 5 (- a?) (3.3)
and . '
1 G
where we have set
r=1 (3.5)

With the help of (3.2), (3.3) and (3.4), the equation (2.37) and hence
(2.35) and (2.36) reduce to

_ G \16
4 (2% —IER_> (1 _ x2)16

: o}
- 357 ( o ﬂéa)7'5 (1 — )53 (3 — 16 22) >0
. [<3*16“‘2> o+ Fesrg(i-o)egrem-
z(l ~ xz){l2 S+ 4y —l(%— x)(5§ +a &)+
+ 5@ +ad) ()] 37
and
B 3;?;3632 <2lk ﬂ?f)” (%‘}f_(;) (1 —a?) x
x [6-16an {857ty + 122 0 (LG (3.8)

e (%) - 2 A ]

where dash now denotes differentiation with respect to x.
Since ¢, and R, vanish at the surface of the star x = 1, we have, on
mtegratlng (2.29) and (2.30) by parts once,

A= —daly - 1)R3/Qk o (22 8) (3.9)

-and

0
By— — 4 7(y —1)2Rs /RkW (@3E) de. (3.10)
0
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Setting the dimensionless variable x for ¢ and using (3.2) and (3.3)
the equation (2.26) determining &, reduces to

’” 4—62* _,
Fl—a) =g g =0 (3.11)
with
6 (ol R?
c%=3<ﬂ’;m —1). (3.12)

The eigenfunctions &, of (3.11) normalized according to (2.27) and
the corresponding eigenvalues ¢, are given below: '

£ 5
°0 " | 47, R?
, M@
oy = R3
5 7
— e — e 2
3 3.354]/47!90]85 (1 : x>
, 38 M@
9T="3 TR
_ /5 18 ., 99
£, = 7.544 L e -5 e
MG
5 33 429 143
- 0 (100 e #9445
& =12.107 V4ﬂQoR5 (1 5 L+ @ o xs)
MG
G§== 56'—257
5 52 234 884 4199
- 2 2% 2 4 __ 6
&, = 18.498 |/4n90R5 (1 5 4+ = 51 20+ 537 x8>
MG
5 510 3230
— - _ 2 4 _ 6
& — 26283 |/ g o (1 1522 - 220 ot — 2200 go
T - x1°)
, 263 MG
05 = 3 B3

5 102 969 3876
= _ 2 4 6
e 36.887]/47”20}25 <1 At g 2%+
7429 74290 22287
8 _ 10 12
T % 143x+143x)

0§ = 106 —;—. (3.13)
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Using these values of &, we can evaluate @, and R, as functions of z
and then, with their help, the coefficients 4, and By,.
On substituting

g, = Az e’ (3.14)
in (2.28), we have

wld; — w?e?d;—iw ) A Ap — ) B A (3.15)
k k

We now replace o by a dimensionless quantity w: as

w

(3.16)

W=TTHaNE
(%)
and write
, 4,
=TGR (3.17)
%)
’ 'BS
Skz—MGk 5 (3.18)
()
! G&
0v="3ra iz (3.19)
(%)
so that (3.15) takes the form
(w* — w? o) A, — zwkz Agp Ap — %‘ B Ay (3.20)

in which all the symbols are dimensionless.

4. The Characteristic Equation

For numerical computations we shall take the star computed by
EppixaTox (1925)

M = 5.02 solar masses

R = 16.382 solar radii

Mean Molecular weight u = 2.2

Opacity coefficient % = 3.467 x 10%gm~! cm?

To obtain a sufficiently accurate solution of the simultaneous equations
(3.20) we found it sufficient to calculate 4;; and B, fors=0,1,..., 6
and k=0, 1,... 6 and these are collected in tables I and II.

For the solution of (3.20) be possible, the determinant of all the
coefficients of the amplitudes 4; must vanish. This condition gives
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us the characteristic equation for evaluating w:
D=ldyl =0. (4.2)
For the model under consideration the values of d,, are given below:

dgo= w?* (w?— 1) + 3.42066 x 10—
Qo= 2.3713 x 1025w + 7.7345 x 104
dop= 6.1719 X 10242 + 9.3336 x 104
dos = 5.7779 X 10~25w + 9.8529 x 10-4
gy = 2.8984 X 10~2iw + 1.2133 x 10-3
dos=6.9363 x 10-3iw + 1.3415 x 10-3
dog= 4.6721 % 10~%iw + 1.0582 x 10-3

dy= 1.8901 x 10~25w x 7.1049 x 10~*

dy = w(w? — 38/3) + 5.2872 x 1024w -+ 1.8449 x 103
dys = 1.1309 x 10~1iw + 2.0685 x 10-3

dys =1.4842 % 1015 + 1.8463 % 10-3

dyy= 1.9382 x 10~1iw + 2.4047 x 10-2

dys = 6.7406 x 10~25w + 1.6639 x 10-3

dy=1.5503 x 10~25w + 1.6664 x 103

doo= 5.5144 x 102 + 6.1802 x 10—
gy = 8.2741 X 10-25w + 2.1056 x 103
gy =w? (w2 — 31) + 9.8110 X 10~25w + 1.5969 x 10-3
gy = 1.6276 % 1015w + 1.7131 x 10-3
oy = 2.3599 % 1015w + 4.3509 % 10-3
o5 = 2.1348 X 10~L4w - 2.8096 x 10-3
dpe = 1.1063 X 1015w — 2.9513 x 10-3

dyo= 4.4563 X 10~2{w — 3.5661 x 10~
dgy = 9.4037 % 10~%5w + 5.7082 x 10—
dgp— 6.7305 x 10~25w — 2.6637 % 103
dgy = w? (w2 — 56) + 1.1070 x 1025w + 1.4183 x 10-3
dyy = 9.3132 % 10~25w + 1.3906 x 10-3
dys = 2.4542 % 101iw — 8.2152 % 103
dys = 2.6777 % 101w — 1.2763 x 102

dyo= 2.2359 x 10~2iw — 6.3116 x 104
dyy = 1.3834 X 101w — 1.5741 x 10-3
dyp=8.4586 x 10-2iw — 1.1700 X 10-2
dyy= — 8.4998 X 10~2jw + 2.2206 x 10-3
gy = w? (w2 — T1) — 2.5435 x 1015w + 4.3630 x 10-2
dys= — 1.3359 X 1015w — 4.5905 x 104
dye= 1.7106 x 1015w — 1.0984 x 10~2
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dgy= 4.9647 X 10~35w — 1.1560 x 10-3

dy; = 3.8832 % 10~25w — 3.0109 x 10-3

dgp= 8.6887 x 102w — 2.6137 x 102

doy= — 4.5454 % 10~24w + 2.6541 x 10-3

dyy—= — 4.6790 X 1015w + 9.9696 x 102

dys = w? (w2 — 263/3) — 8.2316 x 105w -+ 3.3626 x 102
dyg= — 6.6894 % 1013w + 3.8250 x 102 |

dgo= 4.9006 % 10~4iw — 6.3684 % 104

dgy = 9.8299 x 10~35w — 3.1301 x 10-3

dga= 5.0809 x 102w — 4.8437 x 10-2

des = 2.7185 X 10~2iw + 9.9878 x 104

o= — 3.6357 x 101w x 1.8898 x 10—

dgs= — 1.17734w 1+ 8.8761 x 10-2

dgs= w2 (w? — 106) — 2.03267w + 1.6673 x 10~

In what follows we shall determine the roots of the characteristic
equation (4.2) corresponding to the fundamental mode of pulsation by
the method of successive approximations. For this we start with the
zeroth order approximation obtained as the root of

dop=0. (4.3)
The successive approximations are given below

we=1 — 1.71033 % 10—

wy=1 — 1.48020 x 10~4— 1.7198 x 10-¢;

wy=1 — 9.4808 % 10~5— 5.3890 x 10-6;

ws=1 — 7.1607 x 10-5— 2.8625 x 10-6;

wy=1 — 6.7144 % 10-5— 2.7504 x 10-53

wy=1 — 6.6940 x 10~5— 2.7205 x 10-6; (4.4)

If, as usual, we would have stopped at the first order approximation
given by (2.17) in the solution of the energy equation we would have
obtained the following approximations to w:

wy=1

wi=1+ 1.921 X 10-3+ 8.674 x 10-8¢

wy=1 4+ 7.152 x 10~%+ 5.5827 x 10~7¢

wg=1 + 9.7487 x 10-5+ 8.3924 x 10-73

wg= 1+ 1.0396 x 10~%+ 9.3187 x 10~72

wi—=1 + 1.0416 % 10-*+ 9.3630 x 10-7i (4.5)

5. Conclusion
We see from (4.4) that after the third order approximation the solution
for o converges rapidly. Hence we have taken as an approximation.
w=1—6.6940 x 10-5 — 2.7205 x 10-%5
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The period P, of the fundamental mode of adiabatic oscillation is
given by SR '

h Py= 20? = 2.96 X 105 secs.
= 3.43 dajys.

The effect of taking the departure from adiabatic conditions on the
period is to increase it by 0.0079%; also it produces an exponential rise
in the amplitude. The time in which the amplitude increases by e comes
out to be of the order 1000 years. On the other hand if we confine
ourselves to the first order approximation for the solution of the energy
equation and accept the value of w as approximately equal to wy given
by (4.5) the time period P, becomes less by 0.019, and the amplitude
of the oscillations decreases becoming 1/e of its value in a time of interval
of about 3000 years.

These considerations suggest that on the problem concerning the

‘stability of pulsations the departure from the adiabatic conditions must

be taken into account more precisely than what we have done in the
present note.
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