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ABSTRAOT.

The distribution with height of pressure and concentration for a Fermi-Dirac and a
Bose-Einstein gas subject to a uniform gravitational field is considered. The non-
relativistic non-degenerate and degenerate, and the relativistic non-degenerate and
degenerate cases are discussed. Because of its connection with radiation, the relativistic
case of Bose-Einstein statistics is particularly interesting.

§1. In a recent paper (Kothari and Auluck, 1942) the problem of density
distribution for a Fermi-Dirac and a Bose-Einstein gas, both for the relativistic
and non-relativistic cases, in the presence of a uniform field of force has been
discussed. The force on a particle of the gas due to the field is assumed to be
independent of the energy of the particle. This assumption, however, isin
general untenable when the field of force is due to gravitation, for in this case
the force on a particle is proportional to its mass and this depends upon the
energy of the particle in accordance with relativity. If € be the kinetic
energy of a particle whose rest mass is m, then the force on the particle due to

a gravitational field of intensity g will be (e +mc2) gé (where ¢ is the velocity of

light), and this in the relativistic case, when the kinetic energy is very large

compared to the rest mass energy, becomes %g. In the present paper we

ghall treat the problem of the distribution of pressure and concentration for a
Fermi-Dirac and a Bose-Einstein gas subject to a gravitational field, taking
into account the effect of relativistic mechanics. As usual, we shall consider
four limiting cases, viz. non-relativistic non-degeneracy and degeneracy, and
relativistic non-degeneracy and degeneracy.

§2. Let us consider an ideal Fermi-Dirac or Bose-Einstein gas placed in a
uniform gravitational field which we assume to be directed along the negative
direction of the z-axis and extending from ¢ = 0 tox = co. Then the equation
of hydrostatic equilibrium is

wp=—n(E+mcz)g§dx,- I ¢ )

where p is the pressure, E the average kinetic energy per particle and n the
number of particles per unit volume, all at height z.
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The pressure and {, the Gibb’s free energy per particle, are connected
by the thermodynamic relation
ap)
—— =7n,
(%),

where T is the temperature. This relation is well known, but for the sake of
completeness the proof for the relevant special case is indicated below.

The pressure is given by*

4 €2 +2me2e)?
o e+ +B
and hence
© : e—{
(a_p) _ 4mg Jd_e(ez+2m02€)%eﬁ 3)
%) 38 | BT ez £
0 L7 48

where ¢ is the weight factor of the particle and k and A have their usual
meanings. For classical statistics we have B = 0, for Bose-Einstein statistics
B = —1 and for Fermi-Dirac statistics 8 = +1. Integrating (3) by parts we
obtain

<3p> _4mg J (e24+2mee)} (e +me?) de
0

) = s — :
ap>
or -} =n. .. .. . .. (4)
(al T ‘ :
Substituting (4) in (1) we have
al\ Y

(dz>T—-—(E+mc)c—2.. .. . .. (8)
We shall now proceed to discuss separately the non-relativistic (fm£c2 -0 )

and relativistic (ﬁli'a“'* oo) cases. Consider first the non-relativistic case.
We have from (5)
t—f=—-mgz, .. .. O ()

where a bar over a quantity denotes its value at the level 2 = 0.

* The expressions for p, {, etc., quoted here will be found collected in a paper by
Kothari and Singh (1941).
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Substituting for { the expression
3 .
{ = kT [log do+2Bbgdo—3 bgdi+ .. .1,

nh3

where * Ay = ———s
q 2amkT)s

by = - = 0-1768
23
by = 25 —is = 000330,
33 42
we have [retaining terms up to the first order in 4]
= - m
(log Ao+2Bbsdo)—(log Ao +28b240) = — 222, .. (1)
and hence
log 20 miog” = — & 4 2pb, 4 e %
Ao n Zg 20 ’
or
- ~Z £
n=ﬁ{l+2ﬂb2Ao(l-—e ”o)}e o, . .. (8)
where z is a quantity of the dimension of length defined by
o T
0= g

Equation (8) shows that for a given %, the decrease of concentration with
height is smaller for a Fermi-Dirac gas than what it would be for a classical
gas (8 = 0). Inthe Bose-Einstsin case the decrease is greater than the classical
value. These results are what would be expected from the physical properties
of the Fermi-Dirac and Bose-Einstein statistics.

Let N denote the total number of particles in a cylinder of unit cross-
section and extending from x = 0 to z = o0, then we have

N= fndz = fzg+iizofbg Ag ,
(1]

or n=ﬁ7(1-—pb,Zo). P ()
o

Substituting (9) in (8) we obtain

n=i—:{1+ﬁbgzo<l—2e-§o)}e ... .. (10)

* 44 < < 1 for non-degeneracy.
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Thus we see that for a given N, the total number of particles, and for. any
height = < xglog 2, the concentration » in the Fermi-Dirac case is less than,
and in the Bose-Einstein case more than, what it would be for the classical
case (B = 0). At the height x = 2y log 2 the difference between the classical,
Fermi-Dirac, and Bose-Einstein cases vanishes. For x> xqlog2 the con-
centration for the Fermi-Dirac statistics is greater and for Bose-Einstein
statistics less than what it would be for the classical statistics.

Let us define a quantity D, called for brevity the ‘statistical variation’
by the relation

n—n*
n*

D=

3

where n* is the concentration in the classical case (8 = 0), n, n* both referring
to the same height . From (8) and (10) we have

&
(@) D =2Bby 4, (L——e;%) for fixed. 7 ,
and ‘

z
) () D =pby 4, (1—-2e “o) for fixed N .

In the case of fixed # (the concentration at x = 0), D is practically zero for
x < < 7y, and increases to a value 28b,4y when x > >-x,. On the other hand
in the case of a fixed N (total number of particles), D is practically equal to
—Bbg A, for x < < w,, vanishes for x = #; log 2, and for # > > x, approaches
the value BbeA.

§3. We shall now consider the relativistic non-degenerate case.

In the relativistic case the rest-mass energy of a particle is negligible
compared to its kinetic energy. Equation (1) therefore becomes

ngl
dp=——62—dx,
1
and as p=§nE
we have p=f)e-;t;, RN .. .. .. (1D

where for the relativistic case z is defined by

2
T = —. N ¢ 1)

Substituting for p the expression
P = nkT [14Bby dg—bgAS+ . .. 1,
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8.
where * =" fﬁ
4o 8mq (kT

by = 211 = 0°06250

bg = W= 0009066 ,

we obtain [up to first powers in A]
- -~z -z
n=ﬁ[1-!—ﬁb2Ao (1—3 ?0>]e %o, . ... (18)

Denoting as before by N the total number of particles in a column of unit cross-
section we have

=ﬁx0{l+ﬂb2—‘/12—°} N

and hence

) x T
n=E{l+ﬁ;b;ég(l—Ze E?)}e %, .. .o (14

o

Equations (13) and (14), except for numerical coefficients, are similar to the
corresponding non-relativistic equations (8) and (10), and, therefore, their
discussion need not be repeated here. We may note that in this case D will
be given by

Zz

(@) D =pBbyA, (l—e ”o) for fixed 7 ,
and

z
%) D =ﬁ——b22—‘-42(1_2e7o) for fixed N .

It should be particularly noticed that in the relativistic case equation
(11) for pressure distribution is independent of the statistics obeyed by the
gas and also of temperature. However, the dependence on statistics (shown
by the appearance of terms containing B as a factor) comes in when weée
consider the distribution of concentration instead of pressure. In fact equation
(11) being merely an expression of hydrostatic equilibrium holds not only for
the non-degenerate case that we are considering but also for degeneracy. In
the relativistic case, whatever statistics a gas may follow, and both for degeneracy
and non-degeneracy, the pressure distribution is given by eguation (11). In the
non-relativistic case, however, the expressions are different for the different

cases,

* -Ao <.<1 for non-degenémcy.
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§4. Woe shall now consider the degenerate case. In the non-relativistic
case, for a particle in a uniform gravitational field the force acting on it, being
independent of the kinetic energy, becomes constant, and thus the problem
is identical with that treated by Kothari and Auluck (loc. cit.). We shall,
therefore, here consider only the case of relativistic degeneracy. Taking first
the Fermi-Dirac case, and substituting in (11) the expression for pressure

1 272 [ET\2
p—;n§0[1+T(-—g—J) ], ) . .o (15)
3n
where lo=c¢ch (;—ﬂ;)i,
we have
) a2 (kT\2( £ -2
n=n[1-——2—('z;) {e”o—l}]e B, .. .. (18)
or for T =0,
-3z
n=rne %o, e e .o (1T

Equation (17) may be compared with the relativistic non-degenerate equation
(13) which for 44— 0 is )

n=rne %, . . .. .. {17

The two expressions (17) and (17') differ only by a numerical factor in the
power of the exponential®. While, therefore, there is no great difference
between the expressions for concentration distribution for the relativistic
degeneracy and non-degeneracy, there is a fundamental difference between
relativistic degeneracy and non-relativistic degeneracy. In non-relativistic
degeneracy, as is well known (see Kothari and Auluck, loc. ¢it.), the distribution
effectively extends from = =0 to a certain height x =1. Above 2 =1 the
number of particles is negligibly small and it vanishes altogether when the
degeneracy is complete (i.e. T =0). For complete degeneracy (T =0) n is
exactly proportional to (l—x)? within the interval = 0 to = = I, where the
length { is given by

NEA
l=2m_2g(m) .- . .. (18)

In the relativistic case even for complete degeneracy the distribution is not
confined within any finite interval but continues to vary exponentially with
height.

So far we have considered the relativistic degenerate case of Fermi-
Dirac statistics. We shall now discuss the Bose.-Einstein case. For a Bose-

* The definitions of , in (17) and (17°) are different.
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Einstein gas, the Gibb’s free energy is always less than zero for non-degeneracy,
and equal to zero in degeneracy. According to the fundamental equation (5)
L decreases with increasing 2, its maximum value occurring at # = 0, Hence
it follows that for a Bose-Einstein gas the degeneracy can occur only at the level
x = 0 and above this level the gas must necessarily be non-degenerate.

For a degenerate Bose-Einstein gas the pressure is independent of
concentration and for the relativistic case that we are considering p is given by

8 =#b
=3 (ch)3

As in a degenerate Bose-Einstein gas placed in a field of force degeneracy
oceurs only at the ground level, we have by combining (19) with (11)

T (kT ¢ )

8ab
= T Dt "2 20
2
where .’E°=§§.

Since black-body radiation constitutes a relativistic degenerate Bose-
Einstein gas, equation (20) shows the possibility of the occurrence of non-
degenerate radiation (at 2 3 0) when the gravitational field is extremely large.
The astrophysical implications of this result will be considered elsewhere.

Tt is a great pleasure to record our grateful thanks to Dr. D. S. Kothari
for his kind interest in the work.

REFERENCES.

Kothari, D. 8. and Auluck, F. C., (1942). Fermi-Dirac and Bose-Einstein Gas in & Uniform
Field of Force. Proc. Nat. Inst. Sci. India, 8, 165-171.

Kothari, D. 8. and Singh, B. N, (1941). Bose-Einstein statistics and degeneracy. Proc.
Roy. Soc. A, 178, 136.



