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On the Feigenbaum-Cvitanovi¢ equation in the theory of chaotic
" behaviour
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Abstract. We propose an analytic perturbative approach for the determination of the
Feigenbaum-Cvitanovi¢ function and the universal parameter o occurring in the Feigenbaum
scenario of period doubling for approach to chaotic behaviour. We apply the method to the
case Z = 2 where Z is the order of the unique local maximum of the nonlinear map. Our third
order approximation gives o = 25000 as compared to “exact” numerical value
o = 2:5029 . ... We also obtain a reasonably accurate value of the Feigenbaum-Cvitanovié
function.
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1. Introduction

The discovery by M Feigenbaum of universal quantitative behaviour, in the maps of an
unit interval onto itself, has generated enormous excitement as it opens up the
possibility of quantitatively understanding turbulence and other chaotic natural
phenomenon. In Feigenbaum scenario a system follows period doubling route to chaos
(Feigenbaum 1978, 1979, 1980).

In this theory asymptotically, at each period doubling the separation between any
two corresponding adjacent elements of a periodic attractor is scaled by a constant
ratio «. This leads to the existence of a function g(x) which reproduces itself under the
mapping except for the relevant scaling. This function satisfies the equation,

—ag(g(x/a)) = g(x), (1)
and is normalised by ‘
g9(0)=1. (2)

We shall refer to this equation and g(x) as Feigenbaum-Cvitanovié¢ equation and
function respectively (Feigenbaum 1978). For a generalisation to period n-tuplings of
this equation we refer to Cvitanovié-Myrheim (1983). Equation (1) together with
normalisation (2) determines both the functional form of g(x) and a. We shall be
interested in the solution which has a local maximum at x = 0 of the order Z. Such a
solution is unique (Feigenbaum 1980, p. 15; Collet et al 1980).

The universal function g(x) and a do, of course, depend on the order of local
maximum i.e. if the transformation T considered is

T:x—x' = A1—a|x|?),
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then they depend on Z. For Z = 2, which is the most interesting case, we have

a = 2:502907875 .

The function g(x) has also been determined numerically for this case (Feigenbaum

1979).
Another important umversai constant d, which determines the rate of period-

doublings, is given by
4 = 46692016 .
forz=2A con31derat10n of asymptotic period-doubling leads to the equation

—a[h(g(x/®)) +g'(g(x/o)h (x/2)] = Sh(x)
6>1 | 3)

for a determination of the universal function h(x) and universal constant 8. Again
numerical determination of h(x) and & has been carried out (Feigenbaum 1979).

In view of the importance of these functions it would be desirable to have an
analytical approach for -their determination as opposed to one involving pure
numerical computation. We propose an analytical perturbative scheme towards this
purpose in the present paper. It is a systematic procedure and can be improved
successively. Among other attempts to determine «, but not the g(x), by analytic
approximations, we may mention those of Helleman (1983) and Hu and Mao (1982)

among others.

2. Basic equations and method

Replacing x by ax we get

glax)+oag[g(x)] =0, : | (4)
g(0) = 1. v )
~ Let g(x) = 1+ p(x), (6)
= Z pny"’ ‘ (7)
n=1

= |x|? pi#0, t)

where Z is the order of local maximum of the transformation.

Further let
plex)= 3 C,[p()]". )
n=1 .

Using (6) and (9) in (4) we obtain

1+ ; C.[p()]" +eg[1+p(x)] = 0. (10)

Equating the coefficients of [ p(x)]" to zero m (10) we obtain
I+ag(1) =0, , (11)
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and

n!C,+af™(1) =0 n=12...) (12)
On the other hand, if we expand both sides of (9) in powers of y and equate the
coefficients we obtain (n=1,2,...)

p,,ﬂ" = Z Clpmlpmz ter pm, 5m1+m2+ oo tm, (13)
1

where f = |a|%.
We display first few of these equations.

p1B=Cip1, (14)
p2B? = Cyp, +C,pd, (15)
p3ﬁ3 _____C1p3+C2(2p1p2)+C3P;1‘, (16)
PaB* = C1pa+C2(2p1p3 +p3)+C3(3p2p,) + Capt, (17)

We note that since p, # 0,

= |a|?. (18)
It is also useful to note that
M1 _.(_____r 19
forl=1,2,3,...,and
f) =1+ ) p. (20)
r=1
If we combine (11), (13), (19) and (20), and further define
Pao” = S, |a|? (21)
n=12 ...
We obtain the basic equations to be solved
1 8 _
—+1+|a|z —=0 (22)
= 1
and S s g
rZ S,. m; 2t Pmy
S +Z ( -1 T —— =0
Nez-0n o |a|#(n =D
for n>1. ' (23)
The summation in (23) is over the set U given by
r=z1,1>1,
mzlm,z=21,...,mz=1
and 3
m+m+ ... +m=n
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We now note that (23) for n =1 leads to

© (rZ\S,S
Sl+ Z (1)ar—-i =0

r>1

and since S; ¥ 0 we get

1 rS
LI . ) 24
Z+ ar—-l ) . ( )

r>1

In fact using this equation we can simplify the remaining equations (23) for n > 2 to

read
1 I=n o [+Z\ 8§,
(1)« £ 2 (7

lz2r>21

Z Smlsmz e Sm,aml +my+ ... +mn
mlzl,...,m,21 :0
|a|2(n—l)

forn=2,3,... ‘ (25)

Equations (22) and (24) and (25) together constitute a system of coupled nonlinear
equations to determing @ and Sy, S5, . . . Weregard (22)as the eigenvalue equation for o
while (24) and (25) are to be used to determine Sy, Sz, . . . in terms of a.

These equations are, however, highly nonlinear and coupled. One needs a systematic
procedure for their solution. We now notice that (24)-(25) allow us to conclude that, as
o« — o0, we have a solution for which S, tends to constants S, o i.e.

S,,(O!) e Sn, 0-

[ Smdl ]

In particular S,’s admit, as @ — oo, an expansion in the inverse powers of a, of the form,
for Z a nonrational number,

_ Snipig
Sn(a) p’q=0’21’2'.“ Ialz‘I+p,
where S, ,, , are numerical constants. When Z is integral or a rational number simpler
expansions can be written down.

We propose to use such @ — oo expansions and use them to S, («) in terms of a by
using (24) and (25). These expansions for S, («) when substituted in (22) would give us
the eigenvalue equation for the determination of a.

It is known that as Z — 1, a does tend to infinity. We thus expect this procedure to
clearly work when Z — 1 (Collet et al 1980; Derrida et al 1978, 1979). We will see in the
next section, where we apply it to the physically most interesting case i.e. Z = 2 that the
method is still quite effective.

3. Application of the method for Z = 2

We shall now apply our method for the Z = 2 case. In this case we can use the simpler
expansion given by ‘
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S’I, n
Sa(0) = > - (26)
m=0,1,2,... &

Using (24) we obtain, as a — oo

Sy (o) —1/2. . (27)
Similarly from (5) and using (27) we obtain the following leading behaviours, as & — o0

1 1
Sz‘)'g, S3"')Tl“671‘, S4-—r—128aetc. (28)

Proceeding further and equating powers of « on both sides of (24) and (25) we obtain

0 =S1’1+2S2,0
0=8;,+35% 05,4 +6(S1,0)*S2, 05
0 = Sl, 2 +2Sz' 1 +3S3,0,

0=38,, “S2,0+(S1,0)2[S1,2+652. 1+1583 4]

+ 28y, 081, 1[81, 4 +68, 0] +[2S;, oSy, 2+ 8% 1151, 05
0 =S1’3+282’2+3S3,1+4S4'0, etc. : (29)

Combining the information contained in (28) with that contained in (29) we obtain
S1,0=—1/2
Si,1= —1/4, S2,0=1/8
81,2=0,8,, =0, S3,0=0;
Si,3=—1/4,8,,=1/32,8, , = 1/16, S;,O =0; etc. (30)

Using these coefficients we obtain the approximation
, a 1 1 , (1 1 "
g(x)—l—(i'f-z‘i—aa—z"l-...)x +(§+3—2;5+...)x

{ .
+(16“2+...)x6+... (31)

where all the coefficients of the powers of x2 have been kept to the order (1/a?).
The eigenvalue equation is

J(o) =0, - (32)

1 o0

where J(a)s;+1+a Y a—"SE’—l—and we have
n=1]

« 7 1 5

Ja) = ~24ly 1o

T T2 g T T O/, | (33)

To this order in approxirnétion we obtain from (32) using (33)
o=5/2=25000 (34)

to be compared with the result of the “exact” numerical computation o = 2:5029 . . . .
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Using the approximate value o = 5/2 we get from the expression (31),

g(x) & 1 — 1-5400x2 + 0-1300x* + 0-0100x° + . . .. (35)
We also quote, for comparison, the result of the “exact” numerical computation
(Feigenbaum 1979}

g(x) ~ 1—1-5276x* + 0-1048x* + 0:0267x® — 0-0035x® + . . . (36)

where we have kept only the four figures after the decimal sign.

4. An exact solution

An exact solution of (4) is given by
g(x) = (} + | x]?)17, (37)
~ 57 ' (38)

This solution is, however, of no interest for the Feigenbaum scenario for the onset of
the chaotic behaviour since g(x) has a local minimum rather than local maximum at x
= 0. It however implies that the eigenvalue equation for « should have a root given by
(38). For Z = 2 we should thus have arootato = — 1/\/2 ~ —0-707 . . .for the exact
eigenvalue equation. Our approximate eigenvalue equation given by (32) and (33) i.e.

7 1 5

o
=T2TEta TR

o =

(39)

has a negativerootata = —(/17+3)/8 = — 0-8904 which presumably a reflection of
the root a & —0-707 . . . for the exact equation.

5. Concluding remarks

We thus see that the present method produces reasonably accurate results. Since the
method is a systematic one the accuracy can be improved by taking higher order
approximations.

The real utility of the method would be to further allow us to calculate the
Z-dependance of the universal parameter o. Moreover whenever one needs g(x) as an
input, such as for example in the equations for h(x), it is useful to have such analytic
approximations to g(x) as we have obtained here. These and similar investigations will

be reported later.
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