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Gauge theories of weak and strong gravity
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Abstract. A review of some recent papers on gauge theories of weak and strong gravity is
presented. For weak gravity, SL(2, C) gauge theory along with tetrad formulation is described
which yields massless spin-2 gauge fields (quanta gravitons). Next a unified SL(2n,C) model is
discussed along with Higgs fields. Its internal symmetry is SU(n). The free field sotutions after
symmetry breaking yield massless spin-1 (photons) and spin-2 (gravitons) gauge fields and also
massive spin-1 and spin-2 bosons. The massive spin-2 gauge fields are responsible for short
range superstrong gravity. .

Higgs-fermion interaction can lead to baryon and lepton number non-conservation. The
relationship of strong gravity with other forces is also briefly considered.

Keywords. Gauge theories; strong gravity; symmetry breaking; unification of forces.

PACS No. 1115

1. Introduction

It is well known that Einstein’s general theory of relativity (GTR) (in a sense
phenomenological theory of gravity) is based on a geometrical approach. However,
there are other ways of looking at gravity. Through the work of Utiyama (1956), Kibble
(1961) and others (e.g. Eguchi et al 1980; Ivanenko and Sardanashivly 1983}, it has been
realised that gravitational field can be regarded as a non-Abelian gauge field of Yang-
Mills (1954) type. This field is self-interacting and the equations are nonlinear. While
some authors (Salam 1977) consider Einstein’s equations as gauge theory par
excellence, others (e.g. Yang) contend that this is based on an unnatural interpretation
of gauge fields. Nevertheless, the concept of gauge theory pervades GTR in the form of
covariant derivatives.

In gauge theories, auxiliary fields appear when one considers invariance of the field
equations under space-time dependent transformations. In GTr the role of these fields
are played by Christoffel symbols for the group of coordinate transformations which
are, in fact, space-time dependent. Over the last 15 years some important developments
in the field of gravity have taken place. These are: (i) Superstrong short range gravity
mediated by massive spin-two gauge bosons (Sivaram and Sinha 1979) in addition to
weak gravity mediated by massless gravitons. (ii) Quantization of gravity: It had been
hoped that like all other fields, gravity will also be quantized. Although there have been
many interesting approaches to this greatest challenge of theoretical physics (for
reviews see Isham et al 1981; Narlikar and Padmanabhan 1983), we do not have a
solution to this problem as yet. (iii) Supergravity invokes supersymmetry between
pairs of bosons and fermions, they being manifestations of the same super particle.
Supersymmetry generalised to a local gauge invariance leads to a gravitational model as
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a mixture of spin-2 (graviton) and spin 3/2 (gravitino) particles. Gravitational
interaction emerges within the framework of a unified gauge theory. There is intense -
activity in this field with the hope of unifying all fundamental forces in nature with
extended supergravity models and Kaluza-Klein supergravity (van Nienwenhuizen
1981; Duff et al 1983). (iv) Another exciting development is the concept that gravity is
not fundamental but is an induced effect arising from symmetry-breaking effect in
quantum field theory. There is great promise but considerable work is needed before a
clear picture emerges (Adler 1982; Zee 1982; Pagels 1983).

In the present article, we shall be mainly concerned with gauge theory of superstrong
gravity and weak gravity with their possible connection with other interactions in
nature, namely, weak, electromagnetic and strong interactions. Although the initial
motivation for superstrong short range gravity came from the existence of massive
spin-2 f-mesons (Isham et al 1971; Sivaram and Sinha 1973), it can be generalized to
spin-2 gluons or gauge bosons. An appropriate gauge theory can permit the existence of
both short range and infinite range gravity. '

In what follows, we shall discuss a gauge theory formulation along with a concept of
spontaneously broken symmetry (sBs) (Linde 1979) and Higgs (1966)-Kibble (1967)
mechanism which will lead to the generation of massless and massive spin-1 and spin-2
gauge fields.

2. SL(2, C) gauge theory of weak gravity

Here we briefly outline an SL(2, C) gauge theory formulation of Einstein type theory of
weak gravitation using the tetrad formalism and the concept of spontaneously broken
symmetry (Sivaram and Sinha 1975; Dennis and Huang 1977). SL(2, C) group is
homomorphic to the proper orthochronous Lorentz group. The tetrad formalism is
ideally suited to display the gauge aspect of the theory. The special feature of the
formalism is invariance under tetrad rotation. This corresponds to invariance under the
gauge group SL(2, C) and is analogous to the invariance of the Yang-Mills (1954) fields
under local isotopic spin rotation in SU(2). ’

In the tetrad formalism four reference vectors are constituted at each space-time
point. This is in addition to the four-coordinate system. We shall denote the tetrad by

th (a=0,1, 2, 3 for tetrad components
=0, 1, 2, 3 for local coordinate indices) Ne))
and their inverses tf,, which satisfy
thts = o, theh = 85, » | (2)

The relationship between the Lorentz metric 1, = diagonal (1, —1, —1, —1) and the
metric g, of general relativity is then given by ‘ '

g,uv = t:tsr’ab' _ ‘ (3)
Now the constant Dirac matrices (on flat space-time) satisfy the relation
Va¥b + Vo¥a = 2Map- | 4)

One can define space-time dependent Dirac matrices
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Y= thy° | \ (5)
which satisfy '

YT+ = 2%, - (6)
The 7, matrices of Dirac provide a representation. Using the expression

Y = LyS(L)y* S~ (L), , (7)
where § is the spacetime dependent spinor representation of the tetrad rotation L, the
homomorphism

Li>S(L) - ®)

- is defined. The transformation matrix S can be chosen as

S = exp (ig,,0.50") v ©)
where g,, represents the coupling constant,

o — %[},a, w1 ’ (10)
The gauge potential and the gauge field for the present case are denoted by W, and

W,, = 0, —0W,+ig,[W.,W,] | | (11)
The transformation laws for jz“(x), W, and W,, under (9) (i.e. under SL(2, C)) are

P> SyrSTY,

W,— SW,‘S“1 +i(8,85)871,
W W, 871 (12)

Further a spinor y/(x) obeys' the transformation

v Sy
and remains invariant under coordinate transformation. However,

. 0, ¥~ S0,y + (8,8 o (13)

i.e. the derivative is not a spinor. Hence we introduce the SL(2, C) covariant derivative

D =0,y +2g.W,¥. (14)

The above relations are similar to those for Yang-Mills fields under isospin SU(2)
transformation. In the tetrad formalism the Einstein-Hilbert type action becomes

— g4y /5 UV apab
A jd X\ =g Wbt 22 (15)
where J—g = det(tt)

and % is the Lagrangian density of matter field (scalar, vector or spinor).

In proceeding further, we have to use a modified invariance principle. The above
action must be invariant under the group of general coordinate transformation. The
action must also be invariant under Lorentz group of transformation at each space time
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point (tetrad rotation). As a consequence, the fields in question will be scalars or tensors
under general coordinate transformation and scalars, tensors or spinors under Lorentz
group. Further we must consider W, to be a curvature tensor having second derivative
of t*. On varying the action with respect to ti, then yields the equation

Rt —iRtt = «T?

R} = R, tGn" (16)
1D (862 |
T“”?{’E?E‘ ? (6(6%::))} | )

which can also be expressed as
R,,—%g,,R=xt"'T,,.

This has resemblance to Einstein’s equation. However, the curvature tensor and T,
may not necessarily be symmetric.

3. Unified SL(2n, C) model of gauge fields

In the previous section we considered SL(2, C) gauge theory for weak gravity mediated
by massless spin-2 gauge bosons.

We shall now discuss an extended model which can describe internal symmetries of
elementary particles and also generate massive spin-2, spin-1 bosons besides the
massless ones. For describing strongly interacting spin-2 mesons an SL(6, C) invariant
form was chosen (Isham et al 1973; Dennis and Huang 1977). The relevant gauge group
was SL(2, C) x SL(6, C). However, this gives a non-unified model with leptons
providing the weak gravity and hadrons the strong gravity. This f — g model has some
non-renormalizable parts. The SL(8, C) gauge model of Huang and Dennis (1981a)
includes leptons and quarks in a unified manner in a four-colour scheme using the
subgroup SU(4). Through the Higgs mechanism of spontaneous symmetry-breaking
(ssB) the spin-2 gluons (f) and fermions become massive leaving the gravitons (g)
massless. Unlike the case of SL(2, C) x SL(6, C), the Higgs-fermion interaction is
renormalizable. However the SL(8, C) model did not include spin-1 gauge fields and
thus left out photons, W bosons and spin-1 gluons etc. Accordingly, we shall now
discuss a unified SL(2n, C) along with Higgs-Kibble mechanism which can generate

both spin-1 and spin-2 gauge fields massless and massive (Huang and Dennis 1981b;
Sinha 1983).

The transformation matrix of SL(2n, C) group is
’ _ g N ) N
S = exp (zi—[ Y (B +i0ys)A+ Y Bj,,a"b/l,]> (18)
j=1 J=0
where N = n? —1; g, = coupling strength
Ys = iVoY1Y273, 4o = 1 and 'lj (j=1...,N)
are the generators of SU(n) algebra. They obey the relation
[/1,.,11-] = zifijkflb
Tr(2;4;) = ndj. (19)
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The tetrad field for the present case is denoted by M* with components given by

N
M* = 3 (M5, + M5j7,75) 4, ‘ (20)
J=0 .
The fermion Lagrangian density with local SL(2n, C) invariance
Lr=iTr(yM*D ), (21)
with Y —SYSH,
and
DY =0,y +ig.GY. : (22)
The gauge potential G, behaves as
1
G,—5G,57* —-Eg—ﬁuSS"l. (23)
Similarly, the SL(2n, C) invariant Lagrangian density for the gauge field is
WY, ,
P = ‘*éng Tr{[M*M"]G,,}, (24)
where '
G, =0,G,—0,G,+ ig.[G,.G.], (25)
1
M =detM,,,M,, = Z;Tr (M, M,). (26)

As for M*, the components of G, are given by
N

. A ol
Gu= 2., (GL+iGiys)5 + ZZ Gl 0% . o7

j=1
At this stage we introduce the Higgs field ¢ satisfying the transformation
¢ — SpS~1

and have the components
N
=3 (¢'+idlys +3¢L0™)A, (28)
J=0

along with its conjugates ¢ = y,¢'y,.

The Lagrangian densities for the Higgs scalar which are invariant locally under -
SL(2n, C) is given by

\/ -M ny v

Ly = Y[, Tr (D, 8D, )M +a, Tr (M*D,FD,HM")

+ a3 Tr(M*D,$D,pM*) + aTr(D,dM"D HM")
+aTr (D, #M’D,¢M*) + ag Tr(M*D,$Dyd M) M* M, ]
—J=-MV($), (29)

where the coefficients satisfy the relation
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as = 3a—3%(a; +a; +a3)

V) = b+ EETr (F) + 2 Tr (B4 54) ' (30)
+ %[Tr(i&b)]z (1)

and \
D,¢ = 8,4 +ig.[G,, 8- (32)

The form of V(¢) is such that for p; <0 and py,p; >0 we will have spontaneous
symmetry breaking with the vacuum expectation value

CO|[0d = bo = & (— 1/ Qutz +8npi)* 2 (33)

The coefficients in (29) and (30) have been chosen to eliminate ghost states. Also the
Lagrangian density contains the interaction between Higgs field and the gauge field
(via (31)) as a minimal coupling. This may suffice for the appearance of spin-1 gauge
fields. To generate massive spin-2 gauge fields we need non-minimal coupling. This is
simply achieved by noting that [M,, ¢] transforms under SL(2n,C) as D,¢.
Accordingly, %, for non-minimal coupling is obtained by replacing D,¢ in £, by
ig,,[ M, $]. The coefficients b, of the various terms thus obtained are chosen such that
the total free field Lagrangian is in the Pauli-Fierz (1939) form and satisfy reality
conditions.
There will also be Higgs-fermion interaction term of the type

Lo = =ML (T + DTV +FdY)]. (34)

These forms on symmetry breaking i.e. {¢ > % 0 will produce mass for the fermions.
Further the second and third terms will permit non-conservation of baryon number -
and lepton number, The full Lagrangian density then turns out to be

g=$F+gg+g¢+g¢M+$¢p. (35)

In order to include both spin-1 and spin-2 gauge bosons, a more general choice for do
should be made. Thus

0= Col+ Y CA, (36)

where 1, are a subset of the SU(n) generators; C, and C, are constant and 1 is the unit
matrix. ; ‘

In the following, we shall discuss the free field equations of the gauge fields on
spontaneous symmetry breaking. ‘

4. Free field equations for spin-1 and spin-2 gauge fields

This is achieved by expanding about the classical vacuum solution namely,
¢=¢;, MF=9* and -G,=0.
This leads to
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N

M¥ =y +g, ¥ (Z§"Ya+ Z89,75)As | (37)

J=0
¢ =¢,+<¢ : (38)

The resulting free field Lagrangian is not diagonal with respect to the internal group
indices. This is diagonalised by using a suitable rotation (Huang and Dennis 1981b;
Sinha 1983). It is convenient to introduce the notation

Z;éa i gl‘a’ Z-pita ___i}m (39)

The gauge field Lagrangian density then finally takes the form in the lowest orders of
the couplings constant. :

Lor =Lyt Lo+ Ly, (40)

where £ gives only the non-dynamical fields and leads only to constraint relations.
Phys1ca11y interesting field equations appear from the variations of &, and % . Thus
the variation of %, gives (Huang and Dennis 1981; Sinha 1983)

(”acaﬁ + Nap ac)aag(an) -0 2g(ﬁc) + (aﬁac + ”ﬁc O 2)@ = 0. (41)

This equation has the invariance and the right symmetry to represent a massless spin-2
gauge field which can be identified with the graviton. This in turn implies that SL(2, C),
which is a subgroup of SL(2n, C) has not been spontaneously broken. Similarly from
& ; one finally gets

E}Zﬁﬂd] o0 f[ﬂe] PLE f[de] . ” (42)

which represents a massless spin-1 gauge field. There are stillimportant remaining parts
of Z,. These can be separated into antisymmetric and symmetric parts. For the
antisymmetric part one gets

02f, itsq +0.0 f'[aﬁ] — 080 fipuy + mfjJ; s = 0 (43)

which because of the mass term m]; represents a massive spin-1 field. The symmetric
part, on the other hand, leads to

2'7:1(486:) a./;‘(aa + anﬂc 2f; O f,(ﬁc)

-_‘ij (df)r’ﬂc +fj(ﬁc)) = : (44)
~ which can be recast into the Pauli-Fierz form
(d+1)le“j—m§j(2d+%f—o (45)

d being a number. The above represent massive spin-2 gauge ﬁelds

The foregoing shows how spin-1 and spin-2 gauge fields are both generated in an
SL(2n, C) invariant model. This happens through the introduction of Higgs field ¢
having the transformation properties ¢ — S¢S~ 1. The manner in which spontaneous
symmetry-breaking takes place is such that a massless spin-2 field (gravitons) are
generated. The SL(2, C) group thus remains unbroken. Spin-1 gauge field arises from
direct minimal coupling between ¢ and G, on spontaneous symmetry breaking,
Massive spin-1 and spin-2 gauge fields arise from non-minimal coupling between ¢ and
M,
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5. Nonconservation of baryon number

In § 3, a Lagrangian for Higgs-Fermion interaction was written with terms which lead
to non-conservation of baryon and lepton numbers. We intend to discuss some explicit
calculations (Huang and Dennis 1980).

For three different groups of Higgs fields we can write the Higgs-Fermion interaction
as

fw = “‘Cﬂppd’i‘_ﬁx‘/’ﬁ *Czlpz$z¢z¢L
—Cs(Ypds¥ + VL Psyp). (46)

The model preserves the fermion (F) number conservation where F = 3B+ L, Band L
being baryon and lepton numbers respectively. Quarks and nucleons can decay into
leptons and antileptons and pions on the basis of the above mechanism. The model
shows that positively-charged quarks are stable. Consequently, proton is much more
stable. In fact the ratio of the life times of proton (t,) to that of neutron (t,) turns out to
be

(t,/t) > 1.

This differs radically from other theories where (t,/t,) = 1.

6. Strong gravity and other forces

In this section, we briefly consider constants of strong gravity with those of other
interactions, e.g., strong and electromagnetic interactions. It has been shown earlier
(Sivaram and Sinha 1973, 1979) that the field equations of strong gravity turn out to be
Einstein type with a strong cosmological constant '

Ay~ 1028 cm ™2 47)
and the strong gravitational constant
Gf ~ 1038 GN’ (48)

G, being the Newtonian constant, which is of the order of strong interaction and is of
short range (10~ '* cm) and mediated by spin-2 gauge bosons of mass m, = 1:5 GeV.

As shown by Sivaram and Sinha (1979) the coupling constant of weak interaction
(which has the same dimension as gravitational interaction) turns out to be

G, = G, (m/m,* = 1075, (49)

where m,, ~ 102 GeV is the mass of the gauge boson mediating the weak interaction.
A solution of the strong gravity field equations coupled to the Yukawa field by Raut
and Sinha (1981) gave the relation

g> _ exp(@myr,)’r, 2,13 2Gm,
hic m,. G h 3 ctr, |

(50)

Here (g2/hc) is the strong interaction coupling constant, m, = proton mass,
m, (= mnc/h) is the inverse of the pion Compton length and r, is the strong
Schwarzschild radius or proton Compton length ~ 2 x 10** cm. The numerical value
of ‘

T
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¢ fhe ~ 17 | (51)

which is very close to the observed value 14-5,

Indeed the recent work of Chela-Flores and Varela (1983) supports the above
conclusion and the fact that the source of strong gravity lies in matter at hadronic
density (Sivaram and Sinha 1979). Even the electric change of hadrons is related to
strong gravity. Thus a solution of the field equations of strong gravity field coupled to
the charge (Reissner-Nordstrom) field gives the relation (Raut and Sinha 1983)

e Ay 1

hic ~ hG, 3x308
which gives the value of the fine structure constant to be of the order of 1/141, pretty
close to the observed value (1/137). This further renders a strong support to the
relationship of strong gravity with other forces and the source of strong gravity. The

‘basis of these calculations is that the strong gravitational force vanishes at the radius
of an elementary particle (e.g. proton), i.e.

dv,
dr o,

(52)

=0, (33)

V, being the strong gravitational potential. These calculations give strong support to
the relevance of strong gravity in matter at extreme density particularly those occurring
within hadrons.

7. Concluding remarks

In the foregoing sections, we-have given a review of some recent developments in the
field of gravity. The concept of superstrong short range gravity mediated by massive
boson has emerged since 1971. In this article a discussion of gauge theories of both
weak and strong gravity has been presented. SL(2, C) gauge theory describes weak
gravity SL(2n, C), which has SU(n) subgroup for internal symmetry, coupled with
Higgs-Kibble mechanism of spontaneous symmetry breaking gives a unified descrip-
tion. In this both spin-1 and spin-2 gauge fields appear. Further, the study of free fields
give massless and massive spin-1 and spin-2 gauge field equations. The massless spin-2
gauge field is identified with gravitons showing that SL(2, C) symmetry remains
unbroken. The constant form in the Higgs potential V(¢) i.e. Ho is related to the
cosmological constant.

Taking into account Higgs-fermion interaction, one finds processes which lead to
non-conservation of baryon and lepton numbers. In §6, the relationship of the
coupling constants with the constants of strong gravity is given. The values presented
for various interactions are in good agreement with those for the observed forces. Thus
strong gravity field is related to all other forces. This is a feature of the gauge unification
programme described here. ‘
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